Skip to main content

Abstract

The production cost of biofuels is one of the key determinants of the commercial viability of biofuels and its social costs of promoting through fiscal stimuli and regulations. Estimates of production costs for different types of biofuels vary widely and are evolving over time (see Fig. 3.1). The sources of variability depend on the category/feedstock/production technology. The costs of first generation biofuels, whose production technologies are matured with commercial production, are influenced mostly by costs of feedstock. In the case of corn-based ethanol, for example, feedstock accounts for about 70 % of the total production costs. For biodiesel, the share of feedstock in total costs of production is even higher, reaching 85–90 %. The recent price volatility in agricultural commodities further contributed to the higher costs of biofuels. In the case of second generation biofuels, much less is known in terms of both process technologies and costs, as there is little experience on commercial production. The available costs are ex-ante estimates with assumptions changing in each estimate (Klein-Marcuschamer et al. 2012). Also, technology pathways for converting cellulosic biomass into biofuels are associated with technical and cost uncertainties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrews, S. S. (2006). Crop residue removal for biomass energy production: Effects on soils and recommendations (White Paper). USDA-Natural Resource Conservation Service. Retrieved from http://soils.usda.gov/sqi/management/files/agforum_residue_white_paper.pdf

  • Aravindhakshan, S., Epplin, F., & Taliaferro, C. (2010). Economics of switchgrass and miscanthus relative to coal as feedstock for generating electricity. Biomass and Bioenergy, 34, 1375–1383.

    Article  Google Scholar 

  • Babcock, B. A., Gassman, P. H., Jha, M. J., & Kling, C. L. (2007). Adoption subsidies and environmental impacts of alternative energy crops (CARD Briefing Paper 07-BP-50). Ames, IA: Center for Agricultural and Rural Development, Iowa State University.

    Google Scholar 

  • Blanco-Canqui, H., & Lal, R. (2009). Crop residue removal impacts on soil productivity and environmental quality. Critical Reviews in Plant Sciences, 28(3), 139–163.

    Article  Google Scholar 

  • Brown, T. R., & Brown, R. C. (2013). A review of cellulosic biofuel commercial-scale projects in the United States. Biofuels, Bioproducts & Biorefining. doi:10.1002/bbb.1387.

    Google Scholar 

  • Brown, T. R., Thilakaratne, R., Brown, R. C., & Hu, G. (2013). Techno-economic analysis of biomass to transportation fuels and electricity via fast pyrolysis and hydroprocessing. Fuels, 106, 463–469.

    Article  Google Scholar 

  • Carriquiry, M. A., Du, X., & Timilsina, G. R. (2011). Second-generation biofuels: Economics and policies. Energy Policy, 39(7), 4222–4234.

    Article  Google Scholar 

  • Chen, X., & Khanna, M. (2012). Explaining the reductions in US corn ethanol processing costs: Testing competing hypothesis. Energy Policy, 44, 153–159.

    Article  Google Scholar 

  • Cheng, J. J., & Timilsina, G. R. (2011). Status and barriers of advanced biofuel technologies: A review. Renewable Energy, 36(12), 3541–3549.

    Article  Google Scholar 

  • Crago, C. L., Khanna, M., Barton, J., Giuliani, E., & Amaral, W. (2010). Competitiveness of Brazilian sugarcane ethanol compared to US corn ethanol. Energy Policy, 38, 7404–7415.

    Article  Google Scholar 

  • Departe, A. (2010). Etude prospective sur la seconde generation de biocarburants, 2010/03. Paris, France: DG Tresor. 2010.

    Google Scholar 

  • Deutsche Energie-Agentur, G. H. (2006). Biomass to liquid—BtL implementation report summary (p. 18). Cologne, Germany: DENA.

    Google Scholar 

  • Doornbosch, R., & Steenblik, R. (2007). Biofuels: Is the cure worse than the disease? Roundtable of Sustainable Development, OECD, Paris, France. Retrieved from http://www.oecd.org/sd-roundtable/39411732.pdf

  • Duffy, M. (2007). Estimated costs for production, storage, and transportation of switchgrass. Ames, IA: Iowa State University, University Extension. Retrieved July 2009 from http://www.econ.iastate.edu/research/webpapers/paper_12917.pdf

  • ECN. (2006). H. Boerrigter, economy of biomass-to-liquids (BTL) plants—An engineering assessment, ECN-C-06-019, ECN.

    Google Scholar 

  • Epplin, F., Clark, C. D., Roberts, R. K., & Hwang, S. (2007). Challenges to the development of a dedicated energy crop. American Journal of Agricultural Economics, 89, 1296–1302.

    Article  Google Scholar 

  • Festel, G. (2007). Biofuels—Which one is the most economic one? (p. 23) Scientific Forum at ILMAC, Basel.

    Google Scholar 

  • Frederick, W. J., Lien, S. J., Courchene, C. E., DeMartini, N. A., Ragauskas, A. J., & Iisa, K. (2008). Co-production of ethanol and cellulose fiber from southern pine: A technical and economic assessment. Biomass and Bioenergy, 32, 1293–1302.

    Article  Google Scholar 

  • Gallagher, P., Dikeman, M., Fritz, J., Wailes, E., Gauther, W., & Shapouri, H. (2003). Biomass from crop residues: Cost and supply estimates. USDA Agricultural Economic Report, 819.

    Google Scholar 

  • Gonzalez, R., Daystar, J., Jett, M., Treasure, T., Jameel, H., Venditti, R., et al. (2012). Economics of cellulosic ethanol production in a thermochemical pathway for softwood, hardwood, corn stover and switchgrass. Fuel Processing Technology, 94, 113–122.

    Article  Google Scholar 

  • Haarlemner, G., Boissonnet, G., Imbach, J., Setier, P. A., & Peduzzi, E. (2012). Second generation BtL type biofuels—A production cost analysis. Energy and Environmental Sciences, 5, 8445–8456.

    Article  Google Scholar 

  • Hallam, A., Anderson, I. C., & Buxton, D. R. (2001). Comparative economic analysis of perennial, annual, and intercrops for biomass production. Biomass and Bioenergy, 21, 407–424.

    Article  Google Scholar 

  • Hamelinck, C. N. (2004). Outlook for advanced biofuels. Utrecht, The Netherlands: University of Utrecht. 2004.

    Google Scholar 

  • Haque, M., & Epplin, F. (2010, July 25–27). Switchgrass to ethanol: A field to fuel approach. Paper Presented at 2010 AAEA Annual Meeting, Denver, CO.

    Google Scholar 

  • Haque, M., & Epplin, F. M. (2012). Cost to produce switchgrass and cost to produce ethanol from switchgrass for several levels of biorefinery investment cost and biomass to ethanol conversion rates. Biomass and Bioenergy, 46, 517–530.

    Article  Google Scholar 

  • Hettinga, W. G., Junginger, H. M., Dekker, S. C., Hoogwijk, M., McAloon, A. J., & Hicks, K. B. (2009). Understanding the reductions in US corn ethanol production costs: An experience curve approach. Energy Policy, 37, 190–203.

    Article  Google Scholar 

  • HLPE. (2013). Biofuels and food security. A report by the high level panel of experts on food security and nutrition of the committee on world food security, Rome.

    Google Scholar 

  • Hohwiller, C. (2011). La production de carburants liquids par thermoconversion de biomasse lignocelluloqique: Evaluation pour le systeme energetique francais future. Paris, France: ParisTech.

    Google Scholar 

  • Junginger, M., Faaij, A., Bjorheden, R., & Turkenburg, W. C. (2005). Technological learning and cost reductions in the wood fuel supply chains in Sweden. Biomass and Bioenergy, 29(6), 399–418.

    Article  Google Scholar 

  • Kazi, F. K., Fortman, J. A., Anex, R. P., Hsu, D. D., Aden, A., & Dutta, A. (2010). Techno-economic comparison of process technologies for biochemical ethanol production from corn stover. Fuel, 89(1), S20–S28.

    Article  Google Scholar 

  • Keshwani, D., & Cheng, J. (2009). Switchgrass for bioethanol and other value-added applications: A review. Bioresource Technology, 100, 1515–1523.

    Article  Google Scholar 

  • Klein-Marcuschamer, D., Oleskowicz-Popiel, P., Simmons, B. A., & Blanch, H. W. (2012). The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnology and Bioengineering, 4, 1083–1087.

    Article  Google Scholar 

  • Liu, G., Larson, E. D., Williams, R. H., Kreutz, T. G., & Guo, X. (2011). Making Fischer–Tropsch fuels and electricity from coal and biomass: Performance and cost analysis. Energy & Fuels, 25, 415–437.

    Article  Google Scholar 

  • Mabberley, D. J. (1997). The plant book (2nd ed.). Cambridge, England: Cambridge University Press.

    Google Scholar 

  • Manzone, M., Airold, G., & Balsari, P. (2009). Energetic and economic evaluation of a poplar cultivation for the biomass production in Italy. Biomass & Bioenergy, 33, 1258–1264.

    Article  Google Scholar 

  • Mapemba, L., Eppin, F. M., Taliaferro, C. M., & Huhnke, R. L. (2007). Biorefinery feedstock production on conservation reserve program land. Review of Agricultural Economics, 29, 227–246.

    Article  Google Scholar 

  • McAloon, A., Taylor, F., Yee, W., Ibsen, K., & Wooley, R. (2000). Determining the cost of producing ethanol from corn starch and lignocellulosic feedstocks. NERL Technical Report, 580–28893.

    Google Scholar 

  • McKeough, P., & Kurkela, E. (2008). Process evaluations and design studies in the UCG project 2004-2007. Research notes 2434 (p. 49). Espoo, Finland: VTT Tiedotteita.

    Google Scholar 

  • National Renewable Energy Laboratory (NREL). (1998, September). Lignocellulosic feedstock resource assessment. TP-580-24189

    Google Scholar 

  • Nesbit, T. S., Alavalapati, J. R., Dwivedi, P., & Marinescu, M. V. (2011). Economics of ethanol production using feedstock from slash pine (Pinus elliottii) plantations in the southern United States. Southern Journal of Applied Forestry, 35(2), 61–66.

    Google Scholar 

  • Oak Ridge National Laboratory (ORNL). (2008). Exploring potential US switchgrass production for lignocellulosic ethanol. ORDL/TM-2007/183.

    Google Scholar 

  • Perlack, R., Wright, L., Turhollow, A., Graham, R., Stokes, B., & D. Erbach. (2005, April). Biomass as feedstock for a bioenergy and bioproducts industry: The technical feasibility of a billion-ton annual supply. Department of Energy/GO-102005-2135.

    Google Scholar 

  • Perrin, R. K., Vogel, M. S., & Mitchell, R. (2008). Farm-scale production cost of switchgrass for biomass. Bioenergy Resources, 1, 91–97.

    Article  Google Scholar 

  • Petrolia, D. R. (2006, July 23–26). Ethanol from biomass: Economic and environmental potential of converting corn stover and hardwood forest residue in Minnesota. Paper presented at the American Agricultural Economic Association Annual Meeting, Long Beach, CA.

    Google Scholar 

  • Petrolia, D. R. (2008). The economics of harvesting and transporting corn stover for conversion to fuel ethanol: A case study for Minnesota. Biomass and Bioenergy, 32, 603–612.

    Article  Google Scholar 

  • Pimentel, D., & Patzek, T. W. (2005). Ethanol production using corn, switchgrass, and wood; biodiesel production using soybean and sunflower. Natural Resources Research, 14, 65–76.

    Article  Google Scholar 

  • RENEW; Vogel, A., Brauer, S., Muller-Langer, F., & Thran D. (2006). RENEW project—Conversion cost calculation deliverable D5.3.7. Renewable fuels for advanced powertrains, SES6-CT-2003-502705, Institute for Energy and Environment, Leipzig, Germany.

    Google Scholar 

  • Sassner, P., Galbe, M., & Zacchi, G. (2008). Techno-economic evaluation of bioethanol production from three different lignocellulosic materials. Biomass and Bioenergy, 32(2008), 422–430.

    Article  Google Scholar 

  • Searchinger, T., Heimlich, R., Houghton, R., Dong, F., Elobeid, A., Fabiosa, J., et al. (2008). Use of US croplands for biofuels increases greenhouse gases through emissions from land use change. Science, 319(5867), 1157–1268.

    Article  Google Scholar 

  • Solomon, B., Barnes, J., & Halvorsen, K. (2007). Grain and cellulosic ethanol: History, economics, and energy policy. Biomass and Bioenergy, 31, 416–425.

    Article  Google Scholar 

  • Stephen, J. D., Mabee, W. E., & Saddler, J. N. (2012). Will second-generation ethanol be able to compete with first-generation ethanol? Opportunities for cost reduction. Biofuels, Bioproducts and Biorefining, 6, 159–176.

    Article  Google Scholar 

  • Sues, A. (2011). Are European bioenergy targets achievable? Eindhoven, The Netherlands: Eindhoven University of Technology.

    Google Scholar 

  • Swanson, R. M. A., Platon, A., Satrio, J. A., & Brown, R. C. (2010). Technoeconomic analysis of biomass-to-liquids production based on gasification. Fuel, 89, S11–S19.

    Article  Google Scholar 

  • Tijmensen, M. J. A., Faaij, A. P. C., Hamelinck, C. N., & Hardeveld, M. R. M. (2002). Exploration of the possibilities of Fischer–Tropsch liquids and power via biomass gasification. Biomass and Bioenergy, 23, 129–152.

    Article  Google Scholar 

  • Tock, L., Gassner, M., & Marechal, F. (2010). Thermochemical production of liquid fuels from biomass: Thermo-economic modelling, process design and process integration analysis. Biomass and Bioenergy, 34, 1838–1854.

    Article  Google Scholar 

  • Tokgoz, S., Elobeid, A., Fabiosa, J., Hayes, D. J., Babcock, B. A., Yu, T., et al. (2007). Emerging biofuels: Outlook of the effects on US grain, oilseeds, and livestock markets Staff Report 07-SR-101. Ames, IA: Center for Agricultural and Rural Development, Iowa State University.

    Google Scholar 

  • Vadas, P. A., Barnett, K. H., & Undersander, D. J. (2008). Economics and energy of ethanol production from alfalfa, corn, and switchgrass in the Upper Midwest, USA. Bioenergy Resources, 1, 44–55.

    Article  Google Scholar 

  • van den Wall Bake, J. D., Junginger, M., Faaij, A., Poot, T., & Walter, A. (2009). Explaining the experience curve: Cost reductions of Brazilian ethanol from sugarcane. Biomass and Bioenergy, 33, 644–658.

    Article  Google Scholar 

  • van Vliet, O. P. R., Faaij, A. P. C., & Turkenburg, W. C. (2009). Fischer–Tropsch diesel production in a well-to-wheel perspective: A carbon, energy flow and cost analysis. Energy Conversion and Management, 50, 855–876.

    Article  Google Scholar 

  • World Watch Institute (WWI). (2007). Biofuels for transport: Global potential and implications for sustainable energy and agriculture. Sterling, VA: Earthscan.

    Google Scholar 

  • Wright, M. M., Daugaard, D. E., Satrio, J. A., & Brown, R. C. (2010). Techno-economic analysis of biomass fast pyrolysis to transportation fuels. Fuel, 89(1), S2–S10.

    Article  Google Scholar 

  • Yusuf, N., Kamarudin, S. K., & Yaakub, Z. (2011). Overview on the current trends in biodiesel production. Energy Conversion and Management, 52, 2741–2751.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Govinda R. Timilsina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Carriquiry, M.A., Du, X., Timilsina, G.R. (2014). Production Costs of Biofuels. In: Timilsina, G., Zilberman, D. (eds) The Impacts of Biofuels on the Economy, Environment, and Poverty. Natural Resource Management and Policy, vol 41. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0518-8_3

Download citation

Publish with us

Policies and ethics