Skip to main content

Is There Evidence for Long-Term Neurocognitive Effects of Sedatives?

  • Chapter
  • First Online:
Pediatric Sedation Outside of the Operating Room

Abstract

The potential neurotoxic effects of drugs used for anesthesia and sedation have captured the attention of pediatric care providers. As early as in 1953, personality changes have been documented in children receiving anesthetic and sedative drugs. Despite this early observation, the utilization of anesthetics and sedatives to facilitate painful and distressing procedures on infants and children has become the standard of care. However, the irrefutable laboratory reports documenting the neurotoxic effect of anesthetic and sedative drugs on the developing brain have sparked public awareness to this potential side effect. Given the public health implications of this phenomenon, this chapter will discuss relevance of these issues in the context of the management of sedation in pediatric patients undergoing diagnostic and painful procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Loepke AW, Soriano SG. An assessment of the effects of general anesthetics on developing brain structure and neurocognitive function. Anesth Analg. 2008;106(6):1681–707.

    Article  PubMed  Google Scholar 

  2. Rappaport B, Mellon RD, Simone A, Woodcock J. Defining safe use of anesthesia in children. N Engl J Med. 2011;364(15):1387–90.

    Article  PubMed  CAS  Google Scholar 

  3. Eckenhoff JE. Relationship of anesthesia to postoperative personality changes in children. AMA Am J Dis Child. 1953;86(5):587–91.

    PubMed  CAS  Google Scholar 

  4. Durrmeyer X, Vutskits L, Anand KJS, Rimensberger PC. Use of analgesic and sedative drugs in the nicu: Integrating clinical trials and laboratory data. Pediatr Res. 2010;67(2):117–27.

    Article  PubMed  Google Scholar 

  5. Loepke AW. Developmental neurotoxicity of sedatives and anesthetics: a concern for neonatal and pediatric critical care medicine? Pediatr Crit Care Med. 2010;11(2):217–26.

    Article  PubMed  Google Scholar 

  6. Rudolph U, Antkowiak B. Molecular and neuronal substrates for general anaesthetics. Nat Rev Neurosci. 2004;5(9):709–20.

    Article  PubMed  CAS  Google Scholar 

  7. Stratmann G. Review article: Neurotoxicity of anesthetic drugs in the developing brain. Anesth Analg. 2011;113(5):1170–9.

    Article  PubMed  CAS  Google Scholar 

  8. Paule MG, Li M, Allen RR, Liu F, Zou X, Hotchkiss C, et al. Ketamine anesthesia during the first week of life can cause long-lasting cognitive deficits in rhesus monkeys. Neurotoxicol Teratol. 2011;33(2):220–30.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Li Y, Liang G, Wang S, Meng Q, Wang Q, Wei H. Effects of fetal exposure to isoflurane on postnatal memory and learning in rats. Neuropharmacology. 2007;53(8):942–50.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Vutskits L, Gascon E, Tassonyi E, Kiss JZ. Clinically relevant concentrations of propofol but not midazolam alter in vitro dendritic development of isolated gamma-aminobutyric acid-positive interneurons. Anesthesiology. 2005;102(5):970–6.

    Article  PubMed  CAS  Google Scholar 

  11. De Roo M, Klauser P, Briner A, Nikonenko I, Mendez P, Dayer A, et al. Anesthetics rapidly promote synaptogenesis during a critical period of brain development. PLoS One. 2009;4(9):e7043.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Briner A, De Roo M, Dayer A, Muller D, Habre W, Vutskits L. Volatile anesthetics rapidly increase dendritic spine density in the rat medial prefrontal cortex during synaptogenesis. Anesthesiology. 2010;112(3):546–56.

    Article  PubMed  Google Scholar 

  13. Penzes P, Cahill ME, Jones KA, Vanleeuwen J-E, Woolfrey KM. Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci. 2011;14(3):285–93.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Sanders RD, Xu J, Shu Y, Januszewski A, Halder S, Fidalgo A, et al. Dexmedetomidine attenuates isoflurane-induced neurocognitive impairment in neonatal rats. Anesthesiology. 2009;110(5):1077–85.

    Article  PubMed  CAS  Google Scholar 

  15. Anand KJ, Garg S, Rovnaghi CR, Narsinghani U, Bhutta AT, Hall RW. Ketamine reduces the cell death following inflammatory pain in newborn rat brain. Pediatr Res. 2007;62(3):283–90.

    Article  PubMed  CAS  Google Scholar 

  16. Liu JR, Liu Q, Li J, Baek C, Han XH, Athiraman U, et al. Noxious stimulation attenuates ketamine-induced neuroapoptosis in the developing rat brain. Anesthesiology. 2012;117(1):64–71.

    Article  PubMed  CAS  Google Scholar 

  17. Anand KJ, Soriano SG. Anesthetic agents and the immature brain: Are these toxic or therapeutic? Anesthesiology. 2004;101(2):527–30.

    Article  PubMed  CAS  Google Scholar 

  18. Young C, Jevtovic-Todorovic V, Qin YQ, Tenkova T, Wang H, Labruyere J, et al. Potential of ketamine and midazolam, individually or in combination, to induce apoptotic neurodegeneration in the infant mouse brain. Br J Pharmacol. 2005;146(2):189–97.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Cattano D, Young C, Straiko MM, Olney JW. Subanesthetic doses of propofol induce neuroapoptosis in the infant mouse brain. Anesth Analg. 2008;106(6):1712–4.

    Article  PubMed  CAS  Google Scholar 

  20. Shih J, May LD, Gonzalez HE, Lee EW, Alvi RS, Sall JW, et al. Delayed environmental enrichment reverses sevoflurane-induced memory impairment in rats. Anesthesiology. 2012;116(3):586–602 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Shen X, Dong Y, Xu Z, Wang H, Miao C, Soriano SG, et al. Selective anesthesia-induced neuroinflammation in developing mouse brain and cognitive impairment. Anesthesiology. 2013;118(3):502–15.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Buss RR, Sun W, Oppenheim RW. Adaptive roles of programmed cell death during nervous system development. Annu Rev Neurosci. 2006;29:1–35.

    Article  PubMed  CAS  Google Scholar 

  23. Dobbing J, Sands J. Comparative aspects of the brain growth spurt. Early Hum Dev. 1979;3(1):79–83.

    Article  PubMed  CAS  Google Scholar 

  24. Hofacer RD, Deng M, Ward CG, Joseph B, Hughes EA, Jiang C, et al. Cell-age specific vulnerability of neurons to anesthetic toxicity. Ann Neurol. 2013;73(6):695–704.

    Article  PubMed  Google Scholar 

  25. Krzisch M, Sultan S, Sandell J, Demeter K, Vutskits L, Toni N. Propofol anesthesia impairs the maturation and survival of adult-born hippocampal neurons. Anesthesiology. 2013;118(3):602–10.

    Article  PubMed  CAS  Google Scholar 

  26. Fredriksson A, Ponten E, Gordh T, Eriksson P. Neonatal exposure to a combination of n-methyl-d-aspartate and gamma-aminobutyric acid type a receptor anesthetic agents potentiates apoptotic neurodegeneration and persistent behavioral deficits. Anesthesiology. 2007;107(3):427–36 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  27. Ikonomidou C, Bosch F, Miksa M, Bittigau P, Vockler J, Dikranian K, et al. Blockade of nmda receptors and apoptotic neurodegeneration in the developing brain. Science. 1999;283(5398):70–4 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.].

    Article  PubMed  CAS  Google Scholar 

  28. Jevtovic-Todorovic V, Hartman RE, Izumi Y, Benshoff ND, Dikranian K, Zorumski CF, et al. Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J Neurosci. 2003;23(3):876–82.

    PubMed  CAS  Google Scholar 

  29. Cattano D, Straiko MM, Olney JW. Chloral hydrate induces and lithium prevents neuroapoptosis in the infant mouse brain. Anesthesiology. 2008;109:A315.

    Google Scholar 

  30. Slikker Jr W, Paule MG, Wright LK, Patterson TA, Wang C. Systems biology approaches for toxicology. J Appl Toxicol. 2007;27(3):201–17 [Review].

    Article  PubMed  CAS  Google Scholar 

  31. Edwards DA, Shah HP, Cao W, Gravenstein N, Seubert CN, Martynyuk AE. Bumetanide alleviates epileptogenic and neurotoxic effects of sevoflurane in neonatal rat brain. Anesthesiology. 2010;112(3):567–75.

    Article  PubMed  CAS  Google Scholar 

  32. Sanchez V, Feinstein SD, Lunardi N, Joksovic PM, Boscolo A, Todorovic SM, et al. General anesthesia causes long-term impairment of mitochondrial morphogenesis and synaptic transmission in developing rat brain. Anesthesiology. 2011;115(5):992–1002.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Soriano SG, Liu Q, Li J, Liu J-R, Han XH, Kanter JL, et al. Ketamine activates cell cycle signaling and apoptosis in the neonatal rat brain. Anesthesiology. 2010;112(5):1155–63.

    Article  PubMed  CAS  Google Scholar 

  34. Liu JR, Baek C, Han XH, Shoureshi P, Soriano SG. Role of glycogen synthase kinase-3beta in ketamine-induced developmental neuroapoptosis in rats. Br J Anaesth. 2013;110 Suppl 1:i3–9.

    Article  PubMed  CAS  Google Scholar 

  35. Lu LX, Yon J-H, Carter LB, Jevtovic-Todorovic V. General anesthesia activates bdnf-dependent neuroapoptosis in the developing rat brain. Apoptosis. 2006;11(9):1603–15.

    Article  PubMed  CAS  Google Scholar 

  36. Lemkuil BP, Head BP, Pearn ML, Patel HH, Drummond JC, Patel PM. Isoflurane neurotoxicity is mediated by p75ntr-rhoa activation and actin depolymerization. Anesthesiology. 2011;114(1):49–57.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Ben-Ari Y. Excitatory actions of gaba during development: The nature of the nurture. Nat Rev Neurosci. 2002;3(9):728–39 [Review].

    Article  PubMed  CAS  Google Scholar 

  38. Slikker W, Zou X, Hotchkiss CE, Divine RL, Sadovova N, Twaddle NC, et al. Ketamine-induced neuronal cell death in the perinatal rhesus monkey. Toxicol Sci. 2007;98(1):145–58.

    Article  PubMed  CAS  Google Scholar 

  39. Brambrink AM, Evers AS, Avidan MS, Farber NB, Smith DJ, Martin LD, et al. Ketamine-induced neuroapoptosis in the fetal and neonatal rhesus macaque brain. Anesthesiology. 2012;116(2):372–84.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Creeley C, Dikranian K, Dissen G, Martin L, Olney J, Brambrink A. Propofol-induced apoptosis of neurones and oligodendrocytes in fetal and neonatal rhesus macaque brain. Br J Anaesth. 2013;110 Suppl 1:i29–38.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Stratmann G, Sall JW, May LD, Bell JS, Magnusson KR, Rau V, et al. Isoflurane differentially affects neurogenesis and long-term neurocognitive function in 60-day-old and 7-day-old rats. Anesthesiology. 2009;110(4):834–48 [Research Support, Non-U.S. Gov’t].

    Article  PubMed  CAS  Google Scholar 

  42. Briner A, Nikonenko I, De Roo M, Dayer A, Muller D, Vutskits L. Developmental stage-dependent persistent impact of propofol anesthesia on dendritic spines in the rat medial prefrontal cortex. Anesthesiology. 2011;115(2):282–93.

    Article  PubMed  CAS  Google Scholar 

  43. Wilder RT, Flick RP, Sprung J, Katusic SK, Barbaresi WJ, Mickelson C, et al. Early exposure to anesthesia and learning disabilities in a population-based birth cohort. Anesthesiology. 2009;110(4):796–804 [Multicenter Study Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t].

    Article  PubMed  PubMed Central  Google Scholar 

  44. Flick RP, Katusic SK, Colligan RC, Wilder RT, Voigt RG, Olson MD, et al. Cognitive and behavioral outcomes after early exposure to anesthesia and surgery. Pediatrics. 2011;128(5):e1053–1061.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ing C, DiMaggio C, Whitehouse A, Hegarty MK, Brady J, von Ungern-Sternberg BS, et al. Long-term differences in language and cognitive function after childhood exposure to anesthesia. Pediatrics. 2012;130(3):e476–485.

    Article  PubMed  Google Scholar 

  46. Block RI, Thomas JJ, Bayman EO, Choi JY, Kimble KK, Todd MM. Are anesthesia and surgery during infancy associated with altered academic performance during childhood? Anesthesiology. 2012;117(3):494–503.

    Article  PubMed  Google Scholar 

  47. DiMaggio C, Sun LS, Kakavouli A, Byrne MW, Li G. A retrospective cohort study of the association of anesthesia and hernia repair surgery with behavioral and developmental disorders in young children. J Neurosurg Anesthesiol. 2009;21:286–91.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Dimaggio C, Sun L, Li G. Early childhood exposure to anesthesia and risk of developmental and behavioral disorders in a sibling birth cohort. Anesth Analg. 2011;113:1143–51.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Bartels M, Althoff RR, Boomsma DI. Anesthesia and cognitive performance in children: No evidence for a causal relationship. Twin Res Hum Genet. 2009;12(3):246–53.

    Article  PubMed  Google Scholar 

  50. Hansen TG, Pedersen JK, Henneberg SW, Pedersen DA, Murray JC, Morton NS, et al. Academic performance in adolescence after inguinal hernia repair in infancy: A nationwide cohort study. Anesthesiology. 2011;114:1076–85.

    Article  PubMed  Google Scholar 

  51. Hansen TG, Pedersen JK, Henneberg SW, Morton NS, Christensen K. Educational outcome in adolescence following pyloric stenosis repair before 3 months of age: A nationwide cohort study. Paediatr Anaesth. 2013;23(10):883–90.

    Article  PubMed  Google Scholar 

  52. Roze JC, Denizot S, Carbajal R, Ancel PY, Kaminski M, Arnaud C, et al. Prolonged sedation and/or analgesia and 5-year neurodevelopment outcome in very preterm infants: Results from the epipage cohort. Arch Pediatr Adolesc Med. 2008;162(8):728–33.

    Article  PubMed  Google Scholar 

  53. Guerra GG, Robertson CM, Alton GY, Joffe AR, Cave DA, Dinu IA, et al. Neurodevelopmental outcome following exposure to sedative and analgesic drugs for complex cardiac surgery in infancy. Paediatr Anaesth. 2011;21(9):932–41.

    Article  PubMed  Google Scholar 

  54. Guerra GG, Robertson CM, Alton GY, Joffe AR, Cave DA, Dinu IA, et al. Neurotoxicity of sedative and analgesia drugs in young infants with congenital heart disease: 4-year follow-up. Paediatr Anaesth. 2014;24(3):257–65.

    Article  Google Scholar 

  55. Beery KE, Buktenica NA. Beery-buktenica developmental test of visual motor inegration. 5th ed. Minneapolis: NCS Pearson Inc.; 2004.

    Google Scholar 

  56. Moser JJ, Veale PM, McAllister DL, Archer DP. A systematic review and quantitative analysis of neurocognitive outcomes in children with four chronic illnesses. Paediatr Anaesth. 2013;23(11):1084–96.

    Article  PubMed  Google Scholar 

  57. Chrysostomou C, Schulman SR, Herrera Castellanos M, Cofer BE, Mitra S, da Rocha MG, et al. A phase II/III, multicenter, safety, efficacy, and pharmacokinetic study of dexmedetomidine in preterm and term neonates. J Pediatr. 2013;164(2):276–82.e1-3.

    Article  PubMed  Google Scholar 

  58. Pandharipande PP, Sanders RD, Girard TD, McGrane S, Thompson JL, Shintani AK, et al. Effect of dexmedetomidine versus lorazepam on outcome in patients with sepsis: An a priori-designed analysis of the mends randomized controlled trial. Crit Care. 2010;14(2):R38.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Goodwin HE, Gill RS, Murakami PN, Thompson CB, Lewin 3rd JJ, Mirski MA. Dexmedetomidine preserves attention/calculation when used for cooperative and short-term intensive care unit sedation. J Crit Care. 2013;28(6):1113.e1117–0.

    Article  Google Scholar 

  60. FDA. The neurotoxicity of anesthetic and sedative drugs in juvenile animals and the implications for pediatric patients undergoing surgical, medical or diagnostic procedures requiring exposure to these agents. 2007. http://www.fda.gov/ohrms/dockets/ac/07/transcripts/2007-4285t1.pdf

  61. Cravero JP, Beach ML, Blike GT, Gallagher SM, Hertzog JH, Pediatric Sedation Research Consortium. The incidence and nature of adverse events during pediatric sedation/anesthesia with propofol for procedures outside the operating room: a report from the pediatric sedation research consortium. Anesth Analg. 2009;108(3):795–804.

    Article  PubMed  CAS  Google Scholar 

  62. SmartTots. Consensus statement on the use of anesthetics and sedatives in children. 2012. http://www.smarttots.org/resources/consensus.html

  63. Ramsay JG, Rappaport BA. SmartTots: a multidisciplinary effort to determine anesthetic safety in young children. Anesth Analg. 2011;113(5):963–4.

    Article  PubMed  Google Scholar 

  64. Jevtovic-Todorovic V, Absalom AR, Blomgren K, Brambrink A, Crosby G, Culley DJ, et al. Anaesthetic neurotoxicity and neuroplasticity: an expert group report and statement based on the bja salzburg seminar. Br J Anaesth. 2013;111(2):143–51.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sulpicio G. Soriano M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Soriano, S.G., Vutskits, L. (2015). Is There Evidence for Long-Term Neurocognitive Effects of Sedatives?. In: Mason, K. (eds) Pediatric Sedation Outside of the Operating Room. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1390-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1390-9_27

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1389-3

  • Online ISBN: 978-1-4939-1390-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics