Skip to main content

When Stars Wink Out

  • Chapter
  • First Online:
  • 1074 Accesses

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 410))

Abstract

It began with Aristotle. After sunset on May 4th in 357 BCE one of antiquity’s most influential philosophers watched the planet Mars disappear behind the Moon. His view is simulated in Fig. 20.1. From this simple observation he concluded that Mars must be the farther of the two bodies (Stephenson 2000). In his own words:

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agafonov MI, Ivanov VP, Podvojskaya OA (1990) Radio images of the Crab Nebula on the basis of lunar-occultation data. Astronomicheskii Zhurnal 67:549–560

    ADS  Google Scholar 

  • Ainslie MA (1917) Occultation of B.D. +21° 17144 by Saturn’s Ring 1917 Feb 9. Mon Not Roy Astron Soc 77:456–459

    ADS  Google Scholar 

  • Alexander AF (1962) The planet Saturn. A history of observation, theory and discovery. Faber and Faber, London

    Google Scholar 

  • Alexander AF (1965) The planet Uranus. A history of observation, theory and discovery. American Elsevier, New York

    Google Scholar 

  • Alvarez-Candal A, Ortiz JL, Morales N et al (2012) Stellar occultation by the trans-Neptunian object 2002 KX14. European Planetary Science Congress 2012, Madrid, Spain, 23–28 September 2012, id. EPSC2012-482

    Google Scholar 

  • Appleby GM (1980) Fading occultations of stars by the moon: 1943–1977. J Br Astron Assoc 90:572–581

    ADS  Google Scholar 

  • Aristotle (1922). De caelo. Trans. by Stocks JL. Clarendon Press, Oxford

    Google Scholar 

  • Arnulf A (1936) Sur une méthode pour la mesure des diameters apparents des étoiles. C R Acad Sci 202:115–117

    Google Scholar 

  • Ashbrook J (1956) Astronomical scrapbook. John Bevis and an occultation of Mercury by Venus. Sky Telescope 16(2):68

    Google Scholar 

  • Assafin M, Camargo JIB, Vierira MR et al (2012) Candidate stellar occultations by large trans-Neptunian objects up to 2015. Astron Astrophys 541: id. A142 (10 pp.)

    Google Scholar 

  • Barnard EE (1890a) Observations of the eclipse of Iapetus in the shadows of the Globe, Crape-ring, and bright ring of Saturn, 1889 November 1. Mon Not Roy Astron Soc 50:107–110

    ADS  Google Scholar 

  • Barnard EE (1894a) Micrometrical measures of the diameters of Ceres, Pallas, and Vesta, made with the 36-inch refractor of the Lick Observatory. Mon Not Roy Astron Soc 54:571–573

    ADS  Google Scholar 

  • Barnard EE (1895b) Micrometrical determinations of the diameters of the minor planets Ceres (1), Pallas (2), Juno (3), and Vesta (4), made with the filar micrometer of the 36-inch equatorial of the Lick Observatory, and on the albedos of those planets. Mon Not Roy Astron Soc 56:55–63

    ADS  Google Scholar 

  • Barnard EE (1900a) On the diameter of Ceres and Vesta. Mon Not Roy Astron Soc 60:261–262

    ADS  Google Scholar 

  • Barnard EE (1900b) The diameter of the asteroid Juno (3), determined with the micrometer of the 40-inch refractor of the Yerkes Observatory, with remarks on some of the other asteroids. Mon Not Roy Astron Soc 61:68–69

    ADS  Google Scholar 

  • Barnard EE (1904) Review of Pickering’s ‘The Moon,’. Astron J 20:359–364

    ADS  Google Scholar 

  • Baum RM (1973) The Planets: some myths and realities. David & Charles, Newton Abbot

    Google Scholar 

  • Baum RM (2007) The haunted observatory: curiosities from the astronomer’s cabinet. Prometheus, Amherst, NY

    Google Scholar 

  • Baum WA, Code AD (1953) A photometric observation of the occultation of σ Arietis by Jupiter. Astron J 58:108–112

    ADS  Google Scholar 

  • Bessel FW (1834) Bemerkungen über eine angenommene Atmosphäre des Mondes. Astron Nachr 11(263):411–420

    ADS  Google Scholar 

  • Bobrov MS (1970) Physical properties of Saturn’s rings. Cpt. 7. In: Dollfus AC (ed) Surface and interiors of planets and satellites. Academic, London

    Google Scholar 

  • Bosch N (1995) The 1985 stellar occultation by Pluto. Mon Not Roy Astron Soc 276:571–578

    ADS  Google Scholar 

  • Bosch N, Mendelson H (1985) Occultation by Pluto on 1985 August 19. International Astronomical Union Circular 4097

    Google Scholar 

  • Bosh AS, Olkin CB, French RG, Philip D (2002) Saturn’s F ring: kinematics and particle sizes from stellar occultation studies. Icarus 157:57–75

    ADS  Google Scholar 

  • Bosh AS, Person MJ, Levine SE et al (2013) The state of Pluto’s atmosphere in 2012–2013. American Astronomical Society, DPS meeting #45: #404.01

    Google Scholar 

  • Bouchez AH, Brown ME, Troy M et al (2003) Adaptive optics imaging of a stellar occultation by Titan. In: Wizinowich PL, Bonaccini D (eds). Adaptive optical systems technologies II. Proceedings of the SPIE. vol 4839, pp 1045–1054

    Google Scholar 

  • Bowell ELG, McMahon JW, Horne K et al (1978) A possible satellite of Herculina. Bull Am Astron Soc 10:594

    ADS  Google Scholar 

  • Braga-Ribas F, Sicardy B, Ortiz JL, Duffard R et al (2012) Stellar occultations by large TNOs on [sic.] 2012: the February 3rd by (208996) 2003 AZ84 and the February 17th by (50000) Quaoar. American Astronomical Society, DPS Meeting #44, #402.01

    Google Scholar 

  • Braga-Ribas F, Sicardy B, Ortiz JL, Lellouch E et al (2013) The size, shape, albedo, density and atmospheric limit of transneptunian object (50000) Quaoar from multi-chord stellar occultations. Astron J 773(1):id. 26(13 pp.)

    Google Scholar 

  • Braga-Ribas F, Sicardy B, Ortiz JL, Snodgrass C et al (2014) A ring system detected around th Centaur (10199) Chariklo. Nature 508(7494):72–75

    ADS  Google Scholar 

  • Brown ME (2013) On the size, shape, and density of dwarf planet Makemake. Astrophys J Lett 767(1):id.L7 (5 pp)

    Google Scholar 

  • Brown RH (1968) Measurement of stellar diameters. Annu Rev Astron Astrophys 6:13–38

    ADS  Google Scholar 

  • Buarque JA (1978) Occultations of Jupiter satellites. Publ Astron Soc Pac 90:117–118

    ADS  Google Scholar 

  • Burns JA, Simonelli DP, Showalter MR et al (2004) Jupiter’s ring-moon system. Cpt. 11. In: Bagenal FD, Timothy E, McKinnon WB (eds) Jupiter. The planet, satellites and magnetosphere. Cambridge University Press, Cambridge, UK, pp 241–262

    Google Scholar 

  • Bus SJ et al (1996) Stellar occultation by 2060 Chiron. Icarus 123:478–490

    ADS  Google Scholar 

  • Capen CF (1979) Herschel and the rings of Uranus. Astronomy 7(1):42–45

    ADS  MathSciNet  Google Scholar 

  • Cassini GD (1676) An extract of Signor Cassini’s letter concerning a spot lately seen in the sun; together with a remarkable observation of Saturn, made by the same. Phil Trans Roy Soc Lond 11:689–690

    Google Scholar 

  • Cassini GD (1677) Some new observations made by Sig. Cassini and deliver’d in the Journal Des Scavans, concerning the two planets about Saturn, formerly discover’d by the same, as appears in N.92 of these tracts. Phil Trans Roy Soc Lond 12:831–833

    Google Scholar 

  • Cassini JJ (1705) De determiner les longitudes des lieux de la terra par les eclipses des étoiles fixes & des planets par la lune, pratiquée en diverses observations. Memoires de l’Académie Royale des Sciences, avec les Mémoires de Mathématique et de Physique tirés des Registres de cette Académie 1705:194–211

    Google Scholar 

  • Chambers GF (1889) A handbook of descriptive and practical astronomy, 3 vols, 4th edn. Clarendon Press, Oxford

    Google Scholar 

  • Christou AA, Beisker W, Casas R et al (2013) The occultation of HIP 107302 by Jupiter. Astron Astrophys 556:id.A118

    Google Scholar 

  • Clerke AM (1902) A popular history of astronomy during the nineteenth century, 4th edn. Adam and Charles Black, London

    Google Scholar 

  • Colas F, Berthier J, Vachier F et al (2012) Shape and size of (90) Antiope derived from an exceptional stellar occulation on July 19, 2011. Asteroids, Comets, Meteors 2012, Proceedings of the conference held May 16–20, 2012 in Niigata, Japan. LPI Contribution No. 1667:id. 6427

    Google Scholar 

  • Collins SA, Diner J, Garneau GW et al (1984) Atlas of Saturn’s Rings. In: Greenberg R, Brahic A (eds) Planetary rings. University of Arizona Press, Tucson, AZ, pp 737–743

    Google Scholar 

  • Comas Solá J (1908) Observations des satellites principaux de Jupiter et de Titan. Astron Nachr 179(4290):287, 3289/3290

    ADS  Google Scholar 

  • Cook AF, Franklin FA (1958) Optical properties of Saturn’s rings: I. Transmission. Smithsonian Contrib Astrophys 2:377–383

    ADS  Google Scholar 

  • Cooray AR, Elliot JL, Bosh AS et al (1998) Stellar occultation observations of Saturn’s north-polar temperature structure. Icarus 132:298–310

    ADS  Google Scholar 

  • Corliss WR (1985) The moon and the planets: a catalog of astronomical anomalies. The Sourcebook Project, Glen Arm, MD

    Google Scholar 

  • Costain CH, Elsmore B, Whitfield GR (1956) Radio observations of a lunar occultation of the Crab Nebula. Mon Not Roy Astron Soc 116:380–385

    ADS  Google Scholar 

  • Cruikshank DP, Pilcher CB, Morrison D (1976) Pluto: evidence for methane frost. Science 194(4267):835–837

    ADS  Google Scholar 

  • Cunningham CJ (1988) Introduction to asteroids. Willmann-Bell, Richmond, VA

    Google Scholar 

  • Davidson G (1900) The apparent projection of stars upon the bright limb of the moon at occultation, and similar phenomena at total solar eclipses, transits of Venus and Mercury, etc., etc. Proc Calif Acad Sci Ser. 3, 1(7)

    Google Scholar 

  • Dawes WR (1851) Remarks on the observations of the obscure portion of Saturn’s ring, made by Dr. Galle at Berlin in 1838. Mon Not Roy Astron Soc 11:184–187

    ADS  Google Scholar 

  • de Meis S, Meeus J (1991) A propos d’occultations de planets par la lune dans des texts babyloniens. L’Astronomie 105:1–3

    ADS  Google Scholar 

  • de Vaucouleurs G (1964) Geometric and photographic parameters of the terrestrial planets. Icarus 3(3):187–335

    ADS  Google Scholar 

  • de Vaucouleurs G, Menzel DH (1960) Results from the occultation of Regulus by Venus, July 7, 1959. Astron J 70:351

    Google Scholar 

  • di Cicco D, Robinson LJ (1989) Saturn and 28 Sgr highlights. Sky Telescope 78(4):360–365

    ADS  Google Scholar 

  • Dollfus A (1967) Probable new satellite of Saturn. Int Astron Union Circular 1987

    Google Scholar 

  • Dossin F (1962) Observations de la diminuition d’éclat des étoiles vues à travers la region centrale de la Comète Burnham (1959k). J Observateurs 45:31–32

    ADS  Google Scholar 

  • Dunham DW, Herald D (2010) Asteroid occultations V8.0. EAR-A-3-RDR-OCCULTATIONS-V8.0. NASA Planetary Data System

    Google Scholar 

  • Dunham DW, Killen SW, Boone TL (1974) The diameter of (1) Ceres from a lunar occultation. Bull Am Astron Soc 6:432–433

    ADS  Google Scholar 

  • Dunham DW, Herald D, Frappa E et al (2013) Asteroid Occultations V11.0. EAR-A-3-RDR-OCCULTATIONS-V11.0. NASA Planetary Data System

    Google Scholar 

  • Durech J, Kaasalainen M, Herald D et al (2011) Combining asteroid models derived by lightcurve inversion with asteroidal occultation silhouettes. Icarus 214:652–670

    ADS  Google Scholar 

  • Dymock R (2010) Asteroids and dwarf planets and how to observe them. Springer, New York, NY

    Google Scholar 

  • Eddington AS (1909) Note on Major MacMahon’s paper ‘On the Determination of the apparent Diameter of a fixed Star’. Mon Not Roy Astron Soc 69:178–180

    ADS  Google Scholar 

  • Ellery RLJ (1880) Occultation of 64 Aquarii by Jupiter, observed at the Melbourne Observatory, September 14, 1879. Mon Not Roy Astron Soc 40:140–142

    ADS  Google Scholar 

  • Elliot JL (1979) Stellar occultation studies of the solar system. Annu Rev Astron Astrophys 17:445–475

    ADS  Google Scholar 

  • Elliot JL (1998) Stellar occultation probe of Triton’s atmosphere. Technical Report, NASA/CR-97-206749

    Google Scholar 

  • Elliot JL, Dunham EW (1979) Temperature structure of the Uranian upper atmosphere. Nature 279(5711):307–308

    ADS  Google Scholar 

  • Elliot JL, Kern SD (2003) Pluto’s atmosphere and a targeted occultation search for other bound KBO atmospheres. Earth Moon Planet 92(1):375–393

    ADS  Google Scholar 

  • Elliot JL, Kerr R (1984) Rings: discoveries from Galileo to Voyager. MIT Press, Cambridge, MA

    Google Scholar 

  • Elliot JL, Olkin CC (1996) Probing planetary atmospheres with stellar occultations. Annu Rev Earth Planet Sci 24:89–123

    ADS  Google Scholar 

  • Elliot JL, Young LA (1991) Limits on the radius and a possible atmosphere of Charon from its 1980 stellar occultation. Icarus 89:244–254

    ADS  Google Scholar 

  • Elliot JL, Dunham EW, Millis RL (1977a) Discovering the rings of Uranus. Sky Telescope 53(6):412–416, 430

    Google Scholar 

  • Elliot JL, Dunham EW, Mink DJ et al (1977b) Occultation of SAO 158687 by uranian satellite belt. IAU Circular 3051 (March 21, 1977)

    Google Scholar 

  • Elliot JL, Dunham EW, Bosh AS et al (1989) Pluto’s atmosphere. Icarus 77:148–170

    ADS  Google Scholar 

  • Elliot JL, Hammel HB, Wasserman LH et al (1998) Global warming on Triton. Nature 393:765–767

    ADS  Google Scholar 

  • Elliot JL, Person MJ, Gulbis AAS et al (2007) Changes in Pluto’s atmosphere: 1988–2006. Astron J 134:1–13

    ADS  Google Scholar 

  • Elliot JL, Person MJ, Zuluaga CA et al (2010) Size and albedo of Kuiper belt object 55636 from a stellar occultation. Nature 465:897–900

    ADS  Google Scholar 

  • Elsmore B (1957) The lunar occultation of a radio star and the derivation of an upper limit of the lunar atmosphere. In: Hulst V, Christoffel H (eds) Radio astronomy, proceedings from 4th IAU Symposium. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Eshleman VR (1973) The radio occultation method for the study of planetary atmospheres. Planet Space Sci 21(9):1521–1531

    ADS  Google Scholar 

  • Esposito LW, O’Callaghan MJ, West RA (1983) The structure of Saturn’s rings—implications from the Voyager stellar occultation. Icarus 56:149–152

    Google Scholar 

  • Evans DS (1955) Occultations and lunar mountains. Astron J 60:432–440

    ADS  Google Scholar 

  • Fernández YR, Wellnitz DD, Buie MW et al (1999) The inner coma and nucleus of Comet Hale-Bopp: results from a stellar occultation. Icarus 140(1):205–220

    ADS  Google Scholar 

  • Fink U, Smith BA, Benner DC et al (1980) Detection of a CH4 atmosphere on Pluto. Bull Am Astron Soc 12:696–697

    ADS  Google Scholar 

  • Fjeldbo G, Kliore AJ, Sweetnam DN et al (1976) The occultation of Mariner 10 by Mercury. Icarus 29(4):439–444

    ADS  Google Scholar 

  • Fotheringham JK (1915) The secular acceleration of the moon’s mean motion as determined from the occultations in the Almagest. Mon Not Roy Astron Soc 75:377–394

    ADS  Google Scholar 

  • Fraser WC, Trujillo CS, Andrew W et al (2013a) Limits on Quaoar’s atmosphere. Astrophys J Lett 774(2). ID. L18 (4 pp)

    Google Scholar 

  • Fraser WC, Gwyn S, Trujillo C et al (2013b) Kuiper Belt occultation predictions. Publ Astron Soc Pac 125(930):1000–1014

    ADS  Google Scholar 

  • Freeman KC, Lyngå G (1969) The occultation of BD −17°4388 by Neptune. III. Discussion. Proc Astron Soc Aust 1:203–204

    ADS  Google Scholar 

  • Freeman KC, Lyngå G (1970) Data for Neptune from occultation observations. Astrophys J 160:767–780

    ADS  Google Scholar 

  • French RG, McGhee CA, Sicardy B (1998) Neptune’s stratospheric winds from three central flash occultations. Icarus 136(1):27–49

    ADS  Google Scholar 

  • French RG, Taylor GE (1981) Occultation of Epsilon Geminorum by Mars. IV—Oblateness of the martian upper atmosphere. Icarus 45:577–585

    ADS  Google Scholar 

  • French RG, Elliot JL, Gierasch PJ et al (1977) Martian atmospheric extinction and the central flash. Bull Am Astron Soc 9:451

    ADS  Google Scholar 

  • French RG, Nicholson PD, Cooke ML et al (1993) Geometry of the Saturn system from the 3 July 1989 occultation of 28 Sgr and Voyager observations. Icarus 104:163–214

    ADS  Google Scholar 

  • French RG, Marouf EA, Rappaport NJ et al (2010) Occultation observations of Saturn’s B Ring and Cassini division. Astron J 139:1649–1667

    ADS  Google Scholar 

  • Galle JG (1851) Einige Messungen der Durchmesser des Saturns und der Ringe desselben 1838 und 1839 auf der Berliner Sternwarte, uebst Bemerkungen über den schon damals wahrgenommenen dunkeln inner ring. Astron Nachr 32(756):187–190

    ADS  Google Scholar 

  • Geyer EH, Hoffmann M (1988) Photoelectric observations of the occultation of 136 Tauri by Venus. Earth Moon Planet 43:181–185

    ADS  Google Scholar 

  • Gulbis AA, Elliot JL, Person MJ et al (2006) Charon’s radius and atmospheric constraints from observations of a stellar occultation. Nature 439:48–51

    ADS  Google Scholar 

  • Hafner R, Manfroid J (1984) 1984 N1. IAU Circular 3968 (August 3, 1984)

    Google Scholar 

  • Halley E (1717) An advertisement to astronomers, of the advantages that may accrue from the observation of the moon’s frequent appulses to the Hyades, during the next three ensuing years. Phil Trans Roy Soc Lond 30:692–693

    Google Scholar 

  • Halliday I, Hardie RH, Franz OG, Priser JB (1966) An upper limit for the diameter of Pluto. Publ Astron Soc Pac 78(462):113–124

    ADS  Google Scholar 

  • Hamy M (1899) Mémoires et observations. Sur la mesure interférentielle des petits diameters application aux satellites de Jupiter et à Vesta. Bulletin Astronomique, Ser. I, 16:257–274

    Google Scholar 

  • Hansen CJ, Esposito LW, Buffington BB et al (2011) The structure of Enceladus’ plume from Cassini stellar occultation observations. American Geophysical Union, Fall Meeting 2011: Abstract #P13F-01

    Google Scholar 

  • Harrington J, French RG (2010) The 1998 November 14 occultation of GSC 0622–00345 by Saturn. I. Techniques for ground-based stellar occultations. Astrophys J 716(1):398–403

    ADS  Google Scholar 

  • Harrington J, French RG, Matcheva K (2010) The 1998 November 14 occultation of GSC 0622–00345 by Saturn. II. Stratospheric thermal profile, power spectrum, and gravity waves. Astrophys J 716(1):404–416

    ADS  Google Scholar 

  • Harrington J, Cooke ML, Forrest WJ et al (1993) IRTF observations of the occultation of 28 Sgr by Saturn. Icarus 103:235–252

    ADS  Google Scholar 

  • Heath MBB (1958) Report of a section. Saturn in 1957. J Br Astron Assoc 68:57–59

    ADS  Google Scholar 

  • Henriksen SW, Genatt SH, Marchant MQ, Batchlor CD (1958) Surveying by occultations. Astron J 63:291–295

    ADS  Google Scholar 

  • Herald D, Gault D (2012) Lunar occultation archive. http://vizier.u-strasbg.fr/viz-bin/VizieR?-source=VI%2F132A

  • Herschel JFW (1832) Observations of Biela’s Comet. Mon Not Roy Astron Soc 2:117–124

    Google Scholar 

  • Herschel JFW (1850) Outlines of astronomy. Longmans, London

    Google Scholar 

  • Herschel W (1798) On the discovery of four additional satellites of the Georgium Sidus. The retrograde motion of its old satellites announced: and the cause of their disappearance at certain distances from the planet explained. Phil Trans Roy Soc Lond 88:47–79

    Google Scholar 

  • Hilton JL, Seidelmann PK, Liu C (1988) Analysis of ancient Chinese records of occultations between planets and stars. Astron J 96(4):1482–1493

    ADS  Google Scholar 

  • Hilton JL, Seidelmann PK, Liu C (1992) An examination of the change in the earth’s rotation rate from ancient Chinese observations of lunar occultations of the planets. Astron J 104(6):2250–2252

    ADS  Google Scholar 

  • Hinson DP, Tyler GL, Hollingsworth JL, Wilson RJ (2001) Radio occultation measurements of forced atmospheric waves on Mars. J Geophys Res 106(E1):1463–1480

    ADS  Google Scholar 

  • Hubbard WB (1982) Structure of the martian atmosphere from Epsilon GEM occultation observations. Adv Space Res 2(2):103–106

    ADS  MathSciNet  Google Scholar 

  • Hubbard WB, Zellner BH, Wasserman LH et al (1977) Occultation of SAO 158687 by uranian rings. IAU Circular 3058 (April 6, 1977)

    Google Scholar 

  • Hubbard WB, Vilas F, Elicer L-R et al (1984) Probable ring of Neptune (1984 N1, 1981 N1.) IAU Circular, 4022 (December 21, 1984)

    Google Scholar 

  • Hubbard WB, Sicardy B, Miles R et al (1993) The occultation of 28 Sgr by Titan. Astron Astrophys 269:541–563

    ADS  Google Scholar 

  • Hubbard WB, Porco CC, Hunten DM, Rieke GH et al (1997) Structure of Saturn’s mesosphere from the 28 Sgr occultations. Icarus 130:404–425

    ADS  Google Scholar 

  • Huggins W (1865) On the disappearance of the spectrum of ε Piscium at its occultation of January 4th, 1865. Mon Not Roy Astron Soc 25:60–62

    ADS  Google Scholar 

  • International Astronomical Union, Minor Planet Center (2013) List of transneptunian objects. http://www.minorplanetcenter.net/iau/lists/TNOs.html

  • Johnson SJ (1879) Occultation of antares. Observatory 3:84–86

    ADS  Google Scholar 

  • Kater H (1830) On an appearance of divisions in the exterior ring of Saturn. Mon Not Roy Astron Soc 1:177–181

    ADS  Google Scholar 

  • Kopal Z, Carder RW (1974) Mapping of the moon, past and present. D. Reidel Publishing Company, Dordrecht

    Google Scholar 

  • Koskinen TT, Yelle RV, Snowden DS et al (2011) Titan’s upper atmosphere revealed by Cassini/UVIS stellar occultations. EPSC-DPS Joint Meeting 2011, held 2–7 October 2011 in Nantes, France, p 1129

    Google Scholar 

  • Kovalevsky J, Link F (1969) Diameter, flattening and optical properties of the upper atmosphere of Neptune as derived from the occultation of BD −17° 4388. Astron Astrophys 2:398–412

    ADS  Google Scholar 

  • Kuiper GP (1944) Titan: a satellite with an atmosphere. Astrophys J 100:378–383, Plates XV–XIX

    Google Scholar 

  • Lambert WD (1949) Geodetic applications of eclipses and occultations. Bull Géodésique 23(3):274–292

    ADS  Google Scholar 

  • Lane AL, Hord CW, West RA et al (1982) Photopolarimetry from Voyage 2: preliminary results on Saturn, Titan and the rings. Science 215(4532):537–543

    ADS  Google Scholar 

  • Larson SM, A’Hearn MF (1983) Limits on the optical thickness and particle albedo in the coma of Comet Bowell (1980b). Bull Am Astron Soc 15:804

    ADS  Google Scholar 

  • Lehner MJ, Wen C-Y, Wang J-H et al (2009) The Taiwanese-American Occultation Survey: the multi-telescope robotic observatory. Publ Astron Soc Pac 121(876):138–152

    ADS  Google Scholar 

  • Lehner MJ, Wang S. Ho P et al (2013) Status of the Transneptunian Automated Occultation Survey (TAOS II). American Astronomical Society, DPS meeting #45: 414.08

    Google Scholar 

  • Leonard FC (1940) The occultation of BD +6°259 by Saturn. Publ Astron Soc Pac 52:39–41

    ADS  Google Scholar 

  • Ley W (1963) Watchers of the skies: an informal history of astronomy from Babylon to the space age. The Viking Press, New York, NY

    Google Scholar 

  • Link F (1969) Eclipse phenomena in astronomy. Springer, New York, NY

    Google Scholar 

  • Liu C-Y, Doressoundram A, Roques F, Auvergne M, Chang H-K (2011) Search for small trans-neptunian objects using COROT asteroseismology lightcurves. EPSC Abstracts, vol 6: EPSC-DPS2011-614-1

    Google Scholar 

  • Lucas GA (2004) Modern asteroid occultation observing methods. The society for astronomical sciences 23rd annual symposium on telescope sciences, May 26–27 May 2004. Society for Astronomical Sciences, Big Bear, CA, pp 85–100

    Google Scholar 

  • MacMahon PA (1908) On the determination of the apparent diameter of a fixed star. Mon Not Roy Astron Soc 69:126–127

    ADS  Google Scholar 

  • Manfroid J, Gutiérrez F, Häfner R, Vega R et al (1984) Appulse of SAO 186001 to Neptune. IAU Circular 3962 (July 23, 1984)

    Google Scholar 

  • Maquet L, Roques F, Doressoundiram A et al (2013) Probing the outer solar system small bodies with stellar occultations. American Astronomical Society, DPS meeting #45: #414.09

    Google Scholar 

  • Markowitz W (1954) Photographic determination of the moon’s position, and applications to the measure of time, rotation of the earth, and geodesy. Astron J 59:69–73

    ADS  Google Scholar 

  • Mayer T (1750) Tobias Mayers Bewiss das der Mond keinen Luftkreis habe. Cpt. IX. In: Mitgleiddern der kosmographischen Gesselschaft zusammengetragen. Kosmographische Nachrichten und Sammlungen auf das Jahr 1848. Paul Krauss, Wien, pp 397–419

    Google Scholar 

  • Merline WJ, Close LM, Dumas C et al (2000) Discovery of companions to Asteroids 762 Pulkova and 90 Antiope by direct imaging. Bull Am Astron Soc 32:1017

    Google Scholar 

  • Millis RL, Wasserman LH, Franz OG et al (1993) Pluto’s radius and atmosphere: results from the entire 9 June 1988 occultation data set. Icarus 105:282–297

    ADS  Google Scholar 

  • Miner ED (1990) Uranus: the planet, rings and satellites. Ellis Horwood, New York, NY

    Google Scholar 

  • Mink DJ, Kelmola AR, Elliot JL (1981) Predicted occultations by Neptune: 1981–1984. Astron J 86(10):135–137

    ADS  Google Scholar 

  • Mobberley M (2010) Captain M.A. Ainslie, (1869–1951) his observations and telescopes. J Br Astron Assoc 120(1):15–32

    ADS  Google Scholar 

  • Moore P (1961b) The Planet Venus. Faber and Faber, London

    Google Scholar 

  • Mori K, Tsunemi H, Katayama H et al (2004) An X-ray measurement of Titan’s atmospheric extent from its transit of the Crab Nebula. Astrophys J 607:1065–1069

    ADS  Google Scholar 

  • Morison I (2003) The Crab Nebula encounters the moon. Astron Now 17(1):35–37

    ADS  Google Scholar 

  • Morrison D (1982) Voyages to Saturn. NASA SP-451. NASA, Washington, DC

    Google Scholar 

  • Morrison D, Cruikshank DP (1974) Physical properties of the natural satellites. Space Sci Rev 15(5):641–739

    ADS  Google Scholar 

  • Nather RE, Evans DS (1970) Photoelectric measurement of lunar occultations. I. The process. Astron J 75:575–582

    ADS  Google Scholar 

  • Nicholson PD, McGhee CA, French RG (1995) Saturn’s central flash from the 3 July 1989 occultation of 28 Sgr. Icarus 113:57–83

    ADS  Google Scholar 

  • O’Leary B, Marsden BG, Dragon R et al (1976) The occultation of κ Geminorum by Eros. Icarus 28:133–146

    ADS  Google Scholar 

  • Ockert ME, Cuzzi JN, Porco CC, Johnson TV (1987) Uranian ring photometry—results from Voyager 2. J Geophys Res 92:14969–14978

    ADS  Google Scholar 

  • Ofek EO, Nakar E (2010) Detectability of Oort Cloud objects using Kepler. Astron J Lett 711:L7–L11

    ADS  Google Scholar 

  • Olkin CB, Young LA, Young EF et al (2009) Pluto’s increasing atmospheric pressure. American Astronomical Society, DPS Meeting 41, paper #6.07

    Google Scholar 

  • Olkin CB, Young LA, French RG et al (2011) Investigating Pluto’s lower atmosphere from a central-flash stellar occultation. EPSC-DPS Joint Meeting 2011, Nantes, France, 2–7 October 2011, p 334

    Google Scholar 

  • Ortiz JL, Sicardy B, Braga-Ribas F et al (2012) Albedo and atmospheric constraints of dwarf planet Makemake from a stellar occultation. Nature 491(7425):566–569

    ADS  Google Scholar 

  • Pasachoff JM, Babcock BA, Souza SP et al (2007) Observational results from the 2007 March 18 Pluto stellar occultation. Bull Am Astron Soc 39:541

    ADS  Google Scholar 

  • Pease FG (1921) The diameter of Alpha Scorpii by the interferometer method. Publ Astron Soc Pac 33:204–205

    ADS  Google Scholar 

  • Perry ME, Kahan DS, Barnouin OS et al (2011) Measurement of the radius of Mercury by radio occultation during the MESSENGER flybys. Planet Space Sci 59(15):1925–1931

    ADS  Google Scholar 

  • Person MJ, Elliot JL, Bosh AS et al (2010) Pluto’s atmosphere from the July 2010 stellar occultation. Bull Am Astron Soc 42:983

    ADS  Google Scholar 

  • Person MJ, Dunham EW, Bosh AS et al (2013) The 2011 June 23 stellar occultation by Pluto: airborne and ground observations. Astron J 146(4):id. 83 (15 pp.)

    Google Scholar 

  • Pickering WH (1904) The Moon: a summary of the existing knowledge of our satellite, with a complete photographic atlas. Doubleday, Page, and Co., New York, NY

    Google Scholar 

  • Pluchino S, Schillirò F, Salerno E et al (2008) Radio occultation measurements of the lunar ionosphere. Memoirs, Societa Astronomica Italiana Suppl 12:53–59

    ADS  Google Scholar 

  • Porco CC, Nicholson PD, Cuzzi JN et al (1995) Neptune’s ring system. In: Cruikshank DP (ed) Neptune and Triton. The University of Arizona Press, Tucson, pp 703–804

    Google Scholar 

  • Proctor RA (1869) On a method of determining the dimensions of the disks of those stars which are liable to be occulted by the moon. Mon Not Roy Astron Soc 29:344–345

    ADS  Google Scholar 

  • Ptolemæus C (1998) Ptolemy’s almagest. Princeton University Press, Princeton, NJ, Trans. and Annot. by Toomer GJ

    Google Scholar 

  • Rannou P, Durry G (2009) Extinction layer detected by the 2003 occultation on Pluto. J Geophys Res 114(E11013):1–8

    Google Scholar 

  • Reitsema HJ, Hubbard WB, Zellner BH, Lebofsky LA (1981a) High-speed photometry of the 11 December 1979 Juno occultation. Astron J 86:121–126

    ADS  Google Scholar 

  • Reitsema HJ, Hubbard WB, Lebofsky LA, Tholen DJ (1981b) 1981 N 1. IAU Circular, 3608 (29 May 1981)

    Google Scholar 

  • Richichi A (1997) Lunar occultation measurements of stellar diameters. In: Bedding TR, Booth AJ, Davis JM (eds) Fundamental stellar properties: the interaction between observation and theory. International astronomical union symposia, vol 189, pp 45–50

    Google Scholar 

  • Richichi A, Percheron I, Khristoforova M (2005) CHARM2: an updated catalog of high angular resolution measurements. Astron Astrophys 431:773–777

    ADS  Google Scholar 

  • Richichi A, Fors O, Mason E et al (2008) Milliarcsecond angular resolution of reddened stellar sources in the vicinity of the Galactic center. Astron Astrophys 489:1399–1408

    ADS  Google Scholar 

  • Richichi A, Glindemann A (2012) Advances in the interpretation and analysis of lunar occultation light curves. Astron Astrophys 538:id.A56

    Google Scholar 

  • Richichi A, Fors O, Cusano F, Moerchen M (2013) Twenty-five subarcsecond binaries discovered by lunar occultations. Astron J 146(3):article id. 59 (5 pp)

    Google Scholar 

  • Richter GA, Altenhoff WJ, Batrla W et al (1983) Comet IRAS-Araki-Alcock (1983d). IAU Circular 3817 (June 1, 1983)

    Google Scholar 

  • Robertson J (1940) Catalog of 3539 zodiacal stars for the equinox 1950.0. United States Nautical Almanac Office, Astronomical paper, vol 10, Part 2. United States Nautical Almanac Office, Washington, DC, pp 169–299

    Google Scholar 

  • Roques F, Georgevits G, Doressoundiram A (2008) The Kuiper belt explored by serendipitous stellar occultations. In: Barucci MA et al (eds) The solar system beyond Neptune. The University of Arizona Press, Tucson, AZ, pp 545–556

    Google Scholar 

  • Roques F, Doressoundiram A, Dhillon VS et al (2006) Exploration of the Kuiper belt by high-precision photometric stellar occultations: first results. Astron J 132:819–822

    ADS  Google Scholar 

  • Ruprecht JD, Bosh AS, Person MJ et al (2013) 29 November 2011 stellar occultation by 2060 Chiron: symmetric jet-like features. American Astronomical Society, DPS Meeting #45:#414.07

    Google Scholar 

  • Schinder PJ, Flasar FM, Marouf EA et al (2011) The structure of Titan’s atmosphere from Cassini radio occultations. Icarus 215(2):460–474

    ADS  Google Scholar 

  • Schlichting HE, Ofek EO, Wenz M et al (2009) A single sub-kilometre Kuiper belt object from a stellar occultation in archival data. Nature 462:895–897

    ADS  Google Scholar 

  • Schlichting HE, Ofek EO, Sari R et al (2012) Measuring the abundance of sub-kilometer-sized Kuiper belt objects using stellar occultations. Astron J 761(2):id. 150 (10 pp)

    Google Scholar 

  • Seneca LA (1910/ca. 60 CE) Physical science in the time of nero, being a translation of the quaestiones naturales of seneca. Trans. by Clark J. Macmillan and Co., London

    Google Scholar 

  • Sheehan WP (1995) The immortal fire within: the life and work of Edward Emerson Barnard. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Sheehan WP, Dobbins TA (2001) Epic moon: a history of lunar exploration in the age of the telescope. Willmann-Bell, Richmond, VA

    Google Scholar 

  • Sheehan WP, O’Meara SJ (1998) Phillip Sidney Coolidge: Harvard’s romantic explorer of the skies. Sky Telescope 95(4):71–75

    Google Scholar 

  • Sicardy B, Roques F, Brahic A (1991) Neptune’s rings, 1983–1989: ground-based stellar occultation observations. Icarus 89:220–243

    ADS  Google Scholar 

  • Sicardy B, Widemann T, Lellouch E et al (2003) Large changes in Pluto’s atmosphere as revealed by recent stellar occultations. Nature 424:168–170

    ADS  Google Scholar 

  • Sicardy B, Colas F, Widemann T et al (2004) The two stellar occultations of November 14, 2003: revealing Titan’s stratosphere at sub-km resolution. Bull Am Astron Soc 36:1119

    ADS  Google Scholar 

  • Sicardy B, Bellucci A, Gendron E et al (2006) Charon’s size and an upper limit on its atmosphere from a stellar occultation. Nature 439:52–54

    ADS  Google Scholar 

  • Sicardy B, Ortiz JL, Assafin M et al (2011) A Pluto-like radius and a high albedo for the dwarf planet Eris from an occultation. Nature 478(7370):493–496

    ADS  Google Scholar 

  • Sicardy B, Braga-Ribas F, Widemann T et al (2012) Charon’s size and orbit from double stellar occultations. American Astronomical Society, DPS meeting #44: #304.01

    Google Scholar 

  • Simon M, Chen W-P, Forrest WJ et al (1990) Subarcsecond resolution observations of the central parsec of the Galaxy at 2.2 microns. Astrophys J Part 1, 360:95–105

    Google Scholar 

  • Simons DA, Hodapp K-W, Becklin EE (1990) High-resolution infrared mapping of the Galactic center—imaging and lunar occultations. Astrophys J Part 1, 360:106–118

    Google Scholar 

  • Sinvhal SD, Sanwal NB, Pande MC (1962) Observation of the occultation of BD −5° 5863 by Pallas. Observatory 82:16–17

    ADS  Google Scholar 

  • South J (1831) On the extensive atmosphere of Mars. Phil Trans Roy Soc Lond 121:417–422

    Google Scholar 

  • Stephenson FR (2000) A lunar occultation of Mars observed by Aristotle. J Hist Astron 31:342–344

    ADS  Google Scholar 

  • von Struve OW (1852) Sur les dimensions de Saturn. Mon Not Roy Astron Soc 13:22–24

    Google Scholar 

  • Takato N (2003) Pupil-segmented photometry for lunar occultation observation. Proc. SPIE 4841, Instrument design and performance for optical/infrared ground-based telescopes, 622. doi:10.1117/12.459998

  • Taylor GE (1962) Diameters of minor planets. Observatory 82:17–20

    ADS  Google Scholar 

  • Tedesco EF (1994) Asteroid albedos and diameters. In: Milani A, Di Martino M, Cellino A (eds) Asteroids, comets, meteors 1993: proceedings of the 160th International Astronomical Union, Belgirate, Italy, 14–18 June 1993. Kluwer Academic Publishers, Dordrecht, pp 55–74

    Google Scholar 

  • Throop HB, French RG, Shoemaker K et al (2011) Limits on Pluto’s ring system from the June 12 2006 stellar occultation. EPSC-DPS Joint Meeting 2011, 2–7 October 2011, Nantes, France, p 1640

    Google Scholar 

  • Tracadas PW, Hammel HB, Thomas-Osip JE et al (2001) Probing Titan’s atmosphere with the 1995 August stellar occultation. Icarus 153:285–294

    ADS  Google Scholar 

  • Trunkovsky E (2013) Photoelectric lunar-occultation observations of several close binary stars. Astron Rep 57(9):692–701

    ADS  Google Scholar 

  • Tupman GL (1902) Anomalous occultations. Observatory 25:56–57

    ADS  Google Scholar 

  • Tyler GL (1997) Radio science. In:Shirley JH, Fairbridge RW (eds) Encyclopedia of planetary science. Chapman & Hall, London, pp 676–682

    Google Scholar 

  • Van Helden A (1985) Measuring the Universe. Cosmic dimensions from Aristarchus to Halley. University of Chicago Press, Chicago

    Google Scholar 

  • Veverka JF, Wasserman LH (1974) The Regulus occultation light curve and the real atmosphere of Venus. Icarus 21:196–198

    ADS  Google Scholar 

  • Veverka JF, Elliot JL, Gouguen JD (1975) Measuring the sizes of Saturn’s satellites. Sky Telescope 50(6):356–359

    ADS  Google Scholar 

  • Vilas F, Millis RL, Wasserman LH (1977) Lunar occultations of Io and Ganymede. Bull Am Astron Soc 9:464

    ADS  Google Scholar 

  • Walker AR (1980) An occultation by Charon. Mon Not Roy Astron Soc 192:47P–50P

    ADS  Google Scholar 

  • Warner BD (1988) High speed astronomical photometry. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Watts CB (1963) The marginal zone of the moon. United States, Nautical Almanac Office, astronomical papers for the preparation of the nautical almanac, 17. U. S. Nautical Almanac Office, Washington, DC

    Google Scholar 

  • Wells HG (1995) The first men in the Moon. Lake D (ed) Oxford University Press, New York, NY

    Google Scholar 

  • Whitford AE (1939) Photoelectric observation of diffraction at the moon’s limb. Astrophys J 89:472–481

    ADS  Google Scholar 

  • Williams DR (2006a) Neptunian rings fact sheet. http://nssdc.gsfc.nasa.gov/planetary/factsheet/nepringfact.html. Updated 18 Sept 2006

  • Young LA, Bosh AS, Buie M et al (2001b) Uranus after solstice: results from the 1998 November 8 occultation. Icarus 153:236–247

    ADS  Google Scholar 

  • Zacharias N, Gaume RA, Dorland B, Urban SE (2004) Catalog information and recommendations. U. S. Naval Observatory, Astronomy Department. http://ad.usno.navy.mil/star/star_cats_rec.shtml#ppm. Updated 7 Nov 2004

  • Zalucha AM, Gulbis AAS (2012) Comparison of a simple 2-D Pluto general circulation model with stellar occultation light curves and implications for atmospheric circulation. J Geophys Res 117(E5):ID E05002

    Google Scholar 

  • Zalucha AM, Fitzsimmons A, Elliot JL et al (2007) The 2003 November 14 occultation by Titan of TYC 1343-1865-1. II. Analysis of light curves. Icarus 192:503–518

    ADS  Google Scholar 

  • Zalucha AM, Zhu X, Gulbis AAS et al (2011) An investigation of Pluto’s troposphere using stellar occultation light curves and an atmospheric radiative-conductive model. Icarus 214(2):685–700

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag New York

About this chapter

Cite this chapter

Westfall, J., Sheehan, W. (2015). When Stars Wink Out. In: Celestial Shadows. Astrophysics and Space Science Library, vol 410. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1535-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1535-4_20

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1534-7

  • Online ISBN: 978-1-4939-1535-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics