Skip to main content

Transcriptional Regulation of Dendritic Cells in the Tumor Microenvironment

  • Chapter
  • First Online:
  • 1455 Accesses

Abstract

Dendritic cells (DCs) play a critical role in the initiation of adaptive T cell-mediated, immune responses. In addition, they also respond to inflammatory signals as part of the innate immune response. DCs that infiltrate tumors are usually defective in their ability to elicit both adaptive and innate immune responses and often promote immune suppression. This suppressive activity is mediated by many different mechanisms and may be due to the varied transcriptional profile of these cells. This chapter discusses the different transcription factors that may contribute to the immunosuppressive function of tumor-associated DCs. Past and current studies reveal a complex and diverse network of transcription factors contributing to the inhibitory activity of tumor DCs. By understanding these regulatory pathways, novel targets for improving immunity to cancer may be identified.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Helft J, Ginhoux F, Bogunovic M, Merad M (2010) Origin and functional heterogeneity of non-lymphoid tissue dendritic cells in mice. Immunol Rev 234(1):55–75. doi:10.1111/j.0105–2896.2009.00885.x

    CAS  PubMed  Google Scholar 

  2. Bachem A, Guttler S, Hartung E, Ebstein F, Schaefer M, Tannert A, Salama A, Movassaghi K, Opitz C, Mages HW, Henn V, Kloetzel PM, Gurka S, Kroczek RA (2010) Superior antigen cross-presentation and XCR1 expression define human CD11c + CD141 + cells as homologues of mouse CD8 + dendritic cells. J Exp Med 207(6):1273–1281. doi:10.1084/jem.20100348

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Crozat K, Guiton R, Contreras V, Feuillet V, Dutertre CA, Ventre E, Vu Manh TP, Baranek T, Storset AK, Marvel J, Boudinot P, Hosmalin A, Schwartz-Cornil I, Dalod M (2010) The XC chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8alpha + dendritic cells. J Exp Med 207(6):1283–1292. doi:10.1084/jem.20100223

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Jongbloed SL, Kassianos AJ, McDonald KJ, Clark GJ, Ju X, Angel CE, Chen CJ, Dunbar PR, Wadley RB, Jeet V, Vulink AJ, Hart DN, Radford KJ (2010) Human CD141 + (BDCA-3) + dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens. J Exp Med 207(6):1247–1260. doi:10.1084/jem.20092140

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Poulin LF, Salio M, Griessinger E, Anjos-Afonso F, Craciun L, Chen JL, Keller AM, Joffre O, Zelenay S, Nye E, Le Moine A, Faure F, Donckier V, Sancho D, Cerundolo V, Bonnet D, Reis e Sousa C (2010) Characterization of human DNGR-1 + BDCA3 + leukocytes as putative equivalents of mouse CD8alpha + dendritic cells. J Exp Med 207(6):1261–1271. doi:10.1084/jem.20092618

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Greter M, Lelios I, Pelczar P, Hoeffel G, Price J, Leboeuf M, Kundig TM, Frei K, Ginhoux F, Merad M, Becher B (2012) Stroma-derived interleukin-34 controls the development and maintenance of Langerhans cells and the maintenance of microglia. Immunity 37(6):1050–1060. doi:10.1016/j.immuni.2012.11.001

    CAS  PubMed  Google Scholar 

  7. Liu YJ (2005) IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu Rev Immunol 23:275–306. doi:10.1146/annurev.immunol.23.021704.115633

    CAS  PubMed  Google Scholar 

  8. Fogg DK, Sibon C, Miled C, Jung S, Aucouturier P, Littman DR, Cumano A, Geissmann F (2006) A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science 311(5757):83–87. doi:10.1126/science.1117729

    CAS  PubMed  Google Scholar 

  9. Merad M, Ginhoux F, Collin M (2008) Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells. Nat Rev Immunol 8(12):935–947. doi:10.1038/nri2455

    CAS  PubMed  Google Scholar 

  10. Tamura T, Tailor P, Yamaoka K, Kong HJ, Tsujimura H, O’Shea JJ, Singh H, Ozato K (2005) IFN regulatory factor-4 and -8 govern dendritic cell subset development and their functional diversity. J Immunol 174(5):2573–2581

    CAS  PubMed  Google Scholar 

  11. Carotta S, Dakic A, D’Amico A, Pang SH, Greig KT, Nutt SL, Wu L (2010) The transcription factor PU.1 controls dendritic cell development and Flt3 cytokine receptor expression in a dose-dependent manner. Immunity 32(5):628–641. doi:10.1016/j.immuni.2010.05.005

    CAS  PubMed  Google Scholar 

  12. Hildner K, Edelson BT, Purtha WE, Diamond M, Matsushita H, Kohyama M, Calderon B, Schraml BU, Unanue ER, Diamond MS, Schreiber RD, Murphy TL, Murphy KM (2008) Batf3 deficiency reveals a critical role for CD8alpha + dendritic cells in cytotoxic T cell immunity. Science 322(5904):1097–1100. doi:10.1126/science.1164206

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Ginhoux F, Liu K, Helft J, Bogunovic M, Greter M, Hashimoto D, Price J, Yin N, Bromberg J, Lira SA, Stanley ER, Nussenzweig M, Merad M (2009) The origin and development of nonlymphoid tissue CD103 + DCs. J Exp Med 206(13):3115–3130. doi:10.1084/jem.20091756

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Jackson JT, Hu Y, Liu R, Masson F, D’Amico A, Carotta S, Xin A, Camilleri MJ, Mount AM, Kallies A, Wu L, Smyth GK, Nutt SL, Belz GT (2011) Id2 expression delineates differential checkpoints in the genetic program of CD8alpha + and CD103 + dendritic cell lineages. Embo J 30(13):2690–2704. doi:10.1038/emboj.2011.163

    CAS  PubMed  Google Scholar 

  15. Suzuki S, Honma K, Matsuyama T, Suzuki K, Toriyama K, Akitoyo I, Yamamoto K, Suematsu T, Nakamura M, Yui K, Kumatori A (2004) Critical roles of interferon regulatory factor 4 in CD11bhighCD8alpha- dendritic cell development. Proc Nat Acad Sci U S A 101(24):8981–8986. doi:10.1073/pnas.0402139101

    CAS  Google Scholar 

  16. Hacker C, Kirsch RD, Ju XS, Hieronymus T, Gust TC, Kuhl C, Jorgas T, Kurz SM, Rose-John S, Yokota Y, Zenke M (2003) Transcriptional profiling identifies Id2 function in dendritic cell development. Nat Immunol 4(4):380–386. doi:10.1038/ni903

    CAS  PubMed  Google Scholar 

  17. Edelson BT, Kc W, Juang R, Kohyama M, Benoit LA, Klekotka PA, Moon C, Albring JC, Ise W, Michael DG, Bhattacharya D, Stappenbeck TS, Holtzman MJ, Sung SS, Murphy TL, Hildner K, Murphy KM (2010) Peripheral CD103 + dendritic cells form a unified subset developmentally related to CD8alpha + conventional dendritic cells. J Exp Med 207(4):823–836. doi:10.1084/jem.20091627

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Schotte R, Nagasawa M, Weijer K, Spits H, Blom B (2004) The ETS transcription factor Spi-B is required for human plasmacytoid dendritic cell development. J Exp Med 200(11):1503–1509. doi:10.1084/jem.20041231

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Cisse B, Caton ML, Lehner M, Maeda T, Scheu S, Locksley R, Holmberg D, Zweier C, den Hollander NS, Kant SG, Holter W, Rauch A, Zhuang Y, Reizis B (2008) Transcription factor E2-2 is an essential and specific regulator of plasmacytoid dendritic cell development. Cell 135(1):37–48. doi:10.1016/j.cell.2008.09.016

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Ghosh HS, Cisse B, Bunin A, Lewis KL, Reizis B (2010) Continuous expression of the transcription factor e2-2 maintains the cell fate of mature plasmacytoid dendritic cells. Immunity 33(6):905–916. doi:10.1016/j.immuni.2010.11.023

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Brockschmidt A, Todt U, Ryu S, Hoischen A, Landwehr C, Birnbaum S, Frenck W, Radlwimmer B, Lichter P, Engels H, Driever W, Kubisch C, Weber RG (2007) Severe mental retardation with breathing abnormalities (Pitt–Hopkins syndrome) is caused by haploinsufficiency of the neuronal bHLH transcription factor TCF4. Hum Mol Genet 16(12):1488–1494. doi:10.1093/hmg/ddm099

    CAS  PubMed  Google Scholar 

  22. Zweier C, Peippo MM, Hoyer J, Sousa S, Bottani A, Clayton-Smith J, Reardon W, Saraiva J, Cabral A, Gohring I, Devriendt K, de Ravel T, Bijlsma EK, Hennekam RC, Orrico A, Cohen M, Dreweke A, Reis A, Nurnberg P, Rauch A (2007) Haploinsufficiency of TCF4 causes syndromal mental retardation with intermittent hyperventilation (Pitt–Hopkins syndrome). Am J Hum Genet 80(5):994–1001. doi:10.1086/515583

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Amiel J, Rio M, de Pontual L, Redon R, Malan V, Boddaert N, Plouin P, Carter NP, Lyonnet S, Munnich A, Colleaux L (2007) Mutations in TCF4, encoding a class I basic helix-loop-helix transcription factor, are responsible for Pitt–Hopkins syndrome, a severe epileptic encephalopathy associated with autonomic dysfunction. Am J Hum Genet 80(5):988–993. doi:10.1086/515582

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Ladanyi A, Kiss J, Somlai B, Gilde K, Fejos Z, Mohos A, Gaudi I, Timar J (2007) Density of DC-LAMP(+) mature dendritic cells in combination with activated T lymphocytes infiltrating primary cutaneous melanoma is a strong independent prognostic factor. Cancer Immunol Immunother 56(9):1459–1469. doi:10.1007/s00262-007-0286-3

    PubMed  Google Scholar 

  25. Treilleux I, Blay JY, Bendriss-Vermare N, Ray-Coquard I, Bachelot T, Guastalla JP, Bremond A, Goddard S, Pin JJ, Barthelemy-Dubois C, Lebecque S (2004) Dendritic cell infiltration and prognosis of early stage breast cancer. Clin Cancer Res 10(22):7466–7474. doi:10.1158/1078-0432.CCR-04-0684

    CAS  PubMed  Google Scholar 

  26. Munn DH, Mellor AL (2007) Indoleamine 2,3-dioxygenase and tumor-induced tolerance. J Clin Invest 117(5):1147–1154. doi:10.1172/JCI31178

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Munn DH, Sharma MD, Hou D, Baban B, Lee JR, Antonia SJ, Messina JL, Chandler P, Koni PA, Mellor AL (2004) Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. J Clin Invest 114(2):280–290. doi:10.1172/JCI21583

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Norian LA, Rodriguez PC, O’Mara LA, Zabaleta J, Ochoa AC, Cella M, Allen PM (2009) Tumor-infiltrating regulatory dendritic cells inhibit CD8 + T cell function via L-arginine metabolism. Cancer Res 69(7):3086–3094. doi:10.1158/0008-5472.CAN-08-2826

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Zou W (2005) Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 5(4):263–274. doi:10.1038/nrc1586

    CAS  PubMed  Google Scholar 

  30. Goldberg MV, Drake CG (2011) LAG-3 in Cancer Immunotherapy. Curr Top Microbiol Immunol 344:269–278. doi:10.1007/82_2010_114

    CAS  PubMed  Google Scholar 

  31. Woo SR, Turnis ME, Goldberg MV, Bankoti J, Selby M, Nirschl CJ, Bettini ML, Gravano DM, Vogel P, Liu CL, Tangsombatvisit S, Grosso JF, Netto G, Smeltzer MP, Chaux A, Utz PJ, Workman CJ, Pardoll DM, Korman AJ, Drake CG, Vignali DA (2012) Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T cell function to promote tumoral immune escape. Cancer Res 72(4):917–927. doi:10.1158/0008-5472.CAN-11-1620

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Anderson AC (2012) Tim-3, a negative regulator of anti-tumor immunity. Curr Opin Immunol 24(2):213–216. doi:10.1016/j.coi.2011.12.005

    CAS  PubMed  Google Scholar 

  33. Ghosh S, May MJ, Kopp EB (1998) NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol 16:225–260. doi:10.1146/annurev.immunol.16.1.225

    CAS  PubMed  Google Scholar 

  34. Burkly L, Hession C, Ogata L, Reilly C, Marconi LA, Olson D, Tizard R, Cate R, Lo D (1995) Expression of relB is required for the development of thymic medulla and dendritic cells. Nature 373(6514):531–536. doi:10.1038/373531a0

    CAS  PubMed  Google Scholar 

  35. Rescigno M, Martino M, Sutherland CL, Gold MR, Ricciardi-Castagnoli P (1998) Dendritic cell survival and maturation are regulated by different signaling pathways. J Exp Med 188(11):2175–2180

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Yoshimura S, Bondeson J, Foxwell BM, Brennan FM, Feldmann M (2001) Effective antigen presentation by dendritic cells is NF-kappaB dependent: coordinate regulation of MHC, co-stimulatory molecules and cytokines. Int Immunol 13(5):675–683

    CAS  PubMed  Google Scholar 

  37. Labeur MS, Roters B, Pers B, Mehling A, Luger TA, Schwarz T, Grabbe S (1999) Generation of tumor immunity by bone marrow-derived dendritic cells correlates with dendritic cell maturation stage. J Immunol 162(1):168–175

    CAS  PubMed  Google Scholar 

  38. Lee JM, Mahtabifard A, Yamada R, Crystal RG, Korst RJ (2002) Adenovirus vector-mediated overexpression of a truncated form of the p65 nuclear factor kappa B cDNA in dendritic cells enhances their function resulting in immune-mediated suppression of preexisting murine tumors. Clin Cancer Res 8(11):3561–3569

    CAS  PubMed  Google Scholar 

  39. Gabrilovich D (2004) Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nature Rev Immunol 4(12):941–952. doi:10.1038/nri1498

    CAS  Google Scholar 

  40. Gabrilovich DI, Chen HL, Girgis KR, Cunningham HT, Meny GM, Nadaf S, Kavanaugh D, Carbone DP (1996) Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nature Med 2(10):1096–1103

    CAS  PubMed  Google Scholar 

  41. Oyama T, Ran S, Ishida T, Nadaf S, Kerr L, Carbone DP, Gabrilovich DI (1998) Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-kappa B activation in hemopoietic progenitor cells. J Immunol 160(3):1224–1232

    CAS  PubMed  Google Scholar 

  42. Yang DH, Park JS, Jin CJ, Kang HK, Nam JH, Rhee JH, Kim YK, Chung SY, Choi SJ, Kim HJ, Chung IJ, Lee JJ (2009) The dysfunction and abnormal signaling pathway of dendritic cells loaded by tumor antigen can be overcome by neutralizing VEGF in multiple myeloma. Leukemia Res 33(5):665–670. doi:10.1016/j.leukres.2008.09.006

    CAS  Google Scholar 

  43. Yu H, Kortylewski M, Pardoll D (2007) Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nature Rev Immunol 7(1):41–51. doi:10.1038/nri1995

    CAS  Google Scholar 

  44. Yu Z, Zhang W, Kone BC (2002) Signal transducers and activators of transcription 3 (STAT3) inhibits transcription of the inducible nitric oxide synthase gene by interacting with nuclear factor kappaB. Biochem J 367(Pt 1):97–105. doi:10.1042/BJ20020588

    Google Scholar 

  45. Hoentjen F, Sartor RB, Ozaki M, Jobin C (2005) STAT3 regulates NF-kappaB recruitment to the IL-12p40 promoter in dendritic cells. Blood 105(2):689–696. doi:10.1182/blood-2004-04-1309

    CAS  PubMed  Google Scholar 

  46. Park SJ, Nakagawa T, Kitamura H, Atsumi T, Kamon H, Sawa S, Kamimura D, Ueda N, Iwakura Y, Ishihara K, Murakami M, Hirano T (2004) IL-6 regulates in vivo dendritic cell differentiation through STAT3 activation. J Immunol 173(6):3844–3854

    CAS  PubMed  Google Scholar 

  47. Wang L, Walia B, Evans J, Gewirtz AT, Merlin D, Sitaraman SV (2003) IL-6 induces NF-kappa B activation in the intestinal epithelia. J Immunol 171(6):3194–3201

    CAS  PubMed  Google Scholar 

  48. Larmonier N, Marron M, Zeng Y, Cantrell J, Romanoski A, Sepassi M, Thompson S, Chen X, Andreansky S, Katsanis E (2007) Tumor-derived CD4(+)CD25(+) regulatory T cell suppression of dendritic cell function involves TGF-beta and IL-10. Cancer Immunol Immun 56(1):48–59. doi:10.1007/s00262-006-0160-8

    CAS  Google Scholar 

  49. Karin M (2009) NF-kappaB as a critical link between inflammation and cancer. Cold Spring Harbor Perspect Biol 1(5):a000141. doi:10.1101/cshperspect.a000141

    Google Scholar 

  50. Grivennikov S, Karin E, Terzic J, Mucida D, Yu GY, Vallabhapurapu S, Scheller J, Rose-John S, Cheroutre H, Eckmann L, Karin M (2009) IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell 15(2):103–113. doi:10.1016/j.ccr.2009.01.001

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Darnell JE, Jr. (1997) STATs and gene regulation. Science 277(5332):1630–1635

    CAS  PubMed  Google Scholar 

  52. Mui AL (1999) The role of STATs in proliferation, differentiation, and apoptosis. Cell Mol Life Sci 55(12):1547–1558

    CAS  PubMed  Google Scholar 

  53. Onai N, Obata-Onai A, Tussiwand R, Lanzavecchia A, Manz MG (2006) Activation of the Flt3 signal transduction cascade rescues and enhances type I interferon-producing and dendritic cell development. J Exp Med 203(1):227–238. doi:10.1084/jem.20051645

