Skip to main content

Role of Glutamine Transaminases in Nitrogen, Sulfur, Selenium, and 1-Carbon Metabolism

  • Chapter
  • First Online:
Glutamine in Clinical Nutrition

Abstract

Glutamine metabolism is largely controlled by two enzyme pathways: 1) Conversion of glutamine to glutamate catalyzed by glutaminases, followed by conversion of glutamate to α-ketoglutarate by a glutamate-linked aminotransferases (or by the action of glutamate dehydrogenase); and 2) conversion of glutamine to α-ketoglutaramate (KGM) catalyzed by glutamine-utilizing transaminases (aminotransferases), followed by conversion of KGM to α-ketoglutarate by the action of ω-amidase. The former pathway has been well documented and intensively studied for over 60 years, whereas only recently has research focused on the latter pathway, its importance in homeostasis and the control of anaplerotic metabolites. The glutamine transaminases are of fundamental importance 1) as repair enzymes (salvage of α-keto acids), 2) in nitrogen and sulfur homeostasis (closure of the methionine salvage pathway), 3) in 1-carbon metabolism, and 4) in metabolism of seleno amino acids. As a result of their broad substrate specificity the two principal mammalian glutamine transaminases (i.e. glutamine transaminases L and K) have also been characterized as kynurenine aminotransferases (KAT I and KAT III, respectively), responsible for the production of neuroactive kynurenate. The glutamine transaminases are also active with a variety of sulfur- and selenium-containing amino acids. Some of the products derived from the transamination of these amino acids may also be neuroactive (e.g. certain sulfur-containing cyclic ketimines) as well as chemopreventive (e.g. the α-keto acids derived from seleno amino acids). Of relevance to human health and disease, the glutamine transaminases may contribute to the bioactivation (toxification) of halogenated alkenes (and possibly other xenobiotic electrophiles), some of which are environmental contaminants. Finally, the role of the glutamine transaminases and ω-amidase in cancer biology has been little studied. However, the “glutamine addiction” of many tumors suggests that the glutamine transaminases together with ω-amidase may have a fundamental and influential role in regulating cancer progression

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meister A, Sober HA, Tice SV, Fraser PE. Transamination and associated deamidation of asparagine and glutamine. J Biol Chem. 1952;197:319–30.

    CAS  PubMed  Google Scholar 

  2. Cooper AJL, Meister A. Isolation and properties of a new glutamine transaminase from rat kidney. J Biol Chem. 1974;249:2554–61.

    CAS  PubMed  Google Scholar 

  3. Han Q, Li J, Li J. pH dependence, substrate specificity and inhibition of human kynurenine aminotransferase I. Eur J Biochem. 2004;71:4804–14.

    Article  Google Scholar 

  4. Han Q, Robinson H, Cai T, Tagle DA, Li J. Biochemical and structural properties of mouse kynurenine aminotransferase III. Mol Cell Biol. 2009;29:784–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Pinto JT, Krasnikov BF, Alcutt S, Jones ME, Dorai T, Villar MT, Artigues A, Li J, Cooper AJL. Kynurenine aminotransferase III and glutamine transaminase L are identical Enzymes that have cysteine Sconjugate β-lyase activity and can transaminate L-selenomethionine. J Biol Chem. 2014;289:30950–61.

    Google Scholar 

  6. Han Q, Cai T, Tagle DA, Robinson H, Li J. Substrate specificity and structure of human aminoadipate aminotransferase/kynurenine aminotransferase II. Biosci Rep. 2008;28:205–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Cooper AJL, Meister A. Comparative studies of glutamine transaminases from rat tissues. Comp Biochem Physiol. 1981;69B:137–45.

    CAS  Google Scholar 

  8. Hersh LB. Rat liver ω-amidase: purification and properties. Biochemistry. 1971;10:2884–91.

    Article  CAS  PubMed  Google Scholar 

  9. Jaisson S, Veiga-da-Cunha M, Van Schaftingen E. Molecular identification of ω-amidase, the enzyme that is functionally coupled with glutamine transaminases, as the putative tumor suppressor Nit2. Biochimie. 2009;91:1066–71.

    Article  CAS  PubMed  Google Scholar 

  10. Krasnikov BF, Chien C-H, Nostramo R, Pinto JT, Nieves E, Callaway M, Sun J, Huebner K, Cooper AJL. Identification of the putative tumor suppressor Nit2 as ω-amidase, an enzyme metabolically linked to glutamine and asparagine transamination. Biochimie. 2009;91:1072–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Chien CH, Gao QZ, Cooper AJL, Lyu JH, Sheu SY. Structural insights into the catalytic active site and activity of human Nit2/ω-amidase: kinetic assay and molecular dynamics simulation. J Biol Chem. 2012;287:25715–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Cooper AJL. The role of glutamine transaminase K (GTK) in sulfur and α-keto acid metabolism in the brain, and possible bioactivation of neurotoxicants. Neurochem Int. 2004;44:557–77.

    Article  CAS  PubMed  Google Scholar 

  13. Darmaun D, Matthews DE, Bier DM. Glutamine and glutamate kinetics in humans. Am J Physiol. 1986;251:E117–26.

    CAS  PubMed  Google Scholar 

  14. Miller JE, Litwack G. Purification, properties, and identity of liver mitochondrial tyrosine aminotransferase. J Biol Chem. 1971;246:3234–40.

    CAS  PubMed  Google Scholar 

  15. Wray JW, Abeles RH. The methionine salvage pathway in Klebsiella pneumoniae and rat liver. Identification and characterization of two novel dioxygenases. J Biol Chem. 1995;270:3147–53.

    Article  CAS  PubMed  Google Scholar 

  16. Jones TW, Qin C, Schaeffer VH, Stevens JL. Immunohistochemical localization of glutamine transaminase K, a rat kidney cysteine conjugate β-lyase, and the relationship to the segment specificity of cysteine conjugate nephrotoxicity. Mol Pharmacol. 1988;34:621–7.

    CAS  PubMed  Google Scholar 

  17. Cooper AJL, Abraham DG, Gelbard AS, Lai JC, Petito CK. High activities of glutamine transaminase K (dichlorovinylcysteine β-lyase) and ω-amidase in the choroid plexus of rat brain. J Neurochem. 1993;61:1731–41.

    Article  CAS  PubMed  Google Scholar 

  18. Lin CH, Chung MY, Chen WB, Chien CH. Growth inhibitory effect of the human NIT2 gene and its allelic imbalance in cancers. FEBS J. 2007;274:2946–56.

    Article  CAS  PubMed  Google Scholar 

  19. Wipf D, Ludewig U, Tegeder M, Rentsch D, Koch W, Frommer WB. Conservation of amino acid transporters in fungi, plants and animals. Trends Biochem Sci. 2002;27:139–47.

    Article  CAS  PubMed  Google Scholar 

  20. Patel TB, Waymack PP, Olson MS. The effect of the monocarboxylate translocator inhibitor, α-cyanocinnamate, on the oxidation of branched chain α-keto acids in rat liver. Arch Biochem Biophys. 1980;201:629–35.

    Article  CAS  PubMed  Google Scholar 

  21. Steele RD. Blood-brain barrier transport of the α-keto acid analogs of amino acids. Fed Proc. 1986;45:2060–4.

    CAS  PubMed  Google Scholar 

  22. Hutson SM, Rannels SL. Characterization of a mitochondrial transport system for branched chain α-keto acids. J Biol Chem. 1985;260:14189–93.

    CAS  PubMed  Google Scholar 

  23. Hoffer LJ, Taveroff A, Robitaille L, Mamer OA, Reimer ML. α-Keto and α-hydroxy branched-chain acid interrelationships in normal humans. J Nutr. 1993;123:1513–21.

