Skip to main content

Fruit Processing

  • Chapter
  • First Online:

Part of the book series: Food Engineering Series ((FSES))

Abstract

Fruits are the major food products in their own right and key ingredients in many processed foods. Consumers increasingly require food products that preserve their nutritional value, retain a natural and fresh color, flavor, and texture, and contain fewer additives such as preservatives. These requirements pose new challenges for fruit producers and processors. There has been a wealth of recent research both on the importance of fruit consumption to health and on new techniques to preserve the nutritional and sensory qualities demanded by consumers. Eating fruits and fruit products has long been associated with health benefits, though some of the ways in which these foods enhance health have only become clear in recent decades. This chapter considers defining quality criteria in freshly harvested produce, describes the principal causes of quality deterioration and the main storage and packaging techniques used to maintain quality, production techniques of various products, the impact of processing on both key nutrients and antioxidants, taking an example of fruit as a case study to demonstrate how the nutritional quality of fruits and vegetables may be preserved and even enhanced during processing, describing how the Hazard Analysis and Critical Control Point (HACCP) system, originally developed for the food processing sector, is being applied on the farm to cultivate safer fresh produce free of contamination from pathogens or other contaminants such as pesticides and minimal processing methods, new technologies in processing fruit.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aaby K, Wrolstad RE, Ekeberg D, Skrede G (2007) Polyphenol composition and antioxidant activity in strawberry purees; impact of achene level and storage. J Agric Food Chem 55(13):5156–5166

    CAS  Google Scholar 

  • Aguiló-Aguayo I, Soliva-Fortuny R, Martín-Belloso O (2008) Effects of thermal and high-intensity pulsed electric field treatments on quality related enzymes of watermelon juices. In IFT annual meeting, paper 135-03, New Orleans, USA

    Google Scholar 

  • Ahn HJ, Kim JH, Kim JK, Kim DH, Yook HS, Byun MW (2005) Combined effect of irradiation and modified atmosphere packaging on minimally processed Chinese cabbage (Brassica ropa L.). Food Chem 89:589–597

    CAS  Google Scholar 

  • Aked J (2002) Maintaining the post-harvest quality of fruits and vegetables. In: Jongen W (ed) Fruit and vegetable processing: improving quality. Woodhead Publishing and CRC Press, Boca Raton

    Google Scholar 

  • Alexandre EMC, Brandão TRS, Silva CLM (2012) Efficacy of non-thermal technologies and sanitizer solutions on microbial load reduction and quality retention of strawberries. J Food Eng 108(3):417–426

    CAS  Google Scholar 

  • Alighourchi H, Barzegar M, Abbasi S (2008) Effect of gamma irradiation on the stability of anthocyanins and shelf-life of various pomegranate juices. Food Chem 110:1036–1040

    CAS  Google Scholar 

  • Amarowicz R, Carle R, Dongowski G, Durazzo A, Galensa R, Kammerer D, Maiani G, Piskula MK (2009) Influence of postharvest processing and storage on the content of phenolic acids and flavonoids in foods. Mol Nutr Food Res 53:S151–S183

    Google Scholar 

  • Amin I, Norazaidah Y, Hainida KIE (2006) Antioxidant activity and phenolic content of raw and blanched Amaranthus species. Food Chem 94:47–52

    CAS  Google Scholar 

  • Aramwit P, Bang N, Srichana T (2010) The properties and stability of anthocyanins in mulberry fruits. Food Res Int 43:1093–1097

    CAS  Google Scholar 

  • Arancibia-Avila P, Namiesnik J, Toledo F, Werner E, Martinez-Ayala AL, Rocha-Guzmán NE, Gallegos-Infante JA, Gorinstein S (2012) The influence of different time durations of thermal processing on berries quality. Food Control 26:587–593

    CAS  Google Scholar 

  • Asami DK, Hong YJ, Barrett DM, Mitchell AE (2003) Processing-induced changes in total phenolics and procyanidins in clingstone peaches. J Sci Food Agric 83:56–63

    CAS  Google Scholar 

  • Ayala-Zavala JF, Wang SY, Wang CY, González-Aguilar GA (2005) Methyl jasmonate in conjunction with ethanol treatment increases antioxidant capacity, volatile compounds and postharvest life of strawberry fruit. Eur Food Res Technol 221(6):731–738

    CAS  Google Scholar 

  • Ayala-Zavala JF, Wang SY, Wang CY, González-Aguilar GA (2007) High oxygen treatment increases antioxidant capacity and postharvest life of strawberry fruit. Food Technol Biotechnol 45(2):166–173

    CAS  Google Scholar 

  • Ayala-Zavala JF, Del-Toro- Sánchez L, Alvarez-Parrilla E, González-Aguilar GA (2008a) High relative humidity in-package of fresh-cut fruits and vegetables: advantage or disadvantage considering microbiological problems and antimicrobial delivering systems? J Food Sci 73(4):R41–R47

    CAS  Google Scholar 

  • Ayala-Zavala JF, Del-Toro-Sánchez L, Alvarez-Parrilla E, Soto-Valdez H, Martin-Belloso O, Ruiz-Cruz S, González-Aguilar GA (2008b) Natural antimicrobial agents incorporated in active packaging to preserve the quality of fresh fruits and vegetables. Stewart Postharvest Rev 4:1–9

    Google Scholar 

  • Balla C, Farkas J (2006) Minimally processed fruits and fruit products and their microbiological safety. In: Hui YH (ed) Handbook of fruits and fruit processing. Blackwell Publishing, Hoboken

    Google Scholar 

  • Basaran N, Quintero-Ramos A, Moake MM, Churey JJ, Worobo RW (2004) Influence of apple cultivars on inactivation of different strains of Escherichia coli O157:H7 in apple cider by UV irradiation. Appl Environ Microbiol 70:6061–6065

    CAS  Google Scholar 

  • Ben-Yehoshua S, Mercier J (2005) UV irradiation, biological agents, and natural compounds for controlling postharvest decay in fresh fruits and vegetables. In: Ben-Yehoshua S (ed) Environmentally friendly technologies for agricultural produce quality. Taylor & Francis, Boca Raton

    Google Scholar 

  • Bernhardt S, Schlich E (2006) Impact of different cooking methods on food quality: retention of lipophilic vitamins in fresh and frozen vegetables. J Food Eng 77:327–333

    CAS  Google Scholar 

  • Briones-Labarca V, Venegas-Cubillos G, Ortiz-Portilla S, Chacana-Ojeda M, Maureira H (2011) Effects of high hydrostatic pressure (HHP) on bioaccessibility, as well as antioxidant activity, mineral and starch contents in Granny Smith apple. Food Chem 128:520–529

    CAS  Google Scholar 

  • Brownmiller C, Howard LR, Prior RL (2008) Processing and storage effects on monomeric anthocyanins, percent polymeric color, and antioxidant capacity of processed blueberry products. J Food Sci 73:72–79

    Google Scholar 

  • Buchner N, Krumbein A, Rhon S, Kroh LW (2006) Effect of thermal processing on the flavonols rutin and quercetin. Rapid Commun Mass Spectrom 20:3229–3235

    CAS  Google Scholar 

  • Burri J, Bertoli C, Stadler RH (2009) Food processing and nutritional aspects. In: Stadle RH, Lineback DR (eds) Process-induced food toxicants: occurrence, formation, mitigation, and health risks. Wiley, Hoboken

    Google Scholar 

  • Capanoglu E, Beekwilder J, Boyacioglu D, Hall R, De Vos R (2008) Changes in antioxidant and metabolite profiles during production of tomato paste. J Agric Food Chem 56(3):964–973

    CAS  Google Scholar 

  • Cassano A, Drioli E, Galaverna G, Marchelli R, Di Silvestro G, Cagnasso P (2003) Clarification and concentration of citrus and carrot juices by integrated membrane processes. J Food Eng 57:153–163

    Google Scholar 

  • Cassano A, Figoli A, Tagarelli A, Sindona G, Drioli E (2006) Integrated membrane process for the production of highly nutritional kiwifruit juice. Desalination 189:21–30

    CAS  Google Scholar 

  • Chang CH, Lin HY, Chang CY, Liu YC (2006) Comparison on the antioxidant properties of fresh, freeze-dried and hot-air-dried tomatoes. J Food Eng 77:478–485

    CAS  Google Scholar 

  • Chen Y, Yu LJ, Vasantha Rupasinghe HP (2013) Effect of thermal and non-thermal pasteurisation on the microbial inactivation and phenolic degradation in fruit juice: a mini-review. J Sci Food Agric 93:981–986

    CAS  Google Scholar 

  • Cheng LH, Soh CY, Liew SC, Teh FF (2007) Effects of sonication and carbonation on guava juice quality. Food Chem 104(4):1396–1401

    CAS  Google Scholar 

  • Cohen MF, Sakihama Y, Yamasaki H (2001) Roles of plant flavonoids in interactions with microbes: from protection against pathogens to mediation of mutualism. In: Pandalai SG (ed) Recent research developments in plant physiology. Research Signpost, Trivandrum

    Google Scholar 

  • Cui X, Shang Y, Shi Z, Xin H, Cao W (2009) Physicochemical properties and bactericidal efficiency of neutral and acidic electrolyzed water under different storage conditions. J Food Eng 91(4):582–586

    CAS  Google Scholar 

  • De Ancos B, Cano MP, Hernandez A, Monreal M (1999) Effects of microwave heating on pigment composition and colour of fruit purees. J Sci Food Agric 79:663–670

    Google Scholar 

  • De Ancos B, Gonzalez E, Pilar Cano M (2000) Effect of high pressure treatment on the carotenoid composition and the radical scavenging activity of persimmon fruit purees. J Agric Food Chem 48:3542–3548

    Google Scholar 

  • Dini I, Tenore GC, Dini A (2013) Effect of industrial and domestic processing on antioxidant properties of pumpkin pulp. LWT Food Sci Technol 53:382–385

    CAS  Google Scholar 

  • Domingo JL, Gine Bordonaba J (2011) A literature review on the safety assessment of genetically modified plants. Environ Int 37:734–742

    Google Scholar 

  • Dong J, Ma X, Fu Z, Guo Y (2011) Effects of microwave drying on the contents of functional constituents of Eucommia ulmoides flower tea. Ind Crops Prod 34(1):1102–1110

    CAS  Google Scholar 

  • Donsi G, Ferrari G, Di Mateo M (1996) High pressure stabilization of orange juice: evaluation of the effects of process conditions. Italian J Food Sci 2:99–106

    Google Scholar 

  • Dornenburg H, Knoor D (1993) Cellular permeabilization of cultured plant tissues by high electric field pulses or ultra high pressure for the recovery of secondary metabolites. Food Biotechnol 7:35–48

    Google Scholar 

  • Durst RW, Weaver GW (2013) Nutritional content of fresh and canned peaches. J Sci Food Agric 93:593–603

    CAS  Google Scholar 

  • Dziezak JD (1986) Preservative systems in foods, antioxidants and antimicrobial agents. Food Technol 40:94–136

    CAS  Google Scholar 

  • Erkan M, Wang SY, Wang CY (2008) Effect of UV treatment on antioxidant capacity, antioxidant enzyme activity and decay in strawberry fruit. Postharvest Biol Technol 48:163–171

    CAS  Google Scholar 

  • Fellows P (2000) Food processing technology principles and practice. Woodhead, Cambridge

    Google Scholar 

  • Fengmei Z, Liangbin H, Guihua X, Quanxian C (2011) Changes of some chemical substances and antioxidant capacity of mandarin orange segments during can processing. Procedia Environ Sci 11:1260–1266

    Google Scholar 

  • Fernández-García A, Butz P, Bognár A, Tauscher B (2001) Antioxidative capacity, nutrient content and sensory quality of orange juice and an orange-lemon-carrot juice product after high pressure treatment and storage in different packaging. Eur Food Res Technol 213:290–296

    Google Scholar 

  • Ferrari G, Maresca P, Ciccarone R (2010) The application of high hydrostatic pressure for the stabilization of functional foods: pomegranate juice. J Food Eng 100:245–253

    Google Scholar 

  • Fuleki T, Ricardo-Da-Silva JM (2003) Effects of cultivar and processing method on the contents of catechins and procyanidins in grape juice. J Agric Food Chem 51:640–646

    CAS  Google Scholar 

  • Gancel AL, Feneuil A, Acosta O, Pérez AM, Vaillant F (2011) Impact of industrial processing and storage on major polyphenols and the antioxidant capacity of tropical highland blackberry (Rubus adenotrichus). Food Res Int 44:2243–2251

    CAS  Google Scholar 

  • Garcia-Parra J, Gonzalez-Cebrino F, Delgado J, Lozano M, Hernandez T, Ramirez R (2011) Effect of thermal and high-pressure processing on the nutritional value and quality attributes of a nectarine puree with industrial origin during the refrigerated storage. J Food Sci 76(4):C618–C625

    CAS  Google Scholar 

  • García-Viguera C, Zafrilla P, Romero F, Abellán P, Artés F, Tomás-Barberán FA (1999) Color stability of strawberry jam as affected by cultivar and storage temperature. J Food Sci 64(2):243–247

    Google Scholar 

  • Georgé S, Tourniaire F, Gautier H, Goupy P, Rock E, Caris-Veyrat C (2011) Changes in the contents of carotenoids, phenolic compounds and vitamin C during technical processing and lyophilisation of red and yellow tomatoes. Food Chem 124:1603–1611

    Google Scholar 

  • Gerard KA, Roberts JS (2004) Microwave heating of apple mash to improve juice yield and quality. LWT Food Sci Technol 37:551–557

    CAS  Google Scholar 

  • González-Aguilar GA, Ayala-Zavala JF, De la Rosa LA, Alvarez-Parrilla E (2010) Phytochemical changes in the postharvest and minimal processing of fresh fruits and vegetables. In: De la Rosa LA, Alvarez-Parrilla E, González-Aguilar GA (eds) Fruit and vegetable phytochemicals: chemistry, nutritional value, and stability. Blackwell, Ames

    Google Scholar 

  • Grajek W, Olejnik A (2010) The influence of food processing and home cooking on the antioxidant stability in foods. In: Smith J, Charter E (eds) Functional food product development. Blackwell, Ames

    Google Scholar 

  • Gross J (1991) Pigments in vegetables: chlorophylls and carotenoids. Van Nostrand Reinhold, New York

    Google Scholar 

  • Guerrero-Beltrán JA, Welti-Chanes J, Barbosa-Cánovas GV (2009) Ultraviolet-C light processing of grape, cranberry and grapefruit juices to inactivate Saccharomyces cerevisiae. J Food Process Eng 32:916–932

    Google Scholar 

  • Hanes DE, Worobo RW, Orlandi PA, Burr DH, Miliotis MD, Rob MG et al (2002) Inactivation of Cryptosporidium parvum oocysts in fresh apple cider by UV irradiation. Appl Environ Microbiol 68:4168–4172

    CAS  Google Scholar 

  • Howard LA, Wong AD, Perry AK, Klein BP (1999) Beta-carotene and ascorbic acid retention in fresh and processed vegetables. J Food Sci 64(5):929–936

    CAS  Google Scholar 

  • Huang W, Bi X, Zhang X, Liao X, Hu X, Wu J (2013) Comparative study of enzymes, phenolics, carotenoids and color of apricot nectars treated by high hydrostatic pressure and high temperature short time. Innov Food Sci Emerg Technol 18:74–82

    CAS  Google Scholar 

  • Icier F, Ilicali C (2005) The effects of concentration on electrical conductivity of orange juice concentrates during ohmic heating. Eur Food Res Technol 220:406–414

    CAS  Google Scholar 

  • Igual M, García-Martínez E, Camacho MM, Martínez-Navarrete N (2011) Changes in flavonoid content of grapefruit juice caused by thermal treatment and storage. Innov Food Sci Emerg Technol 12:153–162

    CAS  Google Scholar 

  • Igual M, García-Martínez E, Martín-Esparza ME, Martínez-Navarrete N (2012) Effect of processing on the drying kinetics and functional value of dried apricot. Food Res Int 47:284–290

    Google Scholar 

  • Indrawati AC, Messagie I, Nguyen MT, Van Loey A, Hendrickx M (2004) Comparative study on pressure and temperature stability of 5-mehytltetrahydrofolic acid in model systems and in food products. J Agric Food Chem 52:485–492

    CAS  Google Scholar 

  • Ioannou I, Hafsa I, Hamdi S, Charbonnel C, Ghoul M (2012) Review of the effects of food processing and formulation on flavonol and anthocyanin behaviour. J Food Eng 111:208–217

    CAS  Google Scholar 

  • Jeong SM, Kim SY, Kim DR, Jo SC (2004) Effect of heat treatment on the antioxidant activity of extracts from citrus peels. J Agric Food Chem 52:3389–3393

    CAS  Google Scholar 

  • Jiratanan T, Liu RH (2004) Antioxidant activity of processed table beets (Beta vulgaris, var, conditiva) and green beans (Phaseolus vulgaris L.). J Agric Food Chem 52(9):3659–3670

    Google Scholar 

  • Kader A (2001) Quality assurance of harvested horticultural perishables. In: Ben-Arie R, Philosoph-Hadas S (eds) Proceedings of the 4th international conference on postharvest, 553. Acta Horticulture, Jerusalem

    Google Scholar 

  • Kader A, Barrett DM (2005) Classification, composition of fruits, and postharvest maintenance of quality. In: Barrett DM, Somogyi L, Ramaswamy H (eds) Processing fruits: science and technology. CRC Press, Boca Raton

    Google Scholar 

  • Kalt W (2005) Effects of production and processing factors on major fruit and vegetable antioxidants. J Food Sci 70:11–19

    Google Scholar 

  • Kataoka I, Beppu K, Sugiyama A, Taira S (1996) Enhancement of coloration of Satohnishiki sweet cherry fruit by postharvest irradiation with ultraviolet rays. Environ Control Biol 34:313–319

    Google Scholar 

  • Keenan DF, Brunton NP, Gormley TR, Butler F, Tiwari BK, Patras A (2010) Effect of thermal and high hydrostatic pressure processing on antioxidant activity and colour of fruit smoothies. Innov Food Sci Emerg Technol 11(4):551–556

    CAS  Google Scholar 

  • Keenan DF, Rößle C, Gormley R, Butler F, Brunton NP (2012) Effect of high hydrostatic pressure and thermal processing on the nutritional quality and enzyme activity of fruit smoothies. LWT Food Sci Technol 45:50–57

    CAS  Google Scholar 

  • Knorr D, Zenker M, Heinz V, Lee D (2004) Applications and potential of ultrasonics in food processing. Trends Food Sci Technol 15(5):261–266

    CAS  Google Scholar 

  • Lado B, Yousef A (2002) Alternative food-preservation technologies: efficacy and mechanisms. Microbes Infect 4:433–440

    Google Scholar 

  • Lamikanra O (2002) Fresh-cut fruits and vegetables: science, technology, and market. CRC Press, Boca Raton

    Google Scholar 

  • Lee SY, Sagong HG, Ryu S, Kang DH (2012) Effect of continuous ohmic heating to inactivate Escherichia coli O157:H7, Salmonella typhimurium and Listeria monocytogenes in orange juice and tomato juice. J Appl Microbiol 112:723–731

    CAS  Google Scholar 

  • Leizerson S, Shimoni E (2005) Stability and sensory shelf life of orange juice pasteurized by continuous ohmic heating. J Agric Food Chem 53(10):4012–4018

    CAS  Google Scholar 

  • Lemmens L, Van Buggenhout S, Oey I, Van Loey A, Hendrickx M (2009) Towards a better understanding of the relationship between the beta-carotene in vitro bio-accessibility and pectin structural changes: a case study on carrots. Food Res Int 42(9):1323–1330

    CAS  Google Scholar 

  • Leong SY, Oey I (2012) Effects of processing on anthocyanins, carotenoids and vitamin C in summer fruits and vegetables. Food Chem 133:1577–1587

    CAS  Google Scholar 

  • Lianfu Z, Zelong L (2008) Optimization and comparison of ultrasound/microwave assisted extraction (UMAE) and ultrasonic assisted extraction (UAE) of lycopene from tomatoes. Ultrason Sonochem 15(5):731–737

    Google Scholar 

  • Lin CH, Chang CY (2005) Textural change and antioxidant properties of broccoli under different cooking treatments. Food Chem 90:9–15

    CAS  Google Scholar 

  • Lindley MG (1998) The impact of food processing on antioxidants in vegetable oils, fruits and vegetables. Trends Food Sci Technol 9:336–340

    CAS  Google Scholar 

  • Lu G, Li C, Liu P, Cui H, Xia Y, Wang J (2010) Inactivation of microorganisms in apple juice using an ultraviolet silica-fiber optical device. J Photochem Photobiol B 100:167–172

    CAS  Google Scholar 

  • Lynch M, Tauxe RV, Hedberg C (2009) The growing burden of foodborne outbreaks due to contaminated fresh produce: risks and opportunities. Epidemiol Infect 137:307–315

    CAS  Google Scholar 

  • Magnuson BA, Jonaitis TS, Card JW (2011) A brief review of the occurrence, use, and safety of food-related nanomaterials. J Food Sci 76:R126–R133

    CAS  Google Scholar 

  • Makris DP, Rossiter JT (2000) Heat-induced, metal-catalyzed oxidative degradation of quercetin and rutin (quercetin 3-o-rhamnosylglucoside) in aqueous model. J Agric Food Chem 48:3830–3838

    CAS  Google Scholar 

  • Morales-de la Peña M, Salvia-Trujillo L, Rojas-Graü MA, Martín-Belloso O (2010a) Impact of high intensity pulsed electric field on antioxidant properties and quality parameters of a fruit juice-soymilk beverage in chilled storage. LWT Food Sci Technol 43:872–881

    Google Scholar 

  • Morales-de la Peña M, Salvia-Trujillo L, Rojas-Graü MA, Martín-Belloso O (2010b) Isoflavone profile of a high intensity pulsed electric field or thermally treated fruit juice–soymilk beverage stored under refrigeration. Innov Food Sci Emerg Technol 11:604–610

    Google Scholar 

  • Motarjemi Y, Stadler RH, Studer A, Damiano V (2009) Application of the HACCP approach for the management of processing contaminants. In: Stadler RH, Lineback DR (eds) Process-induced food toxicants: occurrence, formation, mitigation, and health risks. Wiley, Hoboken

    Google Scholar 

  • Murakami M, Yamaguchi T, Takamura H, Matoba T (2004) Effects of thermal treatment on radical-scavenging activity of single and mixed polyphenolic compounds. Food Chem Toxicol 69:FCT7–FCT10

    CAS  Google Scholar 

  • Niemira BA, Deschênes L (2005) Ionizing radiation processing of fruits and fruit products. In: Barrett DM, Somogyi L, Ramaswamy H (eds) Processing fruits: science and technology. CRC Press, Boca Raton

    Google Scholar 

  • Noci F, Riener J, Walkling-Ribeiro M, Cronin D, Morgan D, Lyng J (2008) Ultraviolet irradiation and pulsed electric fields (PEF) in a hurdle strategy for the preservation of fresh apple juice. J Food Eng 85:141–146

    Google Scholar 

  • Nuñez-Mancilla Y, Pérez-Won M, Uribe E, Vega-Gálvez A, Di Scala K (2013) Osmotic dehydration under high hydrostatic pressure: effects on antioxidant activity, total phenolics compounds, vitamin C and colour of strawberry (Fragaria vesca). LWT Food Sci Technol 52:151–156

    Google Scholar 

  • Odriozola-Serrano I, Soliva-Fortuny R, Martin-Belloso O (2008a) Effect of minimal processing on bioactive compounds and color attributes of fresh-cut tomatoes. LWT Food Sci Technol 41:217–226

    CAS  Google Scholar 

  • Odriozola-Serrano I, Soliva-Fortuny R, Martin-Belloso O (2008b) Phenolic acids, flavonoids, vitamin C and antioxidant capacity of strawberry juices processed by high-intensity pulsed electric fields or heat treatments. Eur Food Res Technol 228:239–248

    CAS  Google Scholar 

  • Oey I, Plancken I, van der Loey A, Hendrickx M (2008) Does high pressure processing influence nutritional aspects of plant based food systems? Trends Food Sci Technol 19:300–308

    CAS  Google Scholar 

  • Oms-Oliu G, Odriozola-Serrano I, Soliva-Fortuny R, Martín-Belloso O (2009) Effects of high-intensity pulsed electric field processing conditions on lycopene, vitamin C and antioxidant capacity of watermelon juice. Food Chem 115:1312–1319

    CAS  Google Scholar 

  • Oms-Oliu G, Odriozola-Serrano I, Soliva-Fortuny R, Elez Martinez P, Martín-Belloso O (2012) Stability of health related compounds in plant foods through the application of non- thermal processes. Trends Food Sci Technol 23:111–123

    CAS  Google Scholar 

  • Pap N, Pongrácz E, Jaakkola M, Tolonen T, Virtanen V, Turkki A, Horváth-Hovorka Z, Vatai G, Keiski RL (2010) The effect of pre-treatment on the anthocyanin and flavonol content of black currant juice (Ribes nigrum L.) in concentration by reverse osmosis. J Food Eng 98:429–436

    CAS  Google Scholar 

  • Patil BS, Vanamalaa J, Hallmanc G (2004) Irradiation and storage influence on bioactive components and quality of early and late season, Rio Red’ grapefruit (Citrus paradise Macf.). Postharvest Biol Technol 34:53–64

    CAS  Google Scholar 

  • Patras A, Brunton N, Da Pieve S, Butler F, Downey G (2009a) Effect of thermal and high pressure processing on antioxidant activity and instrumental colour of tomato and carrot purees. Innov Food Sci Emerg Technol 10:16–22

    CAS  Google Scholar 

  • Patras A, Brunton NP, Da Pieve S, Butler F (2009b) Impact of high pressure processing on total antioxidant activity, phenolic, ascorbic acid, anthocyanin content and colour of strawberry and blackberry purees. Innov Food Sci Emerg Technol 10:308–313

    CAS  Google Scholar 

  • Périno-Issartier S, Huma Z, Abert-Vian M, Chemat F (2010) Solvent free microwave-assisted extraction of antioxidants from sea buckthorn (Hippophae rhamnoides) food by-products. Food Bioprocess Technol 1–9

    Google Scholar 

  • Pilavtepe-Celik M (2013) High hydrostatic pressure (HHP) inactivation of foodborne pathogens in low-acid juices. Int J Food Sci Technol 48:673–677

    CAS  Google Scholar 

  • Plaza L, Crespo I, de Pascual-Teresa S, de Ancos B, Sánchez-Moreno C, Muñoz M, Cano MP (2011) Impact of minimal processing on orange bioactive compounds during refrigerated storage. Food Chem 124:646–651

    CAS  Google Scholar 

  • Prakash A, Inthajak P, Huibregtse H, Caporaso F, Foley DM (2000) Effects of low-dose gamma irradiation and conventional treatments on shelf life and quality characteristics of diced celery. J Food Sci 65(6):1070–1075

    CAS  Google Scholar 

  • Raghavan GSV, Vigneault C, Gariépy Y, Markarian NR, Alvo P (2005) Refrigerated and controlled/modified atmosphere storage. In: Barrett DM, Somogyi L, Ramaswamy H (eds) Processing fruits: science and technology. CRC Press, Boca Raton

    Google Scholar 

  • Ramaswamy HS, Chen CR (2002) Maximising the quality of thermally processed fruits and vegetables. In: Jongen W (ed) Fruit and vegetable processing: improving quality. Woodhead Publishing/CRC Press, Boca Raton

    Google Scholar 

  • Ramos B, Miller FA, Brandão TRS, Teixeira P, Silva CLM (2013) Fresh fruits and vegetables-an overview on applied methodologies to improve its quality and safety. Innov Food Sci Emerg Technol. doi:10.1016/j.ifset.2013.07.002

    Google Scholar 

  • Rattanathanalerk M, Chiewchan N, Srichumpoung W (2009) Effect of thermal processing on the quality loss of pineapple juice. J Food Eng 66:259–265

    Google Scholar 

  • Rawson A, Koidis A, Rai DK, Tuohy M, Brunton N (2010) Influence of sous vide and water immersion processing on polyacetylene content and instrumental color of parsnip (Pastinaca sativa) disks. J Agric Food Chem 58(13):7740–7747

    CAS  Google Scholar 

  • Rawson A, Patras A, Tiwari BK, Noci F, Koutchma T, Brunton N (2011a) Effect of thermal and non-thermal processing technologies on the bioactive content of exotic fruits and their products: review of recent advances. Food Res Int 44:1875–1887

    CAS  Google Scholar 

  • Rawson A, Tiwari BK, Patras A, Brunton N, Brennan C, Cullen PJ et al (2011b) Effect of thermosonication on bioactive compounds in water-melon juice. Food Res Int 44:1168–1173

    CAS  Google Scholar 

  • Rektor A, Pap N, Kókai Z, Szabó R, Vatai G, Békássylnár E (2004) Application of membrane filtration methods for must processing and preservation. Desalination 162:271–277

    CAS  Google Scholar 

  • Renard CMGC, Le Quéré JM, Bauduin R, Symoneaux R, Le Bourvellec C, Baron A (2011) Modulating polyphenolic composition and organoleptic properties of apple juices by manipulating the pressing conditions. Food Chem 124:117–125

    CAS  Google Scholar 

  • Reyes LF, Cisneros-Zevallos L (2007) Electron-beam ionizing radiation stress effects on mango fruit (Mangifera indica L.) antioxidant constituents before and during postharvest storage. J Agric Food Chem 55:6132–6139

    CAS  Google Scholar 

  • Rickman JC, Barrett DM, Bruhn CM (2007a) Nutritional comparison of fresh, frozen and canned fruits and vegetables. Part 1. Vitamins B and C and phenolic compounds. J Sci Food Agric 87:930–944

    CAS  Google Scholar 

  • Rickman JC, Bruhn CM, Barrett DM (2007b) Nutritional comparison of fresh. frozen and canned fruits and vegetables. Part 2. Vitamin A and carotenoids, vitamin E, minerals and fiber. J Sci Food Agric 87:1185–1196

    CAS  Google Scholar 

  • Robards K (2003) Strategies for the determination of bioactive phenols in plants, fruit and vegetables. J Chromatogr A 1000(1–2):657–691

    CAS  Google Scholar 

  • Robles-Sánchez RM, Rojas-Graüb MA, Odriozola-Serrano I, González-Aguilara GA, Martín-Belloso O (2009) Effect of minimal processing on bioactive compounds and antioxidant activity of fresh-cut ‘Kent’ mango (Mangifera indica L.). Postharvest Biol Technol 51:384–390

    Google Scholar 

  • Ropkins K, Beck AJ (2003) Using HACCP to control organic chemical hazards in food wholesale, distribution, storage and retail. Trends Food Sci Technol 14:374–389

    CAS  Google Scholar 

  • Ropkins K, Ferguson A, Beck AJ (2003) Development of Hazard Analysis by Critical Control Points (HACCP) procedures to control organic chemical hazards in the agricultural production of raw food commodities. Crit Rev Food Sci Nutr 43(3):287–316

    CAS  Google Scholar 

  • Ruiz-Cruz S, Arvizu-Medrano S (2010) Quality loss of fruits and vegetables induced by microbial growth. In: De la Rosa LA, Alvarez-Parrilla E, González-Aguilar GA (eds) Fruit and vegetable phytochemicals: chemistry, nutritional value, and stability. Blackwell, Ames

    Google Scholar 

  • Sajilata MG, Singhal RS (2006) Effect of irradiation and storage on the antioxidative activity of cashew nuts. Radiat Phys Chem 75:297–300

    CAS  Google Scholar 

  • Saldana MDA, Gamarra FMC, Siloto RMP (2010) Emerging technologies used for the extraction of phytochemicals from fruits, vegetables, and other natural sources. In: De la Rosa LA, Alvarez-Parrilla E, González-Aguilar GA (eds) Fruit and vegetable phytochemicals: chemistry, nutritional value, and stability. Blackwell, Ames

    Google Scholar 

  • Sanchez-Moreno C, Plaza L, De Ancos B, Cano MP (2003) Vitamin C, provitamin A carotenoids, and other carotenoids in high pressurized orange juice during refrigerated storage. J Agric Food Chem 51:647–653

    CAS  Google Scholar 

  • Saxena A, Bawa AS, Raju PS (2008) Use of modified atmosphere packaging to extend shelf-life of minimally processed jackfruit (Artocarpus heterophyllus L.) bulbs. J Food Eng 87(4):455–466

    CAS  Google Scholar 

  • Skrede G, Wrolstad RE, Durst RW (2000) Changes in anthocyanins and polyphenolics during juice processing of highbush blueberries (Vaccinium corymbosum L.). J Food Sci 65:357–364

    CAS  Google Scholar 

  • Song HP, Kim DH, Jo C, Lee CH, Kim KS, Byun MW (2006) Effect of gamma irradiation on the microbiological quality and antioxidant activity of fresh vegetable juice. Food Microbiol 23:372–378

    CAS  Google Scholar 

  • Srinivas K, King JW, Monrad JK, Howard LR, Zhang D (2011) Pressurized solvent extraction of flavonoids from grape pomace utilizing organic acid additives. Italian J Food Sci 23(1):90–105

    CAS  Google Scholar 

  • Strawn LK, Schneider KR, Danyluk MD (2011) Microbial safety of tropical fruits. Crit Rev Food Sci Nutr 51:132–145

    Google Scholar 

  • Sumnu G, Sahin S (2005) Recent developments in microwave heating. In: Sun DW (ed) Emerging technologies for food processing. Elsevier, San Diego

    Google Scholar 

  • Szczesniak AS (1998) Effect of storage on texture. In: Taub IA, Singh RP (eds) Food storage stability. CRC Press, Boca Raton

    Google Scholar 

  • Tait J, Bruce A (2001) Globalization and transboundary risk regulation: pesticides and genetically modified crops. Health Risk Soc 3:99–112

    Google Scholar 

  • Takahama U (1986) Spectrophotometric study on the oxidation of rutin by horseradish peroxidase and characteristics of the oxidized products. BBA Gen Sub 882(3):445–451

    CAS  Google Scholar 

  • Tiwari U, Cummins E (2013) Factors influencing levels of phytochemicals in selected fruit and vegetables during pre- and post-harvest food processing operations. Food Res Int 50:497–506

    CAS  Google Scholar 

  • Tiwari BK, O’Donnell CP, Cullen PJ (2009a) Effect of nonthermal processing technologies on the anthocyanin content of fruit juices. Trends Food Sci Technol 20:137–145

    CAS  Google Scholar 

  • Tiwari BK, O’Donnell CP, Muthukumarappan K, Culllen PJ (2009b) Ascorbic acid degradation kinetics of sonicated orange juice during storage and comparison with thermally pasteurized juice. LWT Food Sci Technol 42:700–704

    CAS  Google Scholar 

  • Tiwari BK, O’Donnell CP, Patras A, Brunton N, Culllen PJ (2009c) Stability of anthocyanins and ascorbic acid in sonicated strawberry juice during storage. Eur Food Res Technol 228: 717–724

    CAS  Google Scholar 

  • Turkmen N, Sari F, Velioglu YS (2005) The effect of cooking methods on total phenolics and antioxidant activity of selected green vegetables. Food Chem 93:713–718

    CAS  Google Scholar 

  • Uckoo RM, Jayaprakasha GK, Somerville JA, Balasubramaniam VM, Pinarte M, Patil BS (2013) High pressure processing controls microbial growth and minimally alters the levels of health promoting compounds in grapefruit (Citrus paradisi Macfad) juice. Innov Food Sci Emerg Technol 18:7–14

    CAS  Google Scholar 

  • Van Boekel M, Fogliano V, Pellegrini N, Stanton C, Scholz G, Lalljie S, Somoza V, Knorr D, Jasti PR, Eisenbrand G (2010) A review on the beneficial aspects of food processing. Mol Nutr Food Res 54:1215–1247

    Google Scholar 

  • Van Boxstael S, Habib I, Jacxsens L, De Vocht M, Baert L, Van De Perre E, Rajkovic A, Lopez-Galvez F, Sampers I, Spanoghe P, De Meulenaer B, Uyttendaele M (2013) Food safety issues in fresh produce: bacterial pathogens, viruses and pesticide residues indicated as major concerns by stakeholders in the fresh produce chain. Food Control 32:190–197

    Google Scholar 

  • Van Der Sluis AA, Dekker M, Skrede G, Jongen WM (2002) Activity and concentration of polyphenolic antioxidants in apple juice. 1- Effect of existing production methods. J Agric Food Chem 50:7211–7219

    Google Scholar 

  • Varma S, Karwe MV, Lee TC (2010) Effect of high hydrostatic pressure processing on lycopene isomers. Int J Food Eng 6:1–20

    Google Scholar 

  • Vervoort L, Van der Plancken I, Grauwet T, Timmermans RAH, Mastwijk HC, Matser AM, Hendrickx ME, Loey AV (2011) Comparing equivalent thermal, high pressure and pulsed electric field processes for mild pasteurization of orange juice. Part II. Impact on specific chemical and biochemical quality parameters. Innov Food Sci Emerg Technol 12:466–477

    CAS  Google Scholar 

  • Vikram VB, Ramesh MN, Prapulla SG (2005) Thermal degradation kinetics of nutrients in orange juice heated by electromagnetic and conventional methods. J Food Eng 69:31–40

    Google Scholar 

  • Villavicencio ALCH, Mancini-Filho J, Delincee H, Greiner R (2000) Effect of irradiation on anti-nutrients (total phenolics, tannins and phytate) in Brazilian beans. Radiat Phys Chem 57: 289–293

    CAS  Google Scholar 

  • Vinha AF, Alves RC, Barreira SVP, Castro A, Costa ASG, Oliveira MBPP (2013) Effect of peel and seed removal on the nutritional value and antioxidant activity of tomato (Lycopersicon esculentum L.) fruits. LWT Food Sci Technol. doi:10.1016/j.lwt.2013.07.016

    Google Scholar 

  • Volden J, Bengtsson GB, Wicklund T (2009) Glucosinolates, L-ascorbic acid, total phenols, anthocyanins, antioxidant capacities and color in cauliflower (Brassica oleracea L. ssp. botrytis); effects of long-term freezer storage. Food Chem 112(4):967–976

    CAS  Google Scholar 

  • Wachtel-Galor S, Wong KW, Benzie IFF (2008) The effect of cooking on Brassica vegetables. Food Chem 110:706–710

    CAS  Google Scholar 

  • Wicklung T, Rosenfeld HJ, Martinsen BK, Sundfor MW et al (2005) Antioxidant capacity and colour of strawberry jam as influenced by cultivar and storage conditions. LWT Food Sci Technol 38:387–391

    Google Scholar 

  • Wong PYY, Kitts DD (2001) Factors influencing ultraviolet and electron beam irradiation-induced free radical damage of ascorbic acid. Food Chem 74:75–84

    CAS  Google Scholar 

  • Yildiz H, Bozkurt H, Icier F (2009) Ohmic and conventional heating of pomegranate juice: effects on rheology, color, and total phenolics. Food Sci Technol Int 15:503–511

    CAS  Google Scholar 

  • Zafrilla P, Ferreres F, Tomás-Barberán FA (2001) Effect of processing and storage on the antioxidant ellagic acid derivatives and flavonoids of red raspberry (Rubus idaeus) jams. J Agric Food Chem 49(8):3651–3655

    CAS  Google Scholar 

  • Zainol MM, Abdul-Hamid A, Bakar FA, Dek SP (2009) Effect of different drying methods on the degradation of selected flavonoids in Centella asiatica. Int Food Res J 4:531–537

    Google Scholar 

  • Zenker M, Heinz V, Knorr D (2003) Application of ultrasound assisted thermal processing for preservation and quality retention of liquid foods. J Food Prot 66:1642–1649

    CAS  Google Scholar 

  • Zepka LQ, Mercadante AZ (2009) Degradation compounds of carotenoids formed during heating of a simulated cashew apple juice. Food Chem 117:28–34

    CAS  Google Scholar 

  • Zhang M, Hettiarachchy NS, Horax R, Chen P, Over KF (2009) Effect of maturity stages and drying methods on the retention of selected nutrients and phytochemicals in bittermelon (Momordica charantia) leaf. J Food Sci 74(6):C441–C446

    CAS  Google Scholar 

  • Zill EH, Abert-Vian M, Elmaataoui M, Chemat F (2011) A novel idea in food extraction field: study of vacuum microwave hydrodiffusion technique for byproducts extraction. J Food Eng 105(2):351–360

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ömer Utku Çopur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Çopur, Ö.U., Tamer, C.E. (2014). Fruit Processing. In: Malik, A., Erginkaya, Z., Ahmad, S., Erten, H. (eds) Food Processing: Strategies for Quality Assessment. Food Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1378-7_2

Download citation

Publish with us

Policies and ethics