Skip to main content

Spin in Photosynthetic Electron Transport

  • Chapter
  • First Online:

Part of the book series: Biophysics for the Life Sciences ((BIOPHYS,volume 11))

Abstract

Photosynthetic charge separation also leads to electron spin separation. The two separated electron spins form a spin-correlated radical pair initially in a pure singlet state. This high electron spin order can be detected by EPR spectroscopy as CIDEP (chemically induced dynamic electron polarization). The radical pair undergoes spin evolution leading to periodic intersystem crossing. Interactions with nuclear spins lead to CIDNP (chemically induced dynamic nuclear polarization), which is often referred to as “photo-CIDNP” if it is of photochemical origin. NMR spectroscopy is able to observe such nuclear spin hyperpolarization. Both CIDEP EPR and CIDNP NMR allow for the early steps of photosynthesis to be studied in great detail. History and examples of these studies are presented. Finally, the question whether the occurrence of the spin-polarization is simply a by-product of the charge separation is discussed. Concepts for a possible functional relevance are proposed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

B :

Magnetic field strength

B L :

Local magnetic field strength

BChl:

Bacteriochlorophyll

C. :

Chlorobium

Chl:

Chlorophyll

CIDEP:

Chemically induced dynamic electron polarization

CIDNP:

Chemically induced dynamic nuclear polarization

DD:

Differential decay

DR:

Differential relaxation

EPR:

Electron paramagnetic resonance

ESR:

Electron spin resonance

ESEEM:

Electron spin echo envelope modulation

ET:

Electron transport

g :

g- or Landé value of an electron

G-pair:

Geminate radical pair

Hb. :

Heliobacillus

hfc, hfi:

Hyperfine coupling or interaction

ISC:

Intersystem crossing

J :

Exchange coupling

MAS:

Magic-angle spinning

MFE:

Magnetic field effects

m S :

Spin quantum number

NMR:

Nuclear magnetic resonance

OMAR:

Organic magnetoresistance effect

RC:

Reaction center

P:

Primary electron donor

PSI:

Photosystem I

PSII:

Photosystem II

Q:

Quinone

r :

Inter-radical distance

Rb. :

Rhodobacter

Rps. :

Rhodopseudomonas

RPM:

Radical pair mechanism

S:

Singlet spin state of a radical pair

S :

Spin quantum number

SCRP:

Spin-correlated radical pair

T:

Triplet spin state of a radical pair

TSM:

Three spin mixing

Φ:

Bacteriopheophytin

References

  1. Hunter CN, Daldal F, Thurnauer MC, Beatty JT, editors. Advances in photosynthesis and respiration, The purple phototropic bacteria, vol. 28. Dordrecht: Springer; 2009.

    Google Scholar 

  2. Hoff AJ, Deisenhofer J. Photophysics of photosynthesis. Structure and spectroscopy of reaction centers of purple bacteria. Phys Rep. 1997;287(1–2):1–247.

    ADS  Google Scholar 

  3. Holzwarth AR, Müller MG. Energetics and kinetics in reaction centers from Rhodobacter sphaeroides. A femtosecond transient absorption study. Biochemistry. 1996;35(36):11820–31.

    Google Scholar 

  4. Arlt T, Schmidt S, Kaiser W, Lauterwasser C, Meyer M, Scheer H, Zinth W. The accessory bacteriochlorophyll: a real electron carrier in primary photosynthesis. Proc Natl Acad Sci U S A. 1993;90(24):11757–61.

    ADS  Google Scholar 

  5. Norris JR, Uphaus RA, Crespi HL, Katz JJ. Electron spin resonance (ESR) of chlorophyll and the origin of signal I in photosynthesis. Proc Natl Acad Sci U S A. 1971;68(3):625–8.

    ADS  Google Scholar 

  6. Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauss N. Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature. 2001;411(6840):909–17.

    ADS  Google Scholar 

  7. Watanabe T, Kobayashi M. Electrochemistry of chlorophylls. In: Scheer H, editor. Chlorophylls. Boca Ratón, FL: CRC Press; 1991. p. 287–364.

    Google Scholar 

  8. Zouni A, Witt HJ, Kern J, Fromme P, Krauss N, Saenger W, Orth P. Crystal structure of photosystem II from Synechococcus elongates at 3.8 Å resolution. Nature. 2001;409(6821):739–43.

    ADS  Google Scholar 

  9. Webber AN, Lubitz W. P700: the primary electron donor of photosystem I. Biochim Biophys Acta. 2001;1507(1–3):61–79.

    Google Scholar 

  10. Woodbury NW, Allen JP. The pathway, kinetics and thermodynamics of electron transfer in wild-type and mutant reaction centers of purple nonsulfur bacteria. In: Blankenship RE, Madigan MT, Bauer CE, editors. Anoxygenic photosynthetic bacteria. Dordrecht: Kluwer; 1995. p. 527–57.

    Google Scholar 

  11. Cogdell RJ, Howard TD, Bittl R, Schlodder E, Geisenheimer I, Lubitz W. How carotenoids protect bacterial photosynthesis. Philos Trans R Soc Lond B Biol Sci. 2000;335(1402):1345–9.

    Google Scholar 

  12. Hore PJ, Joslin CG, McLauchlan KA. Chemically induced dynamic electron polarization. In: Ayscough PB, editor. Electron spin resonance, Volume 5. London: The Chemical Society; 1979.

    Google Scholar 

  13. Salikhov KM. Magnetic isotope effect in radical reactions: an introduction. Wien: Springer; 1996.

    Google Scholar 

  14. Salikhov KM, Molin YN, Sagdeev RZ, Buchachenko AL. Spin polarization and magnetic effects in radical reactions. Amsterdam: Elsevier; 1984.

    Google Scholar 

  15. Möbius K, Lubitz W, Savietsky A. Photo-induced electron spin polarization in chemical and biological reactions: probing structure and dynamics of transient intermediates by multifrequency EPR spectroscopy. Appl Magn Reson. 2011;41(2–4):113–43.

    Google Scholar 

  16. Closs GL, Forbes MDE, Norris JR. Spin-polarized electron paramagnetic resonance spectra of radical pairs in micelles: observation of electron spin-spin interaction. J Phys Chem. 1987;91(13):3592–9.

    Google Scholar 

  17. Buckley CD, Hunter DA, Hore PJ, McLauchlan KA. Electron spin resonance of spin-correlated radical pairs. Chem Phys Lett. 1987;135(3):307–12.

    ADS  Google Scholar 

  18. Hore PJ, Hunter DA, McKie CD, Hoff AJ. Electron paramagnetic resonance of spin-correlated radical pairs in photosynthetic reactions. Chem Phys Lett. 1987;137(6):495–500.

    ADS  Google Scholar 

  19. McLauchlan KA, Steiner UE. The spin-correlated radical pair as a reaction intermediate. Mol Phys. 1991;73(2):241–63.

    ADS  Google Scholar 

  20. Kaptein R, Oosterhoff JL. Chemically induced dynamic nuclear polarization II (Relation with anomalous ESR spectra). Chem Phys Lett. 1969;4(4):195–7.

    ADS  Google Scholar 

  21. Closs GL. Mechanism explaining nuclear spin polarizations in radical combination reactions. J Am Chem Soc. 1969;91(16):4552–4.

    Google Scholar 

  22. Brocklehurst B. Formation of excited states by recombining organic ions. Nature. 1969;221(5184):921–3.

    ADS  Google Scholar 

  23. Schweiger A, Jeschke G. Principles of pulse electron paramagnetic resonance. New York: Oxford University Press; 2001.

    Google Scholar 

  24. Turro NJ, Weed GC. Micellar systems as supercages for reactions of geminate radical pairs. Magnetic effects. J Am Chem Soc. 1983;105(7):1861–8.

    Google Scholar 

  25. Atkins PW, Evans GT. Chemically induced electron spin polarization: the rotating triplet model. Chem Phys Lett. 1974;25(1):108–10.

    ADS  Google Scholar 

  26. Atkins PW. The triplet mechanism. In: Muus LT, Atkins PW, McLauchlan KA, Pedersen JB, editors. Chemically induced magnetic polarization. Dordrecht: Reidel Publishing; 1977.

    Google Scholar 

  27. van der Waals JH. EPR of photo-excited triplet states: a personal account. Appl Magn Reson. 2001;20(4):541–61.

    Google Scholar 

  28. Anisimov OA, Bizyaev VL, Lukzen NN, Grigoryants VM, Molin YN. The induction of quantum beats by hyperfine interactions in radical-ion pair recombination. Chem Phys Lett. 1983;101(2):131–5.

    ADS  Google Scholar 

  29. Usov OM, Grigoryants VM, Tajikov BM, Molin YN. Determination of a fraction of spin-correlated radical ion pairs in irradiated alkanes by quantum oscillation technique. Radiat Phys Chem. 1997;49(2):237–43.

    ADS  Google Scholar 

  30. Fessenden RW, Schuler RH. Electron spin resonance studies of transient alkyl radicals. J Chem Phys. 1963;39(9):2147–95.

    ADS  Google Scholar 

  31. Hoff AJ. Electron spin polarization of photosynthetic reactants. Q Rev Biophys. 1984;17(2):153–282.

    MathSciNet  Google Scholar 

  32. Dismukes GC, McGuire A, Blankenship R, Sauer K. Electron spin polarization in photosynthesis and the mechanism of electron transfer in photosystem I. Biophys J. 1978;21(3):239–56.

    Google Scholar 

  33. Möbius K. Primary processes in photosynthesis: what do we learn from high-field EPR spectroscopy? Chem Soc Rev. 2000;29(2):129–39.

    Google Scholar 

  34. Smaller B, Remko JR, Avery EC. Electron paramagnetic resonance studies of transient free radicals produced by pulse radiolysis. J Phys Chem. 1968;48(11):5174–81.

    Google Scholar 

  35. Harbour JR, Tollin G. Photoinduced one-electron transfer between bacteriochlorophyll and quinone in acetone. Photochem Photobiol. 1974;19(2):163–7.

    Google Scholar 

  36. Blankenship R, McGuire A, Sauer K. Chemically induced dynamic electron polarization in chloroplasts at room temperature: evidence for triplet state participation in photosynthesis. Proc Natl Acad Sci U S A. 1975;72(12):4943–7.

    ADS  Google Scholar 

  37. Closs GL, Closs LE. Induced dynamic nuclear spin polarization in reactions of photochemically and thermally generated triplet diphenylmethylene. J Am Chem Soc. 1969;91(16):4549.

    Google Scholar 

  38. Adrian FJ. Theory of anomalous electron spin resonance spectra of free radicals in solution. Role of diffusion-controlled separation and reencounter of radical pairs. J Chem Phys. 1971;54(9):3918–23.

    ADS  Google Scholar 

  39. Adrian FJ. Contribution of S↔T±1 intersystem crossing in radical pairs to chemically induced nuclear and electron spins polarization. Chem Phys Lett. 1971;10(1):70–4.

    ADS  Google Scholar 

  40. Adrian FJ. Singlet-triplet splitting in diffusing radical pairs and the magnitude of the chemically induced electron spin polarization. J Chem Phys. 1972;57(12):5107–13.

    ADS  Google Scholar 

  41. Pedersen JB, Freed JH. Theory of chemically induced dynamic electron polarization I. J Chem Phys. 1973;58(7):2746–62.

    ADS  Google Scholar 

  42. Atkins PW, Gurd RC, McLauchlan KA, Simpson AF. Electron spin resonance emission spectra in solution. Chem Phys Lett. 1971;8(1):55–8.

    ADS  Google Scholar 

  43. Atkins PW. Chemically induced electron spin polarization and radical pair re-encounters. Chem Phys Lett. 1973;18(2):290–4.

    ADS  Google Scholar 

  44. Atkins PW, McLauchlan KA. Electron spin polarization. In: Lepley AR, Closs GL, editors. Chemically induced magnetic polarization. New York: Wiley; 1973.

    Google Scholar 

  45. Wong SK, Hutchinson DA, Wan JKS. Chemically induced dynamic electron polarization II. A general theory for radicals produced by photochemical reactions of excited triplet carbonyl compounds. J Chem Phys. 1973;58(3):985–9.

    ADS  Google Scholar 

  46. van der Est A, Bittl R, Abresch EC, Lubitz W, Stehlik D. Transient EPR spectroscopy of perdeuterated Zn-substituted reaction centers of Rhodobacter sphaeroides R26. Chem Phys Lett. 1993;212(6):561–8.

    ADS  Google Scholar 

  47. Kleinfeld D, Okamura MY, Feher G. Electron-transfer kinetics in photosynthetic reaction centers cooled to cryogenic temperatures in the charge-separated state: evidence of light induced structural changes. Biochemistry. 1984;23(24):5780–6.

    Google Scholar 

  48. van den Brink JS, Hulsebosch RJ, Gast P, Hore PJ, Hoff AJ. QA binding in reaction centers of photosyntethic purple bacterium Rhodobacter sphaeroides R26 investigated with electron spin polarization spectroscopy. Biochemistry. 1994;33(46):13668–77.

    Google Scholar 

  49. Savitsky A, Dubinskii AA, Flores M, Lubitz W, Möbius K. Orientation-resolving pulsed electron dipolar high-field EPR spectroscopy on disordered solids: I. Structure of spin-correlated radical pairs in bacterial photosynthetic reaction centers. J Phys Chem B. 2007;111(22):6245–62.

    Google Scholar 

  50. Heinen U, Utschig LM, Poluektov OG, Link G, Ohmes E, Kothe G. Structure of the charge separated state P865 +QA in the photosynthetic reaction centers of Rhodobacter sphaeroides by quantum beat oscillations and high-field electron paramagnetic resonance: evidence for light-induced QA reorientation. J Am Chem Soc. 2007;129(51):15935–46.

    Google Scholar 

  51. Bittl R, Zech SG, Lubitz W. Light-induced changes in transient EPR spectra of P865 +QA . In: Michel-Beyerle ME, editor. The reaction center of photosynthetic bacteria: structure and dynamics. Berlin: Springer; 1996.

    Google Scholar 

  52. Lubitz W, Lendzian F, Bittl R. Radicals, radical pairs and triplet states in photosynthesis. Acc Chem Res. 2002;35(5):313–20.

    Google Scholar 

  53. McIntosh AR, Bolton JR. Triplet state involvement in primary photochemistry of photosynthetic photosystem II. Nature. 1976;263(5576):443–5.

    ADS  Google Scholar 

  54. McIntosh AR, Bolton JR. CIDEP in the photosystems of green plant photosynthesis. Res Chem Interm. 1979;3(1–2):121–9.

    Google Scholar 

  55. McIntosh AR, Manikowski H, Wong SK, Taylor CPS, Bolton JR. CIDEP observations in photosystem I of green plants and algal photosynthesis. Biochem Biophys Res Commun. 1979;87(2):605–12.

    Google Scholar 

  56. McIntosh AR, Manikowski H, Bolton JR. Observations of chemically induced dynamic electron polarization in photosystem I of green plants and algae. J Phys Chem. 1979;83(26):3309–13.

    Google Scholar 

  57. Norris JR, Morris AL, Thurnauer MC, Tang J. A general model of electron spin polarization arising from the interactions within radical pairs. J Chem Phys. 1990;92(7):4239–49.

    ADS  Google Scholar 

  58. Hore PJ. Analysis of polarized electron paramagnetic resonance spectra, Chapter 12. In: Hoff AJ, editor. Advanced EPR: applications in biology and biochemistry. Amsterdam: Elsevier; 1989. p. 405–40.

    Google Scholar 

  59. Salikhov KM, Boch CH, Stehlik D. Time development of electron spin polarization in magnetically coupled, spin correlated radical pairs. Appl Magn Reson. 1990;1(2):195–211.

    Google Scholar 

  60. Bittl R, Kothe G. Transient EPR of radical pairs in photosynthetic reaction centers: prediction of quantum beats. Chem Phys Lett. 1991;177(6):547–53.

    ADS  Google Scholar 

  61. Kothe G, Weber S, Ohmes E, Thurnauer MC, Norris JR. High time resolution electron paramagnetic resonance of light-induced radical pairs in photosynthetic bacterial reaction centers: observation of quantum beats. J Am Chem Soc. 1994;116(17):7729–34.

    Google Scholar 

  62. Dzuba SA, Bosch MK, Hoff AJ. Electron spin echo detection of quantum beats and double-quantum coherence in spin-correlated radical pairs of protonated photosynthetic reaction centers. Chem Phys Lett. 1996;248(5–6):427–33.

    ADS  Google Scholar 

  63. Feezel LL, Gast P, Smith UH, Thurnauer MC. Electron spin polarization of P+-870Q observed in the reaction center protein of the photosynthetic bacterium Rhodobacter sphaeroides R26. The effect of selective isotopic substitution at X- and Q-band microwave frequencies. Biochim Biophys Acta. 1989;974(2):149–55.

    Google Scholar 

  64. van der Est A, Sieckmann I, Lubitz W, Stehlik D. Differences in the binding of the primary quinone acceptor in photosystem I and reaction centers of Rhodobacter sphaeroides R26 studied with transient EPR spectroscopy. Chem Phys. 1995;194(2–3):349–59.

    ADS  Google Scholar 

  65. Snyder SW, Morris AL, Bondeson SR, Norris JR, Thurnauer MC. Electron spin polarization in sequential electron transfer. An example from iron-containing photo-synthetic bacterial reaction center proteins. J Am Chem Soc. 1993;115(9):3774–5.

    Google Scholar 

  66. Morris AL, Snyder SW, Zhang Y, Tang J, Thurnauer MC, Dutton PL, Robertson DE, Gunner MR. Electron spin polarization model applied to sequential electrons transfer in iron-containing photosynthetic bacterial reaction centers with different quinones as QA. J Phys Chem. 1995;99(11):3854–66.

    Google Scholar 

  67. Proskuryakov II, Klenina IB, Shkuropatov AY, Shkuropatova VA, Shuvalov VA. Free-radical and correlated radical-pair spin-polarized signals in Rhodobacter sphaeroides R26 reaction centers. Biochim Biophys Acta. 1993;1142(1–2):207–10.

    Google Scholar 

  68. van den Brink JS, Hermolle TEP, Gast P, Hore PJ, Hoff AJ. Electron spin polarization of the oxidized primary electron donor in reaction centers of photosynthetic purple bacteria. J Phys Chem. 1996;100(6):2430–7.

    Google Scholar 

  69. Johnson RC, Merrifield RE, Avakian P, Flippen RB. Effects of magnetic fields on the mutual annihilation of triplet excitons in molecular crystals. Phys Rev Lett. 1967;19(6):285–7.

    ADS  Google Scholar 

  70. Merrifield RE. Theory of magnetic field effects on the mutual annihilation of triplet excitons. J Chem Phys. 1968;48(9):4318–9.

    ADS  Google Scholar 

  71. Steiner UE, Ulrich T. Magnetic field effects in chemical kinetics and related phenomena. Chem Rev. 1989;89(1):51–147.

    Google Scholar 

  72. Zagdeev RZ, Molin YN, Salikhov KM, Leshina TV, Kamha MA, Shein SM. Effects of magnetic field on chemical reactions. Org Magn Res. 1973;5(12):603–5.

    Google Scholar 

  73. Hoff AJ. Magnetic field effects on photosynthetic reactions. Q Rev Biophys. 1981;14(4):599–665.

    Google Scholar 

  74. Boxer SG, Chidsey ED, Roelofs MG. Magnetic field effects on reaction yields in the solid state: an example from photosynthetic reaction centers. Annu Rev Phys Chem. 1983;34:389–417.

    ADS  Google Scholar 

  75. Hoff AJ, Rademaker R, van Grondelle R, Duysens LNM. On the magnetic field dependence of the yield of the triplet state in reaction centers of photosynthetic bacteria. Biochim Biophys Acta. 1977;460(3):547–54.

    Google Scholar 

  76. Blankenship RE, Schaafsma TJ, Parson WW. Magnetic field effects on radical pair intermediates in bacterial photosynthesis. Biochim Biophys Acta. 1977;461(2):297–305.

    Google Scholar 

  77. Hoff AJ, Rademaker H. Light-induced magnetic polarization in photosynthesis. In: Muus LT, Atkins PW, McLauchlan KA, Pedersen JB, editors. Chemically induced magnetic polarization. Dordrecht: Reidel Publishing; 1977. p. 399.

    Google Scholar 

  78. Werner HJ, Schulten K, Weller A. Electron transfer and spin exchange contributing to the magnetic field dependence of the primary photochemical reaction of bacterial photosynthesis. Biochim Biophys Acta. 1978;502(2):255–68.

    Google Scholar 

  79. Goldstein RA, Boxer SG. Effects of nuclear spin polarization on reaction dynamics in photosynthetic bacterial reaction centers. Biophys J. 1987;51(6):937–46.

    Google Scholar 

  80. Bargon J, Fischer H, Johnsen U. Kernresonanz-Emissionslinien während rascher Radikalreaktionen I. Aufnahmeverfahren und Beispiele. Z Naturforsch. 1967;22:1551–5.

    ADS  Google Scholar 

  81. Ward HR, Lawer RG. Nuclear magnetic resonance emission and enhanced absorption in rapid organometallic reactions. J Am Chem Soc. 1967;89(21):5518.

    Google Scholar 

  82. Gerhart F. Chemically induced nuclear polarization: dependence on Landé factors in radical recombination reactions. Tetrahedron Lett. 1969;10(58):5061–6.

    Google Scholar 

  83. Adrian FJ. Role of diffusion-controlled reaction in chemically induced nuclear spin polarization. J Chem Phys. 1970;53(8):3374.

    ADS  Google Scholar 

  84. Kaptein R. Chemically induced dynamic nuclear polarization. VIII: Spin dynamics and diffusion of the radical pairs. J Am Chem Soc. 1972;94(18):6251–62.

    Google Scholar 

  85. Haberkorn R, Michel-Beyerle ME. On the mechanism of magnetic field effects in bacterial photosynthesis. Biophys J. 1979;26(3):489–98.

    Google Scholar 

  86. Haberkorn R, Michel-Beyerle ME, Marcus RA. On spin-exchange and electron-transfer rates in bacterial photosynthesis. Proc Natl Acad Sci U S A. 1979;76(9):4185–8.

    ADS  Google Scholar 

  87. Adrian FJ. Principles of the radical pair mechanism of chemically induced nuclear and electron spin polarization. Res Chem Interm. 1979;3(1–2):3–43.

    Google Scholar 

  88. Kaptein R. Simple rules for the chemically induced dynamic nuclear polarization. J Chem Soc D. 1971;14:732–3.

    Google Scholar 

  89. Closs GL, Doubleday CE. Chemically induced dynamic nuclear spin polarization derived from biradicals generated by photochemical cleavage of cyclic ketones, and the observation of a solvent effect on signal intensities. J Am Chem Soc. 1972;94(26):9248–9.

    Google Scholar 

  90. Kaptein R. Chemically induced dynamic nuclear polarization: theory and applications in mechanistic chemistry. In: Williams GH, editor. Advances in free radical chemistry. London: Elek Science; 1975.

    Google Scholar 

  91. Closs GL, Miller RJ, Redwine OD. Time-resolved CIDNP: applications to radical and biradical chemistry. Acc Chem Res. 1985;18(7):196–202.

    Google Scholar 

  92. Hore P, Broadhurst RW. Photo-CIDNP of biopolymers. Prog Nucl Magn Reson Spectrosc. 1993;25(4):345–402.

    Google Scholar 

  93. Roth HD. Chemically induced dynamic nuclear polarization. In: Grant DM, Harris RK, editors. Encyclopedia of nuclear magnetic resonance. Chichester: Wiley; 1996.

    Google Scholar 

  94. Wan JKS. Theory and application of chemically induced magnetic polarization in photochemistry. In: Pitts JN, Hammond GS, Gollnick K, Grosjean D, editors. Advances in photochemistry, vol. 12. Toronto: Wiley; 1980. p. 283–346.

    Google Scholar 

  95. Boxer SG, Chidsey CED, Roelofs MG. Anisotropic magnetic interactions in the primary radical ion-pair of photosynthetic reaction centers. Proc Natl Acad Sci U S A. 1982;79(15):4632–6.

    ADS  Google Scholar 

  96. Zysmilich MG, McDermott A. Photochemically induced dynamic nuclear polarization in the solid-state 15N spectra of reaction centers from photosynthetic bacteria Rhodobacter sphaeroides R26. J Am Chem Soc. 1994;116(18):8362–3.

    Google Scholar 

  97. Thamarath SS, Heberle J, Hore PJ, Kottke T, Matysik J. Solid-state photo-CIDNP effect observed in phototropin LOV1-C57S by 13C magic-angle spinning NMR spectroscopy. J Am Chem Soc. 2010;132(44):15542.

    Google Scholar 

  98. Prakash S, Alia A, Gast P, de Groot HJM, Matysik J, Jeschke G. Photo-CIDNP MAS NMR in intact cells of Rhodobacter sphaeroides R26: molecular and atomic resolution at nanomolar concentration. J Am Chem Soc. 2006;128(39):12794–9.

    Google Scholar 

  99. Thamarath SS, Alia A, Daviso E, Mance D, Golbeck JH, Matysik J. Whole-cell NMR characterization of two photochemically active states of the photosynthetic reaction center in heliobacteria. Biochemistry. 2012;51(29):5763–73.

    Google Scholar 

  100. Matysik J, Diller A, Roy E, Alia A. The solid-state photo-CIDNP effect. Photosynth Res. 2009;102(2–3):427–35.

    Google Scholar 

  101. Diller A, Roy E, Gast P, van Gorkom HJ, de Groot HJM, Glaubitz C, Jeschke G, Matysik J. 15N photo-CIDNP MAS NMR analysis of the electron donor of photosystem II. Proc Natl Acad Sci U S A. 2007;104(31):12767–71.

    ADS  Google Scholar 

  102. Daviso E, Alia A, Prakash S, Diller A, Gast P, Lugtenburg J, Jeschke G, Matysik J. Electron-nuclear spin dynamics in a bacterial photosynthetic reaction center. J Phys Chem C. 2009;113(23):10269–78.

    Google Scholar 

  103. Daviso E, Alia A, Prakash S, Gast P, Neugebauer J, Jeschke G, Matysik J. The electronic structure of the primary electron donor of reaction centers of purple bacteria at atomic resolution as observed by photo-CIDNP 13C NMR. Proc Natl Acad Sci U S A. 2009;106(52):22281–6.

    ADS  Google Scholar 

  104. Jeschke G, Matysik J. A reassessment of the origin of photochemically induced dynamic nuclear polarization effects in solids. Chem Phys. 2003;294(3):239–55.

    ADS  Google Scholar 

  105. Prakash S, Alia A, Gast P, de Groot HJM, Jeschke G, Matysik J. Magnetic field dependence of Photo-CIDNP MAS NMR on photosynthetic reaction centers of Rhodobacter sphaeroides WT. J Am Chem Soc. 2005;127(41):14290–8.

    Google Scholar 

  106. Thamarath SS, Bode BE, Prakash S, Sai Sankar Gupta KB, Alia A, Jeschke G, Matysik J. Electron spin density distribution in the special pair triplet of Rhodobacter sphaeroides R26 revealed by magnetic field dependence of the solid-state photo-CIDNP effect. J Am Chem Soc. 2012;134(13):5921–30.

    Google Scholar 

  107. Daviso E, Diller A, Alia A, Matysik J, Jeschke G. Photo-CIDNP MAS NMR beyond the T1 limit by fast cycles of polarization extinction and polarization generation. J Magn Reson. 2008;190(1):43–51.

    ADS  Google Scholar 

  108. Jeschke G. Electron-electron-nuclear three spin mixing in spin-correlated radical pairs. J Chem Phys. 1997;106(24):10072–86.

    ADS  Google Scholar 

  109. Polenova T, McDermott AE. A coherent mixing mechanism explains the photoinduced nuclear polarization in photosynthetic reaction centers. J Phys Chem B. 1999;103(3):535–48.

    Google Scholar 

  110. McDermott AE, Zysmilich MG, Polenova T. Solid state NMR studies of photoinduced polarization in photosynthetic reaction centers: mechanism and simulations. Solid State Nucl Magn Reson. 1998;11(1–2):21–47.

    Google Scholar 

  111. Diller A, Prakash S, Alia A, Gast P, Matysik J, Jeschke G. Signals in solid-state photochemically induced dynamic nuclear polarization recover faster than with the longitudinal relaxation time. J Phys Chem B. 2007;111(35):10606–14.

    Google Scholar 

  112. Bode B, Thamarath SS, Sai Sankar Gupta KB, Alia A, Jeschke G, Matysik J. The solid-state photo-CIDNP effect and its analytical application. In: Kuhn L, editor. Hyperpolarization methods in NMR spectroscopy. Springer; in press.

    Google Scholar 

  113. Feher G, Allen JP, Okamura MY, Rees DC. Structure and function of bacterial photosynthetic reaction centres. Nature. 1989;339(6220):111–6.

    ADS  Google Scholar 

  114. Rautter J, Lendzian F, Lubitz W, Wang S, Allen JP. Comparative study of reaction centers from photosynthetic purple bacteria: electron paramagnetic resonance and electron nuclear double resonance spectroscopy. Biochemistry. 1994;33(40):12077–84.

    Google Scholar 

  115. Lendzian F, Huber M, Isaacson RA, Endeward B, Plato M, Bönigk B, Möbius K, Lubitz W, Feher G. The electronic structure of the primary donor cation radical in Rhodobacter sphaeroides R26: ENDOR and TRIPLE resonance studies in single crystals of reaction centers. Biochim Biophys Acta. 1993;1183(1):139–60.

    Google Scholar 

  116. Schulten EAM, Matysik J, Alia A, Kiihne S, Raap J, Lugtenburg J, Gast P, Hoff AJ, de Groot HJM. 13C MAS NMR and photo-CIDNP reveal a pronounced asymmetry in the electronic ground state of the special pair of Rhodobacter sphaeroides reaction centers. Biochemistry. 2002;41(27):8708–17.

    Google Scholar 

  117. Diller A, Alia A, Gast P, Jeschke G, Matysik J. 13C photo-CIDNP MAS NMR on the LH1-RC complex of Rhodopseudomonas acidophila. In: Allen JF, Gantt E, Golbeck JH, Osmond B, editors. Photosynthesis. Energy from the sun. 14th International Congress on Photosynthesis. Dordrecht: Springer; 2008. p. 55–8.

    Google Scholar 

  118. Roy E, Alia A, Gast P, van Gorkom JH, de Groot HJM, Jeschke G, Matysik J. Photochemically induced dynamic nuclear polarization in the reaction center of the green sulfur bacterium Chlorobium tepidum observed by 13C MAS NMR. Biochim Biophys Acta. 2007;1767(6):610–5.

    Google Scholar 

  119. Roy E, Rohmer T, Gast P, Jeschke G, Alia A, Matysik J. Characterization of the primary radical pair in reaction centers of Heliobacillus mobilis by 13C photo-CIDNP MAS NMR. Biochemistry. 2008;47(16):4629–35.

    Google Scholar 

  120. Alia A, Roy E, Gast P, van Gorkom JH, de Groot HJM, Jeschke G, Matysik J. Photochemically induced dynamic nuclear polarization in photosystem I of plants observed by 13C magic-angle spinning NMR. J Am Chem Soc. 2004;126(40):12819–26.

    Google Scholar 

  121. Matysik J, Alia A, Gast P, van Gorkom JH, Hoff AJ, de Groot HJM. Photochemically induced nuclear spin polarization in reaction centers of photosystem II observed by 13C solid-state NMR reveals a strongly asymmetric electronic structure of the P680+ primary donor chlorophyll. Proc Natl Acad Sci U S A. 2000;97(18):9865–70.

    ADS  Google Scholar 

  122. Diller A, Alia A, Roy E, Gast P, van Gorkom JH, Zaanen J, de Groot HJM, Glaubitz C, Matysik J. Photo-CIDNP solid-state NMR on photosystems I and II: what makes P680 special? Photosynth Res. 2005;84(1–3):303–8.

    Google Scholar 

  123. Mouritsen H, Hore PJ. The magnetic retina: light-dependent and trigeminal magnetoreception in migratory birds. Curr Opin Neurobiol. 2012;22(2):343–52.

    Google Scholar 

  124. Hore PJ. Are biochemical reactions affected by weak magnetic fields? Proc Natl Acad Sci U S A. 2012;109(5):1357–8.

    ADS  Google Scholar 

  125. Wiltschko W, Wiltschko R. Magnetic orientation in birds. J Exp Biol. 1996;199(1):29–38.

    Google Scholar 

  126. Rodgers CT, Hore PJ. Chemical magnetoreception in birds: the radical pair mechanism. Proc Natl Acad Sci U S A. 2009;106(2):353–60.

    ADS  Google Scholar 

  127. Chaves I, Pokorny R, Byrdin M, Hoang N, Ritz T, Brettel K, Essen L, van der Horst GTJ, Batschauer A, Ahmad M. The cryptochromes: blue light photoreceptors in plants and animals. Annu Rev Plant Biol. 2011;62:335–64.

    Google Scholar 

  128. Solov’yov IA, Schulten K. Reaction kinetics and mechanism of magnetic fields effects in cryptochrome. J Phys Chem B. 2012;116(3):1089–99.

    Google Scholar 

  129. Wasielewski MR. Photogenerated, spin-correlated radical ion pairs in photosynthetic model systems. Spectrum. 1995;8(1):8–12.

    Google Scholar 

  130. Thurnauer MC, Dimitrijevic NM, Poluektov OG, Rajh T. Photoinitiated charge separation: from photosynthesis to nanoparticles. Spectrum. 2004;17(1):10–5.

    Google Scholar 

  131. Thurnauer MC, Poluektov OG, Kothe G. High-field EPR studies of electron transfer intermediates in photosystem I. In: Golbeck JH, editor. Photosystem I: the light-driven plastocyanin-ferredoxin oxidoreductase. Advances in photosynthesis and respiration, vol. 24. Dordrecht: Springer; 2006. p. 339–60.

    Google Scholar 

  132. Kothe G, Thurnauer M. What you get out of high-time resolution electron paramagnetic resonance: example from photosynthetic bacteria. Photosynth Res. 2009;102(2–3):349–65.

    Google Scholar 

  133. Belyavskaya NA. Biological effects due to weak magnetic field on plants. Adv Space Res. 2004;34(7):1566–74.

    ADS  Google Scholar 

  134. Galland P, Pazur A. Magnetoreception in plants. J Plant Res. 2005;118(6):371–89.

    Google Scholar 

  135. Closs GL. Low field effects and CIDNP of biradical reactions. In: Muus LT, Atkins PW, McLauchlan KA, Pedersen JB, editors. Chemically induced magnetic polarization. Dordrecht: Reidel Publishing; 1977. p. 225–56.

    Google Scholar 

  136. Jeschke G, Anger B, Bode BE, Matysik J. Theory of solid-state photo-CIDNP in earth magnetic field. J Phys Chem A. 2011;115(35):9919–28.

    Google Scholar 

  137. Ivanov KL. Net and multiplet CIDEP of the observer spin in recombination of radical-biradical pair. J Phys Chem A. 2005;109(23):5160–7.

    Google Scholar 

  138. Bauer GEW, Bretzel S, Brataas A, Tserkovnyak Y. Nanoscale magnetic heat pumps and engines. Phys Rev B. 2010;81(2):024427.

    ADS  Google Scholar 

  139. Francis TL, Mermer Ö, Veeraraghavan G, Wohlgenannt M. Large magnetoresistance at room temperature in semiconducting polymer sandwich devices. New J Phys. 2004;6:185.

    Google Scholar 

  140. Bobbert PA, Nguyen TD, van Oost FWA, Koopmans B, Wohlgenannt M. Bipolaron mechanism for organic magnetoresistance. Phys Rev Lett. 2007;99(21):216801.

    ADS  Google Scholar 

  141. Bobbert PA, Wagemans W, van Oost FWA, Koopmans B, Wohlgenannt M. Theory for spin diffusion in disordered organic semiconductors. Phys Rev Lett. 2009;102(15):156604.

    ADS  Google Scholar 

  142. Kersten SP, Schellekens AJ, Koopmans B, Bobbert PA. Magnetic-field dependence of the electroluminescence of organic light-emitting diodes: a competition between exciton formation and spin mixing. Phys Rev Lett. 2011;106(19):197402.

    ADS  Google Scholar 

Download references

Acknowledgments

The authors thank Profs. P.A. Bobbert, P. Hore, G. Jeschke, B. Koopmans, A. van der Est and M. Wohlgenannt for the stimulating discussions. This work has been financially supported by the Netherlands Organization for Scientific Research (NWO) through an ECHO grant (713.012.001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Matysik Dr. rer. nat. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Céspedes-Camacho, I.F., Matysik, J. (2014). Spin in Photosynthetic Electron Transport. In: Golbeck, J., van der Est, A. (eds) The Biophysics of Photosynthesis. Biophysics for the Life Sciences, vol 11. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1148-6_5

Download citation

Publish with us

Policies and ethics