Skip to main content

The Probability That Int n (D) Is Free

  • Chapter
  • First Online:
Book cover Commutative Algebra

Abstract

Let D be a Dedekind domain with quotient field K. The ring of integer-valued polynomials on D is the subring Int(D) = { fK[X]: f(D) ⊆ D} of the polynomial ring K[X]. The Pólya-Ostrowski group PO(D) of D is a subgroup of the class group of D generated by the well-known factorial ideals n! D of D. A regular basis of Int(D) is a D-module basis consisting of one polynomial of each degree. It is well known that Int(D) has a regular basis if and only if the group PO(D) is trivial, if and only if the D-module Int n (D) = { f ∈ Int(D): degfn} is free for all n. In this paper we provide evidence for and prove special cases of the conjecture that, if PO(D) is finite, then the natural density of the set of nonnegative integers n such that Int n (D) is free exists, is rational, and is at least 1∕ | PO(D) | . Moreover, we compute this density or determine a conjectural value for several examples of Galois number fields of degrees 2, 3, 4, 5, and 6 over \(\mathbb{Q}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.-J. Cahen, J.-L. Chabert, Integer-Valued Polynomials. Mathematical Surveys and Monographs, vol. 48 (American Mathematical Society, Providence, 1997)

    Google Scholar 

  2. J.-L. Chabert, Factorial groups and Pólya groups in Galoisian extension of \(\mathbb{Q}\). In Commutative Ring Theory and Applications: Proceedings of the Fourth International Conference, ed. by M. Fontana, S-E. Kabbaj, S. Wiegand. Lecture Notes in Pure and Applied Mathematics, vol. 231 (Marcel Dekker, New York, 2003)

    Google Scholar 

  3. H. Cohen, A Course in Computational Algebraic Number Theory. Graduate Texts in Mathematics, vol. 138 (Springer, New York, 2000)

    Google Scholar 

  4. J. Elliott, Presentations and module bases of integer-valued polynomial rings. J. Algebra Appl. 12(1), 1–25 (2013)

    Article  Google Scholar 

  5. M.-N. Gras, Non monogénéité de l’anneau des entiers des extensions cycliques de \(\mathbb{Q}\) de degré premier l ≥ 5. J. Number Theory 23, 347–353 (1986)

    Article  MathSciNet  Google Scholar 

  6. A. Hoshi, On the simplest quartic fields and related Thue equations. In Joint Conference of ASCM 2009 and MACIS 2009, ed. by S. Masakazu et al. COE Lecture Note Series, vol. 22 (Kyushu University, Faculty of Mathematics, Fukuoka, 2009), pp. 320–329

    Google Scholar 

  7. A. Leriche, Groupes, Corps et Extensions de Pólya: une Question de Capitulation, Ph.D. Thesis, Université de Picardie Jules Verne, 2010

    Google Scholar 

  8. R. Schoof, L.C. Washington, Quintic polynomials and real cyclotomic fields with large class numbers. Math. Comput. 50, 543–556 (1988)

    MATH  MathSciNet  Google Scholar 

  9. H. Zantema, Integer valued polynomials over a number field. Manuscr. Math. 40, 155–203 (1982)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesse Elliott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Elliott, J. (2014). The Probability That Int n (D) Is Free. In: Fontana, M., Frisch, S., Glaz, S. (eds) Commutative Algebra. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0925-4_8

Download citation

Publish with us

Policies and ethics