Skip to main content

Abstract

Heat transfer is an area of thermal engineering the focuses on the transport, exchange, and redistribution of thermal energy. The three modes or ways that heat can be transferred have been termed conduction, convection, and radiation. In this chapter, the basic physics associated with conduction heat transfer will be elaborated, and it will be shown through examples how the tools and analysis typically used for conduction problems can be applied to design and analysis when fire occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 869.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carslaw, H. S. and Jaeger, J. C. Conduction of Heat in Solids. Oxford University, Oxford, UK (1959).

    MATH  Google Scholar 

  2. Bergman, T. L., Lavine, A. S., Incropera, F. P., & DeWitt, D. P. Fundamentals of heat and mass transfer. Wiley. (2011).

    Google Scholar 

  3. Mills, A. F. Basic heat and mass transfer (Vol. 2, pp. 745–833). Upper Saddler River, NJ: Prentice hall. (1999).

    Google Scholar 

  4. Moran, M. J., Shapiro, H. N., Boettner, D. D., & Bailey, M. Fundamentals of engineering thermodynamics. Wiley. (2010).

    Google Scholar 

  5. Schmidt, P. S., Ezekoye, O. A., Howell, J. R., & Baker, D. K. Thermodynamics: an integrated learning system. Wiley. (2006).

    Google Scholar 

  6. Heskestad, G., & Bill, R. G. Quantification of thermal responsiveness of automatic sprinklers including conduction effects. Fire Safety Journal, 14(1), 113–125. (1988).

    Article  Google Scholar 

  7. Kaviany, M. Principles of heat transfer New York, USA, John Wiley Publishers (2002).

    Google Scholar 

  8. Kaviany, M. Heat transfer physics Cambridge, UK: Cambridge University Press. (2008).

    Book  MATH  Google Scholar 

  9. Gebhart, Benjamin. Heat conduction and mass diffusion. New York: McGraw-Hill, (1993).

    Google Scholar 

  10. Wald, F., Simões da Silva, L., Moore, D. B., Lennon, T., Chladná, M., Santiago, A., and Borges, L. Experimental behaviour of a steel structure under natural fire. Fire Safety Journal, 41(7), 509–522. (2006).

    Google Scholar 

  11. Bejan, A, Heat Transfer, New York, John Wiley Publishers, (1993).

    Google Scholar 

  12. Arpaci, V.S., Conduction Heat Transfer, Addison Wesley, (1966).

    Google Scholar 

  13. Ozisik, M.N., Heat Conduction, New York, John Wiley Publishers, (1993).

    Google Scholar 

  14. Olenick, Stephen M., and Douglas J. Carpenter. “An updated international survey of computer models for fire and smoke.” Journal of Fire Protection Engineering 13.2 87–110. (2003).

    Google Scholar 

  15. Shih, T.M., Numerical Heat Transfer, Hemisphere publishing Corp, (1984).

    Google Scholar 

  16. Ferziger, J.H. Numerical Methods for Engineering Applications, New York, John Wiley, (1981).

    MATH  Google Scholar 

  17. Fletcher, C.A.J., Computational Galerkin Methods, Springer (1984).

    Book  MATH  Google Scholar 

  18. Press, William H., Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling. Numerical Recipes in FORTRAN 77: Volume 1, Volume 1 of Fortran Numerical Recipes: The Art of Scientific Computing. Vol. 1. Cambridge university press, (1992).

    Google Scholar 

  19. Hansen, Per Christian. Rank-deficient and discrete ill-posed problems: numerical aspects of linear inversion. Vol. 4. Society for Industrial Mathematics, (1987).

    Google Scholar 

  20. Mathews, J., and Walker, R.L., Mathematical Methods of Physics, Addison-Wesley, (1970).

    Google Scholar 

  21. Beck, J. V., St Clair, C. R., & Blackwell, B. Inverse heat conduction, John Wiley, (1985).

    Google Scholar 

  22. Ozisik, M. N. Inverse heat transfer: fundamentals and applications, Taylor & Francis, (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Society of Fire Protection Engineers

About this chapter

Cite this chapter

Ezekoye, O.A. (2016). Conduction of Heat in Solids. In: Hurley, M.J., et al. SFPE Handbook of Fire Protection Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2565-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2565-0_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2564-3

  • Online ISBN: 978-1-4939-2565-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics