Skip to main content

Introduction

  • Chapter
  • First Online:
  • 836 Accesses

Part of the book series: Fields Institute Monographs ((FIM,volume 33))

Abstract

Affine Schubert calculus is a subject that lies at the crossroads of combinatorics, geometry, and representation theory. Its modern development is motivated by two seemingly unrelated directions. One is the introduction of k-Schur functions in the study of Macdonald polynomial positivity, a mostly combinatorial branch of symmetric function theory.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  1. I. Cherednik, Double Affine Hecke Algebras. London Mathematical Society Lecture Note Series, vol. 319 (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  2. S. Fomin, R. Stanley, Schubert polynomials and the nilCoxeter algebra. Adv. Math. 103, 196–207 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. M. Haiman, Hilbert schemes, polygraphs, and the Macdonald positivity conjecture. J. Am. Math. Soc. 14, 941–1006 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. A. Knutson, T. Tao, Puzzles and (equivariant) cohomology of Grassmannians. Duke Math. J. 119(2), 221–260 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. B. Kostant, S. Kumar, The nil Hecke ring and cohomology of GP for a Kac–Moody group G. Adv. Math. 62(3), 187–237 (1986)

    Google Scholar 

  6. B. Kostant, S. Kumar, T-equivariant K-theory of generalized flag varieties. J. Differ. Geom. 32(2), 549–603 (1990)

    MATH  MathSciNet  Google Scholar 

  7. T. Lam, Affine Stanley symmetric functions. Am. J. Math. 128(6), 1553–1586 (2006)

    Article  MATH  Google Scholar 

  8. T. Lam, Schubert polynomials for the affine Grassmannian. J. Am. Math. Soc. 21(1), 259–281 (2008)

    Article  MATH  Google Scholar 

  9. T. Lam, L. Lapointe, J. Morse, M. Shimozono, Affine insertion and Pieri rules for the affine Grassmannian. Mem. Am. Math. Soc. 208(977), xii+82 (2010). ISBN:978-0-8218-4658-2

    Google Scholar 

  10. T. Lam, C. Li, L. Mihalcea, M. Shimozono, Quantum K-theory of GB and K-homology of affine Grassmannians (in preparation)

    Google Scholar 

  11. T. Lam, A. Schilling, M. Shimozono, K-theoretic Schubert calculus of the affine Grassmannian. Compositio Mathematica 146(4), 811–852 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. T. Lam, A. Schilling, M. Shimozono, Schubert polynomials for the affine Grassmannian of the symplectic group. Math. Z. 264, 765–811 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  13. T. Lam, M. Shimozono, k-double Schur functions and equivariant (co)homology of the affine Grassmannian. Math. Ann. 356(4), 1379–1404 (2013)

    Google Scholar 

  14. T. Lam, M. Shimozono, Quantum cohomology of GP and homology of affine Grassmannian. Acta Math. 204, 49–90 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  15. L. Lapointe, A. Lascoux, J. Morse, Tableau atoms and a new Macdonald positivity conjecture. Duke Math. J. 116(1), 103–146 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. L. Lapointe, J. Morse, A k-tableau characterization of k-Schur functions. Adv. Math. 213(1), 183–204 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. L. Lapointe, J. Morse, Quantum cohomology and the k-Schur basis. Trans. Am. Math. Soc. 360, 2021–2040 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. L. Lapointe, J. Morse, Schur function analogs for a filtration of the symmetric function space. J. Comb. Theory Ser. A 101(2), 191–224 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. L. Lapointe, J. Morse, Schur function identities, their t-analogs, and k-Schur irreducibility. Adv. Math. 180(1), 222–247 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  20. L. Lapointe, J. Morse, Tableaux on k + 1-cores, reduced words for affine permutations, and k-Schur expansions. J. Comb. Theory Ser. A 112(1), 44–81 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. C. Lenart, A. Postnikov, Affine Weyl groups in K-theory and representation theory. Int. Math. Res. Not. 12, Art. ID rnm038, 65 (2007)

    Google Scholar 

  22. D.E. Littlewood, A.R. Richardson, Group characters and algebra. Philos. Trans. R. Soc. A (Lond.) 233, 99–141 (1934)

    Article  Google Scholar 

  23. T. Nakashima, Crystal base and a generalization of the Littlewood-Richardson rule for the classical Lie algebras. Commun. Math. Phys. 154(2), 215–243 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  24. D. Peterson, Quantum cohomology of G/P. Lecture Notes (MIT, 1997)

    Google Scholar 

  25. S. Pon, Affine Stanley symmetric functions for classical types. J. Algebr. Comb. 36(4), 595–622 (2012). And Ph.D thesis, UC Davis, 2010

    Google Scholar 

  26. D. Quillen, unpublished

    Google Scholar 

  27. S.N.M. Ruijsenaars, Complete integrability of the relativistic Calogero-Moser system and elliptic function identities. Commun. Math. Phys. 110, 191–213 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  28. B. Sagan, The Symmetric Group. Graduate Texts in Mathematics, vol. 203 (Springer, New York, 2001). ISBN:0387950672

    Google Scholar 

  29. The Sage-Combinat community, Sage-Combinat: enhancing Sage as a toolbox for computer exploration in algebraic combinatorics (2008). http://combinat.sagemath.org

  30. H. Schubert, Kalkül der abzählenden Geometrie (German) (Calculus of enumerative geometry). Reprint of the 1879 original. With an introduction by Steven L. Kleiman (Springer, Berlin/New York, 1979), p. 349. ISBN:3-540-09233-1 01A75

    Google Scholar 

  31. R. Stanley, On the number of reduced decompositions of elements of Coxeter groups. Eur. J. Comb. 5, 359–372 (1984)

    Article  MATH  Google Scholar 

  32. W.A. Stein et al., Sage mathematics software (Version 5.4). The Sage Development Team, 2012. http://www.sagemath.org

Download references

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No. DMS-0652641. “Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.” We are grateful to the Fields Institute in Toronto for helping organize and support the summer school and workshop on “Affine Schubert calculus”.

We would like to thank Tom Denton and Karola Mészáros for helpful comments and additions on Chap. 2, and Jason Bandlow, Chris Berg, Nicolas M. Thiéry as well as many other Sage developers for their help with the Sage implementations.

Author information

Authors and Affiliations

Authors

Appendix: Sage

Appendix: Sage

Sage [151] is a completely open source general purpose mathematical software system, which appeared under the leadership of William Stein (University of Washington) and has developed explosively within the last 5 years. It is similar to Maple, MuPAD, Mathematica, Magma, and up to some point Matlab, and is based on the popular Python programming language. Sage has gained strong momentum in the mathematics community far beyond its initial focus in number theory, in particular in the field of combinatorics, see [140].

Tutorials and instructions on how to install Sage can be found at the main Sage website http://www.sagemath.org/. For example, for the basic Sage syntax and programming tricks see http://www.sagemath.org/doc/tutorial/programming.html.

Many aspects related to k-Schur functions and symmetric functions in general have been implemented in Sage and in fact are still being developed as an on-going project. Throughout the text we provide many examples on how to use Sage to do calculations related to k-Schur functions. Further information about the latest code and developments can be obtained from the Sage-Combinat website [140]. We suggest that the interested reader uses Sage version 5.13 or later to ensure that all features used in this book have been incorporated.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lam, T., Lapointe, L., Morse, J., Schilling, A., Shimozono, M., Zabrocki, M. (2014). Introduction. In: k-Schur Functions and Affine Schubert Calculus. Fields Institute Monographs, vol 33. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0682-6_1

Download citation

Publish with us

Policies and ethics