    CAS  PubMed  Google Scholar 

  24. Pace HC, Brenner C. The nitrilase superfamily: classification, structure and function. Genome Biol. 2001;2(1):REVIEWS0001.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Huebner K, Saldivar JC, Sun J, Shibata H, Druck T. Hits, fhits and nits: beyond enzymatic function. Adv Enzyme Regul. 2011;51:208–17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Zielke HR, Ozand PT, Tildon JT, Sevdalian DA, Cornblath M. Reciprocal regulation of glucose and glutamine utilization by cultured human diploid fibroblasts. J Cell Physiol. 1978;95:41–8.

    Article  CAS  PubMed  Google Scholar 

  27. Roediger WE. Utilization of nutrients by isolated epithelial cells of the rat colon. Gastroenterology. 1982;83:424–9.

    CAS  PubMed  Google Scholar 

  28. Mallet RT, Kelleher JK, Jackson MJ. Substrate metabolism of isolated jejunal epithelium: conservation of three-carbon units. Am J Physiol. 1986;250:C191–8.

    CAS  PubMed  Google Scholar 

  29. Abou-Khalil WH, Yunis AA, Abou-Khalil S. Prominent glutamine oxidation activity in mitochondria of hematopoietic tumors. Cancer Res. 1983;43:1990–3.

    CAS  PubMed  Google Scholar 

  30. Erickson JW, Cerione RA. Glutaminase: a hot spot for regulation of cancer cell metabolism? Oncotarget. 2010;1:734–40.

    PubMed Central  PubMed  Google Scholar 

  31. Koppenol WH, Bounds PL, Dang CV. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer. 2011;11:325–37.

    Article  CAS  PubMed  Google Scholar 

  32. Ward PS, Thompson CB. Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate. Cancer Cell. 2012;21:297–308.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Miles EW. Pyridoxal phosphate enzymes catalyzing β-elimination and β-replacement reactions. In: Dolphin D, Poulson R, Avramović O, editors. Vitamin B6 pyridoxal phosphate part B. New York, NY: John Wiley and Sons; 1986. p. 253–310.

    Google Scholar 

  34. Ueno H, Likos JJ, Metzler DE. Chemistry of the inactivation of cytosolic aspartate aminotransferase by serine O-sulfate. Biochemistry. 1982;21:4387–93.

    Article  CAS  PubMed  Google Scholar 

  35. Adams B, Lowpetch K, Thorndycroft F, Whyte SM, Young DW. Stereochemistry of reactions of the inhibitor/substrates L- and D-β-chloroalanine with β-mercaptoethanol catalysed by L-aspartate aminotransferase and D-amino acid aminotransferase respectively. Org Biomol Chem. 2005;3:3357–64.

    Article  CAS  PubMed  Google Scholar 

  36. Dekant W, Vamvakas S, Anders MW. Formation and fate of nephrotoxic and cytotoxic glutathione S-conjugates: cysteine conjugate β-lyase pathway. Adv Pharmacol. 1994;27:115–62.

    Article  CAS  PubMed  Google Scholar 

  37. Anders MW. Chemical toxicology of reactive intermediates formed by the glutathione-dependent bioactivation of halogen-containing compounds. Chem Res Toxicol. 2008;21:145–59.

    Article  PubMed  Google Scholar 

  38. Cooper AJL, Pinto JT. Role of cysteine S-conjugate β-lyases in the bioactivation of renal toxicants. In: Elfarra AA, editor. Biotechnology: pharmaceutical aspects. Advances in bioactivation research. New York, NY: Springer; 2008. p. 323–46.

    Google Scholar 

  39. Cooper AJL, Krasnikov BF, Niatsetskaya ZV, Pinto JT, Callery PS, Villar MT, Artigues A, Bruschi SA. Cysteine S-conjugate β-lyases: Important roles in the metabolism of naturally occurring sulfur and selenium-containing compounds, xenobiotics and anticancer agents. Amino Acids. 2011;7:7–27.

    Article  Google Scholar 

  40. Stevens JL, Robbins JD, Byrd RA. A purified cysteine conjugate β-lyase from rat kidney cytosol. Requirement for an α-keto acid or an amino acid oxidase for activity and identity with soluble glutamine transaminase K. J Biol Chem. 1986;261:15529–37.

    CAS  PubMed  Google Scholar 

  41. Cavallini D, Ricci G, Duprè S, Pecci L, Costa M, Matarese RM, Pensa B, Antonucci A, Solinas SP, Fontana M. Sulfur-containing cyclic ketimines and imino acids. A novel family of endogenous products in the search for a role. Eur J Biochem. 1991;202:217–23.

    Article  CAS  PubMed  Google Scholar 

  42. Hallen A, Cooper AJL, Jamie JF, Haynes PA, Willows RD. Mammalian forebrain ketimine reductase identified as μ-crystallin; potential regulation by thyroid hormones. J Neurochem. 2011;118:379–87.

    Article  CAS  PubMed  Google Scholar 

  43. Hallen A, Jamie JF, Cooper AJL. Imine reductases: a comparison of glutamate dehydrogenase to ketimine reductases in the brain. Neurochem Res. 2013;39(3):527–41.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Commandeur JNM, Andreadou I, Rooseboom M, Out M, de Leur LJ, Groot E, Vermeulen NPE. Bioactivation of selenocysteine Se-conjugates by a highly purified rat renal cysteine conjugate β-lyase/glutamine transaminase K. J Pharmacol Exp Ther. 2000;294:753–61.

    CAS  PubMed  Google Scholar 

  45. Nian H, Bisson WH, Dashwood WM, Pinto JT, Dashwood RH. α-Keto acid metabolites of organoselenium compounds inhibit histone deacetylase activity in human colon cancer cells. Carcinogenesis. 2009;30:1416–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Pinto JT, Lee JI, Sinha R, MacEwan ME, Cooper AJL. Chemopreventive mechanisms of α-keto acid metabolites of naturally occurring organoselenium compounds. Amino Acids. 2011;41:29–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Cooper AJL, Pinto JT, Krasnikov BF, Niatsetskaya ZV, Han Q, Li J, Vauzour D, Spencer JPE. Substrate specificity of human glutamine transaminase K as an aminotransferase and as a cysteine S-conjugate β-lyase. Arch Biochem Biophys. 2008;474:72–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Suzuki KT, Tsuji Y, Ohta Y, Suzuki N. Preferential organ distribution of methylselenol source Se-methylselenocysteine relative to methylseleninic acid. Toxicol Appl Pharmacol. 2008;227:76–83.

    Article  CAS  PubMed  Google Scholar 

  49. Okuno T, Motobayashi S, Ueno H, Nakamuro K. Identification of mouse selenomethionine α, γ-elimination enzyme: cystathionine γ-lyase catalyzes its reaction to generate methylselenol. Biol Trace Elem Res. 2005;108:245–57.

    Article  CAS  PubMed  Google Scholar 

  50. Cooper AJL, Pinto JT. Aminotransferase, L-amino acid oxidase and β-lyase reactions involving L-cysteine S-conjugates found in allium extracts. Relevance to biological activity? Biochem Pharmacol. 2005;69:209–20.

    Article  CAS  PubMed  Google Scholar 

  51. Lee JI, Nian H, Cooper AJ, Sinha R, Dai J, Bisson WH, Dashwood RH, Pinto JT. α-Keto acid metabolites of naturally occurring organoselenium compounds as inhibitors of histone deacetylase in human prostate cancer cells. Cancer Prev Res. 2009;2:683–93.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Part of the work from our laboratories cited in this chapter was supported by NIH grants CA111842 (to JTP) and ES008421 (to AJLC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur J. L. Cooper Ph.D., D.Sc. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cooper, A.J.L. et al. (2015). Role of Glutamine Transaminases in Nitrogen, Sulfur, Selenium, and 1-Carbon Metabolism. In: Rajendram, R., Preedy, V., Patel, V. (eds) Glutamine in Clinical Nutrition. Nutrition and Health. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1932-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1932-1_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1931-4

  • Online ISBN: 978-1-4939-1932-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics