Skip to main content

Structure-Based Calculation of Pigment–Protein and Excitonic Pigment–Pigment Coupling in Photosynthetic Light-Harvesting Complexes

  • Chapter
  • First Online:
The Biophysics of Photosynthesis

Part of the book series: Biophysics for the Life Sciences ((BIOPHYS,volume 11))

Abstract

In photosynthesis, specialized pigment–protein assemblies, termed light-harvesting complexes (LHCs) or antenna proteins, absorb solar photons and deliver the excitation energy by exciton transfer (XT) to the photochemically active centers. To understand this process, it has to be linked to molecular structures and spectroscopic properties of LHCs. In this chapter, we show how this link is provided by theoretical modeling. We first describe what excitons are and how the mechanism of XT is influenced by the coupling of excited states to molecular vibrations. This description defines key parameters that are important for a modeling of XT: (1) site energies, (2) excitonic couplings, and (3) exciton-vibrational coupling constants. Next, we discuss how these parameters can be calculated from a crystal structure of the LHC within the framework of an electrostatic model of intermolecular interactions. Finally, we show applications to the Fenna–Matthews–Olson (FMO) protein of green sulfur bacteria and the major LHC of higher plants (LHCII) to illustrate how this approach works and what has already been learned from it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In Eq. (1.1), spin-orbit coupling and other terms related to spin are neglected.

  2. 2.

    This coupling is characterized by the coupling constant g ξ, which is defined as half the displacement of the minima of the two PES for reasons that will become evident below. The negative sign is merely a convention that allows a positive g ξ (as, e.g., in Eqs. (1.12) and (1.13) below) to shift the excited state PES to the right with respect to the ground state PES as in Fig. 1.3a.

  3. 3.

    The Franck–Condon principle states that during the time of an electronic transition, the nuclear motion can be neglected, so that the nuclei are practically “frozen” during the process of light excitation of the molecule. In a plot of the PESs, this means that the transition occurs at constant Q (valid for all Q). Hence, it is termed a “vertical” transition.

  4. 4.

    Actually, each electron occupies one spin orbital. In the restricted closed-shell Hartree–Fock approach, two of these spin orbitals with different spin functions have the same spatial wave-function, so that two electrons occupy the same spatial orbital [19]. The energy levels depicted in usual MO schemes (as for example in Fig. 1.3b) refer to these spatial orbitals.

  5. 5.

    In fact, it is the neglect of electron exchange between the pigments that justifies the use of the term “Frenkel exciton.”

  6. 6.

    We have to be careful, however, if B is another pigment. Below, we shall focus on the S0 → S1 transitions of A (a = 0,1). Then, we have to exclude the S0 → S1 transitions of the other pigments. This is no restriction, since the couplings between these transitions are treated explicitly in the exciton formalism and do not require a perturbative approximation; see [30].

  7. 7.

    The term “van der Waals interaction” is sometimes used to subsume inductive and dispersive interactions.

  8. 8.

    Readers interested in alternative approaches that go beyond this level will find information in Renger and Müh [30] and the references therein.

  9. 9.

    We note that there are other types of light-harvesting complexes that contain more flexible pigments (e.g., bilins, see [41]). In these cases, the contribution from conformational variations may become dominant.

  10. 10.

    A systematic procedure for finding these positions is described in [50].

  11. 11.

    We define the effective dipole strength as vacuum dipole strength divided by εeff.

References

  1. Caffarri S, Kouril R, Kereiche S, Boekema EJ, Croce R. Functional architecture of higher plant photosystem II supercomplexes. EMBO J. 2009;28:3052–63.

    Article  Google Scholar 

  2. Umena Y, Kawakami K, Shen JR, Kamiya N. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature. 2011;473:55–60.

    Article  ADS  Google Scholar 

  3. Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graphics. 1996;14:33–8.

    Article  Google Scholar 

  4. Croce R, van Amerongen H. Light-harvesting and structural organization of photosystem II: from individual complexes to thylakoid membrane. J Photochem Photobiol B. 2011;104:142–53.

    Article  Google Scholar 

  5. Kouril R, Dekker JP, Boekema EJ. Supramolecular organization of photosystem II in green plants. Biochim Biophys Acta. 2012;1817:2–12.

    Article  Google Scholar 

  6. Liu ZF, Yan HC, Wang KB, Kuang TY, Zhang JP, Gui LL, An XM, Chang WR. Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature. 2004;428:287–92.

    Article  ADS  Google Scholar 

  7. Standfuss J, Terwisscha van Scheltinga AC, Lamborghini M, Kühlbrandt W. Mechanism of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 Å resolution. EMBO J. 2005;24:919–28.

    Article  Google Scholar 

  8. Barros T, Kühlbrandt W. Crystallization, structure and function of plant light-harvesting complex II. Biochim Biophys Acta. 2009;1787:753–72.

    Article  Google Scholar 

  9. Pan X, Li M, Wan T, Wang L, Jia C, Hou Z, Zhao X, Zhang J, Chang W. Structural insights into energy regulation of light-harvesting complex CP29 from spinach. Nat Struct Mol Biol. 2011;18:309–15.

    Article  Google Scholar 

  10. Müh F, Renger T, Zouni A. Crystal structure of cyanobacterial photosystem II at 3.0 Å resolution: a closer look at the antenna system and the small membrane-intrinsic subunits. Plant Physiol Biochem. 2008;46:238–64.

    Google Scholar 

  11. Guskov A, Gabdulkhakov A, Broser M, Glöckner C, Hellmich J, Kern J, Frank J, Müh F, Saenger W, Zouni A. Recent progress in the crystallographic studies of photosystem II. ChemPhysChem. 2010;11:1160–71.

    Article  Google Scholar 

  12. Gueymard CA, Myers D, Emery K. Proposed reference irradiance spectra for solar energy systems testing. Sol Energy. 2002;73:443–67.

    Article  ADS  Google Scholar 

  13. Scheer H. An overview of chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications. In: Grimm B, Porra RJ, Rüdiger W, Scheer H, editors. Chlorophylls and bacteriochlorophylls – biochemistry, biophysics, functions and applications. Dordrecht: Springer; 2006. p. 1–26.

    Chapter  Google Scholar 

  14. May V, Kühn O. Charge and energy transfer dynamics in molecular systems. Berlin: Wiley-VCH; 2011.

    Book  Google Scholar 

  15. Wilson EB, Decius JC, Cross PC. Molecular vibrations – the theory of infrared and Raman vibrational spectra. New York, NY: McGraw-Hill; 1955. Dover edition 1980.

    Google Scholar 

  16. McQuarrie DA. Quantum chemistry. Sausalito, CA: University Science; 2008.

    Google Scholar 

  17. Franck J. Elementary processes of photochemical reactions. Trans Faraday Soc. 1926;21:536–42.

    Article  Google Scholar 

  18. Condon EU. Nuclear motions associated with electron transitions in diatomic molecules. Phys Rev. 1928;32:858–72.

    Article  MATH  ADS  Google Scholar 

  19. Szabo A, Ostlund NS. Modern quantum chemistry – introduction to advanced electronic structure theory. New York, NY: McGraw-Hill; 1989. Dover edition 1996.

    Google Scholar 

  20. Koch W, Holthausen MC. A chemist’s guide to density functional theory. New York, NY: Wiley-VCH; 2001.

    Book  Google Scholar 

  21. Dreuw A, Head-Gordon M. Single-reference ab initio methods for the calculation of excited states of large molecules. Chem Rev. 2005;105:4009–37.

    Article  Google Scholar 

  22. Frenkel J. On the transformation of light into heat in solids. I. Phys Rev. 1931;37:17–44.

    Article  MATH  ADS  Google Scholar 

  23. Madjet ME, Abdurahman A, Renger T. Intermolecular Coulomb couplings from ab initio electrostatic potentials: application to optical transitions of strongly coupled pigments in photosynthetic antennae and reaction centers. J Phys Chem B. 2006;110:17268–81.

    Google Scholar 

  24. Dexter DL. A theory of sensitized luminescence in solids. J Chem Phys. 1953;21:836–50.

    ADS  Google Scholar 

  25. Harcourt RD, Scholes GD, Ghiggino KP. Rate expressions for excitation transfer. II. Electronic considerations of direct and through–configuration exciton resonance interactions. J Chem Phys. 1994;101:10521–5.

    ADS  Google Scholar 

  26. Madjet ME, Müh F, Renger T. Deciphering the influence of short-range electronic couplings on optical properties of molecular dimers: application to “special pairs” in photosynthesis. J Phys Chem B. 2009;113:12603–14.

    Google Scholar 

  27. Scholes GD, Gould IR, Cogdell RJ, Fleming GR. Ab initio molecular orbital calculations of electronic couplings in the LH2 bacterial light-harvesting complex of Rps. acidophila. J Phys Chem B. 1999;103:2543–53.

    Google Scholar 

  28. Renger T. Absorption of light, excitation energy transfer and electron transfer reactions. In: Renger G, editor. Primary processes of photosynthesis – principles and apparatus, part 1. Cambridge: RSC Publishing; 2008. p. 39–97.

    Google Scholar 

  29. Marcus RA, Sutin N. Electron transfer in chemistry and biology. Biochim Biophys Acta. 1985;811:265–322.

    Article  Google Scholar 

  30. Renger T, Müh F. Understanding photosynthetic light-harvesting: a bottom up theoretical approach. Phys Chem Chem Phys. 2013;15:3348–71.

    Article  Google Scholar 

  31. Beljonne D, Curutchet C, Scholes GD, Silbey RJ. Beyond Förster resonance energy transfer in biological and nanoscale systems. J Phys Chem B. 2009;113:6583–99.

    Google Scholar 

  32. Ito A, Mayer TJ. The golden rule: application for fun and profit in electron transfer, energy transfer, and excited state decay. Phys Chem Chem Phys. 2012;14:13731–45.

    Article  Google Scholar 

  33. Renger T, Klinger A, Steinecker F, Schmidt am Busch M, Numata J, Müh F. Normal mode analysis of the spectral density of the Fenna-Matthews-Olson light-harvesting protein: how the protein dissipates the excess energy of excitons. J Phys Chem B. 2012;116:14565–80.

    Google Scholar 

  34. Stone AJ. The theory of intermolecular forces. Oxford: Clarendon; 1996.

    Google Scholar 

  35. London F. The general theory of molecular forces. Trans Faraday Soc. 1937;33:8–26.

    Article  Google Scholar 

  36. Casimir HBG, Polder D. The influence of retardation on the London-Van der Waals forces. Phys Rev. 1948;73:360–72.

    Article  MATH  ADS  Google Scholar 

  37. Müh F, Madjet ME, Renger T. Structure-based identification of energy sinks in plant light-harvesting complex II. J Phys Chem B. 2010;114:13517–35.

    Google Scholar 

  38. Shao Y, et al. Advances in methods and algorithms in a modern quantum chemistry program package. Phys Chem Chem Phys. 2006;8:3172–91.

    Article  Google Scholar 

  39. Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauss N. Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature. 2001;411:909–17.

    Article  ADS  Google Scholar 

  40. Adolphs J, Müh F, Madjet ME, Schmidt am Busch M, Renger T. Structure-based calculations of optical spectra of photosystem I suggest an asymmetric light-harvesting process. J Am Chem Soc. 2010;132:3331–43.

    Article  Google Scholar 

  41. Curutchet C, Novoderezhkin VI, Kongsted J, Munoz-Losa A, van Grondelle R, Scholes GD, Mennucci B. Energy flow in the cryptophyte PE545 antenna is directed by bilin pigment conformation. J Phys Chem B. 2013;117:4263–73.

    Google Scholar 

  42. Adolphs J, Müh F, Madjet ME, Renger T. Calculation of pigment transition energies in the FMO protein – from simplicity to complexity and back. Photosynth Res. 2008;95:197–209.

    Article  Google Scholar 

  43. Schmidt am Busch M, Müh F, Madjet ME, Renger T. The eighth bacteriochlorophyll completes the excitation energy funnel in the FMO protein. J Phys Chem Lett. 2011;2:93–8.

    Google Scholar 

  44. Müh F, Madjet ME, Adolphs J, Abdurahman A, Rabenstein B, Ishikita H, Knapp EW, Renger T. α-Helices direct excitation energy flow in the Fenna-Matthews-Olson protein. Proc Natl Acad Sci U S A. 2007;104:16862–7.

    Article  ADS  Google Scholar 

  45. Müh F, Madjet ME, Renger T. Structure-based simulation of linear optical spectra of the CP43 core antenna of photosystem II. Photosynth Res. 2012;111:87–101.

    Article  Google Scholar 

  46. Ullmann GM, Knapp EW. Electrostatic models for computing protonation and redox equilibria in proteins. Eur Biophys J. 1999;28:533–51.

    Article  Google Scholar 

  47. Bashford D. Macroscopic electrostatic models for protonation states in proteins. Front Biosci. 2004;9:1082–99.

    Article  Google Scholar 

  48. Weiss Jr C. The Pi electron structure and absorption spectra of chlorophylls in solution. J Mol Spectrosc. 1972;44:37–80.

    Article  ADS  Google Scholar 

  49. Chang JC. Monopole effects on electronic excitation interactions between large molecules. I. Application to energy transfer in chlorophylls. J Chem Phys. 1977;67:3901–9.

    ADS  Google Scholar 

  50. Renger T, Grundkötter B, Madjet ME, Müh F. Theory of solvatochromic shifts in nonpolar solvents reveals a new spectroscopic rule. Proc Natl Acad Sci U S A. 2008;105:13235–40.

    Article  ADS  Google Scholar 

  51. Gouterman M, Wagniere G, Snyder L. Spectra of porphyrins Part II. Four orbital model. J Mol Spectrosc. 1963;11:108–27.

    Article  ADS  Google Scholar 

  52. Scheer H. Chlorophylls. In: Renger G, editor. Primary processes of photosynthesis – principles and apparatus, part 1. Cambridge: RSC Publishing; 2008. p. 101–49.

    Google Scholar 

  53. Renger T, Madjet ME, Müh F, Trostmann I, Schmitt FJ, Theiss C, Paulsen H, Eichler HJ, Knorr A, Renger G. Thermally activated superradiance and intersystem crossing in the water-soluble chlorophyll binding protein. J Phys Chem B. 2009;113:9948–57.

    Google Scholar 

  54. Böttcher CJF. Theory of electric polarization, vol. 1. Amsterdam: Elsevier; 1973.

    Google Scholar 

  55. Knox RS, Spring BQ. Dipole strengths in the chlorophylls. Photochem Photobiol. 2003;77:497–501.

    Article  Google Scholar 

  56. Adolphs J, Renger T. How proteins trigger excitation energy transfer in the FMO complex of green sulfur bacteria. Biophys J. 2006;91:2778–97.

    Article  Google Scholar 

  57. Renger T, Müh F. Theory of excitonic couplings in dielectric media – foundations of Poisson-TrEsp method and application to photosystem I trimers. Photosynth Res. 2012;111:47–52.

    Article  ADS  Google Scholar 

  58. Simonson T, Perahia D. Microscopic dielectric properties of cytochrome c from molecular dynamics simulations in aqueous solution. J Am Chem Soc. 1995;117:7987–8000.

    Article  Google Scholar 

  59. Müh F, Zouni A. Extinction coefficients and critical solubilisation concentrations of photosystems I and II from Thermosynechococcus elongatus. Biochim Biophys Acta. 2005;1708:219–28.

    Article  Google Scholar 

  60. Hsu CP, Head-Gordon M, Head-Gordon T, Fleming GR. Excitation energy transfer in condensed media. J Chem Phys. 2001;114:3065–72.

    ADS  Google Scholar 

  61. Mennucci B, Curutchet C. The role of the environment in electronic energy transfer: a molecular modeling perspective. Phys Chem Chem Phys. 2011;13:11538–50.

    Article  Google Scholar 

  62. Hauska G, Schoedl T, Remigy H, Tsiotis G. The reaction center of green sulfur bacteria. Biochim Biophys Acta. 2001;1507:260–77.

    Article  Google Scholar 

  63. Fenna RE, Matthews BW. Chlorophyll arrangement in a bacteriochlorophyll protein from Chlorobium limicola. Nature. 1975;258:573–7.

    Article  ADS  Google Scholar 

  64. Tronrud DE, Schmid MF, Matthews BW. Structure and X-ray amino-acid-sequence of a bacteriochlorophyll-a protein from Prosthecochloris aestuarii refined at 1.9 Å resolution. J Mol Biol. 1986;188:443–54.

    Article  Google Scholar 

  65. Ben-Shem A, Frolow F, Nelson N. Evolution of photosystem I – from symmetry through pseudosymmetry to asymmetry. FEBS Lett. 2004;564:274–80.

    Article  Google Scholar 

  66. Tronrud DE, Wen JZ, Gay L, Blankenship RE. The structural basis for the difference in absorbance spectra for the FMO antenna protein from various green sulfur bacteria. Photosynth Res. 2009;100:79–87.

    Article  Google Scholar 

  67. Milder MTW, Brüggemann B, van Grondelle R, Herek JL. Revisiting the optical properties of the FMO protein. Photosynth Res. 2010;104:257–74.

    Article  Google Scholar 

  68. Louwe RJW, Vrieze J, Hoff AJ, Aartsma TJ. Toward an integral interpretation of the optical steady-state spectra of the FMO-complex of Prosthecochloris aestuarii. 2. Exciton simulations. J. Phys. Chem B. 1997;101:11280–7.

    Article  Google Scholar 

  69. Wen J, Zhang H, Gross ML, Blankenship RE. Membrane orientation of the FMO antenna protein from Chlorobaculum tepidum as determined by mass spectrometry-based footprinting. Proc Natl Acad Sci U S A. 2009;106:6134–9.

    Article  ADS  Google Scholar 

  70. Wendling M, Pullerits T, Przyjalgowski MA, Vulto SIE, Aartsma TJ, van Grondelle R, van Amerongen H. Electron-vibrational coupling in the Fenna-Matthews-Olson complex of Prosthecochloris aestuarii determined by temperature-dependent absorption and fluorescence line-narrowing measurements. J Phys Chem B. 2000;104:5825–31.

    Google Scholar 

  71. Rätsep M, Freiberg A. Electron-phonon and vibronic couplings in the FMO bacteriochlorophyll a antenna complex studied by difference fluorescence line narrowing. J Lumin. 2007;127:251–9.

    Article  Google Scholar 

  72. Renger T, Marcus RA. On the relation of protein dynamics and exciton relaxation in pigment-protein complexes: an estimation of the spectral density and a theory for the calculation of optical spectra. J Chem Phys. 2002;116:9997–10019.

    ADS  Google Scholar 

  73. Creemers TMH, De Caro CA, Visschers RW, van Grondelle R, Völker S. Spectral hole burning and fluorescence line narrowing in subunits of the light-harvesting complex LH1 of purple bacteria. J Phys Chem B. 1999;103:9770–6.

    Google Scholar 

  74. Renger T, Madjet ME, Knorr A, Müh F. How the molecular structure determines the flow of excitation energy in plant light-harvesting complex II. J Plant Physiol. 2011;168:1497–509.

    Article  Google Scholar 

  75. Müh F, Renger T. Refined structure-based simulation of plant light-harvesting complex II: linear optical spectra of trimers and aggregates. Biochim Biophys Acta. 2012;1817:1446–60.

    Article  Google Scholar 

  76. Novoderezhkin VI, Palacios MA, van Amerongen H, van Grondelle R. Excitation dynamics in the LHCII complex of higher plants: modeling based on the 2.72 Å crystal structure. J Phys Chem B. 2005;109:10493–504.

    Google Scholar 

  77. Frähmcke JS, Walla PJ. Coulombic couplings between pigments in the major light-harvesting complex LHC II calculated by the transition density cube method. Chem Phys Lett. 2006;430:397–403.

    ADS  Google Scholar 

  78. Linnanto J, Martiskainen J, Lehtovuori V, Ihalainen J, Kananavicius R, Barbato R, Korppi-Tommola J. Excitation energy transfer in the LHC-II trimer: a model based on the new 2.72 Å structure. Photosynth Res. 2006;87:267–79.

    Article  Google Scholar 

  79. König C, Neugebauer J. First-principles calculation of electronic spectra of light-harvesting complex II. Phys Chem Chem Phys. 2011;13:10475–90.

    Article  Google Scholar 

  80. Remelli R, Varotto C, Sandona D, Croce R, Bassi R. Chlorophyll binding to monomeric light-harvesting complex – a mutation analysis of chromophore-binding residues. J Biol Chem. 1999;274:33510–21.

    Article  Google Scholar 

  81. Rogl H, Schödel R, Lokstein H, Kühlbrandt W, Schubert A. Assignment of spectral substructures to pigment-binding sites in higher plant light-harvesting complex LHC-II. Biochemistry. 2002;41:2281–7.

    Article  Google Scholar 

Download references

Acknowledgement

Financial support by the Austrian Science Fund (FWF): P 24774-N27 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Müh Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Müh, F., Renger, T. (2014). Structure-Based Calculation of Pigment–Protein and Excitonic Pigment–Pigment Coupling in Photosynthetic Light-Harvesting Complexes. In: Golbeck, J., van der Est, A. (eds) The Biophysics of Photosynthesis. Biophysics for the Life Sciences, vol 11. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1148-6_1

Download citation

Publish with us

Policies and ethics