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Esashi E, Wang YH, Perng O, Qin XF, Liu YJ, Watowich SS (2008) The signal transducer STAT5 inhibits plasmacytoid dendritic cell development by suppressing transcription factor IRF8. Immunity 28(4):509–520. doi:10.1016/j.immuni.2008.02.013

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Cheng P, Zhou J, Gabrilovich D (2010) Regulation of dendritic cell differentiation and function by Notch and Wnt pathways. Immunol Rev 234(1):105–119. doi:10.1111/j.0105-2896.2009.00871.x

    CAS  PubMed  Google Scholar 

  56. Brayer J, Cheng F, Wang H, Horna P, Vicente-Suarez I, Pinilla-Ibarz J, Sotomayor EM (2010) Enhanced CD8 T cell cross-presentation by macrophages with targeted disruption of STAT3. Immunol Lett 131(2):126–130. doi:10.1016/j.imlet.2010.03.004

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Liu WH, Liu JJ, Wu J, Zhang LL, Liu F, Yin L, Zhang MM, Yu B (2013) Novel mechanism of inhibition of dendritic cells maturation by mesenchymal stem cells via interleukin-10 and the JAK1/STAT3 signaling pathway. PloS One 8(1):e55487. doi:10.1371/journal.pone.0055487

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Ihle JN, Kerr IM (1995) Jaks and Stats in signaling by the cytokine receptor superfamily. Trends Genet 11(2):69–74

    CAS  PubMed  Google Scholar 

  59. Williams JG (1999) Serpentine receptors and STAT activation: more than one way to twin a STAT. Trends Biochem Sci 24(9):333–334

    CAS  PubMed  Google Scholar 

  60. Rane SG, Reddy EP (2002) JAKs, STATs and Src kinases in hematopoiesis. Oncogene 21(21):3334–3358. doi:10.1038/sj.onc.1205398

    CAS  PubMed  Google Scholar 

  61. Barton BE, Karras JG, Murphy TF, Barton A, Huang HF (2004) Signal transducer and activator of transcription 3 (STAT3) activation in prostate cancer: Direct STAT3 inhibition induces apoptosis in prostate cancer lines. Mol Cancer Ther 3(1):11–20

    CAS  PubMed  Google Scholar 

  62. Meraz MA, White JM, Sheehan KC, Bach EA, Rodig SJ, Dighe AS, Kaplan DH, Riley JK, Greenlund AC, Campbell D, Carver-Moore K, DuBois RN, Clark R, Aguet M, Schreiber RD (1996) Targeted disruption of the Stat1 gene in mice reveals unexpected physiologic specificity in the JAK-STAT signaling pathway. Cell 84(3):431–442

    CAS  PubMed  Google Scholar 

  63. Jackson SH, Yu CR, Mahdi RM, Ebong S, Egwuagu CE (2004) Dendritic cell maturation requires STAT1 and is under feedback regulation by suppressors of cytokine signaling. J Immunol 172(4):2307–2315

    CAS  PubMed  Google Scholar 

  64. Li J, Geng S, Xie X, Liu H, Zheng G, Sun X, Zhao G, Wan Y, Wu Y, Chen X, Zhong Y, Wang B (2012) Caveolin-1-mediated negative signaling plays a critical role in the induction of regulatory dendritic cells by DNA and protein co-immunization. J Immunol 189(6):2852–2859. doi:10.4049/jimmunol.1102828

    CAS  PubMed  Google Scholar 

  65. Kisseleva T, Bhattacharya S, Braunstein J, Schindler CW (2002) Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene 285(1–2):1–24

    CAS  PubMed  Google Scholar 

  66. Nefedova Y, Gabrilovich DI (2007) Targeting of Jak/STAT pathway in antigen presenting cells in cancer. Curr Cancer Drug Targ 7(1):71–77

    CAS  Google Scholar 

  67. Niu G, Wright KL, Huang M, Song L, Haura E, Turkson J, Zhang S, Wang T, Sinibaldi D, Coppola D, Heller R, Ellis LM, Karras J, Bromberg J, Pardoll D, Jove R, Yu H (2002) Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene 21(13):2000–2008. doi:10.1038/sj.onc.1205260

    CAS  PubMed  Google Scholar 

  68. Bromberg JF, Wrzeszczynska MH, Devgan G, Zhao Y, Pestell RG, Albanese C, Darnell JE, Jr. (1999) Stat3 as an oncogene. Cell 98(3):295–303

    CAS  PubMed  Google Scholar 

  69. Bollrath J, Phesse TJ, von Burstin VA, Putoczki T, Bennecke M, Bateman T, Nebelsiek T, Lundgren-May T, Canli O, Schwitalla S, Matthews V, Schmid RM, Kirchner T, Arkan MC, Ernst M, Greten FR (2009) gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis. Cancer Cell 15(2):91–102. doi:10.1016/j.ccr.2009.01.002

    CAS  PubMed  Google Scholar 

  70. Aoki Y, Feldman GM, Tosato G (2003) Inhibition of STAT3 signaling induces apoptosis and decreases survivin expression in primary effusion lymphoma. Blood 101(4):1535–1542. doi:10.1182/blood-2002–07-2130

    CAS  PubMed  Google Scholar 

  71. Catlett-Falcone R, Landowski TH, Oshiro MM, Turkson J, Levitzki A, Savino R, Ciliberto G, Moscinski L, Fernandez-Luna JL, Nunez G, Dalton WS, Jove R (1999) Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity 10(1):105–115

    CAS  PubMed  Google Scholar 

  72. Giacomelli M, Tamassia N, Moratto D, Bertolini P, Ricci G, Bertulli C, Plebani A, Cassatella M, Bazzoni F, Badolato R (2011) SH2-domain mutations in STAT3 in hyper-IgE syndrome patients result in impairment of IL-10 function. Eur J Immunol 41(10):3075–3084. doi:10.1002/eji.201141721

    CAS  PubMed  Google Scholar 

  73. Vicari AP, Chiodoni C, Vaure C, Ait-Yahia S, Dercamp C, Matsos F, Reynard O, Taverne C, Merle P, Colombo MP, O’Garra A, Trinchieri G, Caux C (2002) Reversal of tumor-induced dendritic cell paralysis by CpG immunostimulatory oligonucleotide and anti-interleukin 10 receptor antibody. J Exp Med 196(4):541–549

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Guiducci C, Vicari AP, Sangaletti S, Trinchieri G, Colombo MP (2005) Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection. Cancer Res 65(8):3437–3446. doi:10.1158/0008-5472.CAN-04-4262

    CAS  PubMed  Google Scholar 

  75. Coffer PJ, Koenderman L, de Groot RP (2000) The role of STATs in myeloid differentiation and leukemia. Oncogene 19(21):2511–2522. doi:10.1038/sj.onc.1203479

    CAS  PubMed  Google Scholar 

  76. Smithgall TE, Briggs SD, Schreiner S, Lerner EC, Cheng H, Wilson MB (2000) Control of myeloid differentiation and survival by Stats. Oncogene 19(21):2612–2618. doi:10.1038/sj.onc.1203477

    CAS  PubMed  Google Scholar 

  77. Laouar Y, Welte T, Fu XY, Flavell RA (2003) STAT3 is required for Flt3 L-dependent dendritic cell differentiation. Immunity 19(6):903–912

    CAS  PubMed  Google Scholar 

  78. Nefedova Y, Huang M, Kusmartsev S, Bhattacharya R, Cheng P, Salup R, Jove R, Gabrilovich D (2004) Hyperactivation of STAT3 is involved in abnormal differentiation of dendritic cells in cancer. J Immunol 172(1):464–474

    CAS  PubMed  Google Scholar 

  79. Nefedova Y, Cheng P, Gilkes D, Blaskovich M, Beg AA, Sebti SM, Gabrilovich DI (2005) Activation of dendritic cells via inhibition of Jak2/STAT3 signaling. J Immunol 175(7):4338–4346

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Cheng F, Wang HW, Cuenca A, Huang M, Ghansah T, Brayer J, Kerr WG, Takeda K, Akira S, Schoenberger SP, Yu H, Jove R, Sotomayor EM (2003) A critical role for Stat3 signaling in immune tolerance. Immunity 19(3):425–436

    CAS  PubMed  Google Scholar 

  81. Wolfle SJ, Strebovsky J, Bartz H, Sahr A, Arnold C, Kaiser C, Dalpke AH, Heeg K (2011) PD-L1 expression on tolerogenic APCs is controlled by STAT-3. Eur J Immunol 41(2):413–424. doi:10.1002/eji.201040979

    PubMed  Google Scholar 

  82. Kortylewski M, Swiderski P, Herrmann A, Wang L, Kowolik C, Kujawski M, Lee H, Scuto A, Liu Y, Yang C, Deng J, Soifer HS, Raubitschek A, Forman S, Rossi JJ, Pardoll DM, Jove R, Yu H (2009) In vivo delivery of siRNA to immune cells by conjugation to a TLR9 agonist enhances antitumor immune responses. Nature Biotechnol 27(10):925–932. doi:10.1038/nbt.1564

    CAS  Google Scholar 

  83. Herrmann A, Kortylewski M, Kujawski M, Zhang C, Reckamp K, Armstrong B, Wang L, Kowolik C, Deng J, Figlin R, Yu H (2010) Targeting Stat3 in the myeloid compartment drastically improves the in vivo antitumor functions of adoptively transferred T cells. Cancer Res 70(19):7455–7464. doi:10.1158/0008-5472.CAN-10-0736

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Schust J, Sperl B, Hollis A, Mayer TU, Berg T (2006) Stattic: a small-molecule inhibitor of STAT3 activation and dimerization. Chem Biol 13(11):1235–1242. doi:10.1016/j.chembiol.2006.09.018

    CAS  PubMed  Google Scholar 

  85. Arima K, Watanabe N, Hanabuchi S, Chang M, Sun SC, Liu YJ (2010) Distinct signal codes generate dendritic cell functional plasticity. Science Signal 3(105):ra4. doi:10.1126/scisignal.2000567

    Google Scholar 

  86. Moser M, Murphy KM (2000) Dendritic cell regulation of TH1-TH2 development. Nature Immunol 1(3):199–205. doi:10.1038/79734

    CAS  Google Scholar 

  87. Tatsumi T, Storkus WJ (2002) Dendritic cell-based vaccines and therapies for cancer. Expert Opin Biol Ther 2(8):919–928. doi:10.1517/14712598.2.8.919

    CAS  PubMed  Google Scholar 

  88. Strebovsky J, Walker P, Dalpke AH (2012) Suppressor of cytokine signaling proteins as regulators of innate immune signaling. Front Biosci 17:1627–1639

    CAS  Google Scholar 

  89. Kershaw NJ, Murphy JM, Liau NP, Varghese LN, Laktyushin A, Whitlock EL, Lucet IS, Nicola NA, Babon JJ (2013) SOCS3 binds specific receptor-JAK complexes to control cytokine signaling by direct kinase inhibition. Nature Struct Mol Biol 20(4):469–476. doi:10.1038/nsmb.2519

    CAS  Google Scholar 

  90. Larsen L, Ropke C (2002) Suppressors of cytokine signalling: SOCS. APMIS: acta pathologica, microbiologica, et immunologica Scandinavica 110(12):833–844

    CAS  PubMed  Google Scholar 

  91. Sasaki A, Yasukawa H, Shouda T, Kitamura T, Dikic I, Yoshimura A (2000) CIS3/SOCS-3 suppresses erythropoietin (EPO) signaling by binding the EPO receptor and JAK2. J Biol Chem 275(38):29338–29347. doi:10.1074/jbc.M003456200

    CAS  PubMed  Google Scholar 

  92. Ma Y, Shurin GV, Gutkin DW, Shurin MR (2012) Tumor associated regulatory dendritic cells. Semin Cancer Biol 22(4):298–306. doi:10.1016/j.semcancer.2012.02.010

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Hanada T, Yoshida H, Kato S, Tanaka K, Masutani K, Tsukada J, Nomura Y, Mimata H, Kubo M, Yoshimura A (2003) Suppressor of cytokine signaling-1 is essential for suppressing dendritic cell activation and systemic autoimmunity. Immunity 19(3):437–450

    CAS  PubMed  Google Scholar 

  94. Evel-Kabler K, Song XT, Aldrich M, Huang XF, Chen SY (2006) SOCS1 restricts dendritic cells’ ability to break self tolerance and induce antitumor immunity by regulating IL-12 production and signaling. J Clin Invest 116(1):90–100. doi:10.1172/JCI26169

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Shen L, Evel-Kabler K, Strube R, Chen SY (2004) Silencing of SOCS1 enhances antigen presentation by dendritic cells and antigen-specific anti-tumor immunity. Nature Biotechnol 22(12):1546–1553. doi:10.1038/nbt1035

    CAS  Google Scholar 

  96. Ryo A, Suizu F, Yoshida Y, Perrem K, Liou YC, Wulf G, Rottapel R, Yamaoka S, Lu KP (2003) Regulation of NF-kappaB signaling by Pin1-dependent prolyl isomerization and ubiquitin-mediated proteolysis of p65/RelA. Mol Cell 12(6):1413–1426

    CAS  PubMed  Google Scholar 

  97. Maine GN, Mao X, Komarck CM, Burstein E (2007) COMMD1 promotes the ubiquitination of NF-kappaB subunits through a cullin-containing ubiquitin ligase. EMBO J 26(2):436–447. doi:10.1038/sj.emboj.7601489

    CAS  PubMed  Google Scholar 

  98. Liu X, Qu X, Chen Y, Liao L, Cheng K, Shao C, Zenke M, Keating A, Zhao RC (2012) Mesenchymal stem/stromal cells induce the generation of novel IL-10-dependent regulatory dendritic cells by SOCS3 activation. J Immunol 189(3):1182–1192. doi:10.4049/jimmunol.1102996

    CAS  PubMed  Google Scholar 

  99. Zhang Z, Liu Q, Che Y, Yuan X, Dai L, Zeng B, Jiao G, Zhang Y, Wu X, Yu Y, Yang R (2010) Antigen presentation by dendritic cells in tumors is disrupted by altered metabolism that involves pyruvate kinase M2 and its interaction with SOCS3. Cancer Res 70(1):89–98. doi:10.1158/0008-5472.CAN-09-2970

    CAS  PubMed  Google Scholar 

  100. Zeng B, Li H, Liu Y, Zhang Z, Zhang Y, Yang R (2008) Tumor-induced suppressor of cytokine signaling 3 inhibits toll-like receptor 3 signaling in dendritic cells via binding to tyrosine kinase 2. Cancer Res 68(13):5397–5404. doi:10.1158/0008-5472.CAN-07-6792

    CAS  PubMed  Google Scholar 

  101. Thurnher M (2007) Lipids in dendritic cell biology: messengers, effectors, and antigens. J Leukoc Biol 81(1):154–160. doi:10.1189/jlb.0706438

    CAS  PubMed  Google Scholar 

  102. Szatmari I, Nagy L (2008) Nuclear receptor signalling in dendritic cells connects lipids, the genome and immune function. Embo J 27(18):2353–2362. doi:10.1038/emboj.2008.160

    CAS  PubMed  Google Scholar 

  103. Perrin-Cocon L, Diaz O, Andre P, Lotteau V (2013) Modified lipoproteins provide lipids that modulate dendritic cell immune function. Biochimie 95(1):103–108. doi:10.1016/j.biochi.2012.08.006

    CAS  PubMed  Google Scholar 

  104. Rega A, Terlizzi M, Luciano A, Forte G, Crother TR, Arra C, Arditi M, Pinto A, Sorrentino R (2013) Plasmacytoid dendritic cells play a key role in tumor progression in lipopolysaccharide-stimulated lung tumor-bearing mice. J Immunol 190(5):2391–2402. doi:10.4049/jimmunol.1202086

    CAS  PubMed  Google Scholar 

  105. Leslie DS, Dascher CC, Cembrola K, Townes MA, Hava DL, Hugendubler LC, Mueller E, Fox L, Roura-Mir C, Moody DB, Vincent MS, Gumperz JE, Illarionov PA, Besra GS, Reynolds CG, Brenner MB (2008) Serum lipids regulate dendritic cell CD1 expression and function. Immunology 125(3):289–301. doi:10.1111/j.1365-2567.2008.02842.x

    CAS  PubMed  Google Scholar 

  106. Nagy L, Szanto A, Szatmari I, Szeles L (2012) Nuclear hormone receptors enable macrophages and dendritic cells to sense their lipid environment and shape their immune response. Physiol Rev 92(2):739–789. doi:10.1152/physrev.00004.2011

    CAS  PubMed  Google Scholar 

  107. Glass CK, Saijo K (2010) Nuclear receptor transrepression pathways that regulate inflammation in macrophages and T cells. Nat Rev Immunol 10(5):365–376. doi:10.1038/nri2748

    CAS  PubMed  Google Scholar 

  108. Szatmari I, Gogolak P, Im JS, Dezso B, Rajnavolgyi E, Nagy L (2004) Activation of PPARgamma specifies a dendritic cell subtype capable of enhanced induction of iNKT cell expansion. Immunity 21(1):95–106. doi:10.1016/j.immuni.2004.06.003

    CAS  PubMed  Google Scholar 

  109. Nencioni A, Grunebach F, Zobywlaski A, Denzlinger C, Brugger W, Brossart P (2002) Dendritic cell immunogenicity is regulated by peroxisome proliferator-activated receptor gamma. J Immunol 169(3):1228–1235

    CAS  PubMed  Google Scholar 

  110. Wahli W, Michalik L (2012) PPARs at the crossroads of lipid signaling and inflammation. Trends Endocrinol Metab 23(7):351–363. doi:10.1016/j.tem.2012.05.001

    CAS  PubMed  Google Scholar 

  111. Kawano T, Cui J, Koezuka Y, Toura I, Kaneko Y, Motoki K, Ueno H, Nakagawa R, Sato H, Kondo E, Koseki H, Taniguchi M (1997) CD1d-restricted and TCR-mediated activation of valpha14 NKT cells by glycosylceramides. Science 278(5343):1626–1629

    CAS  PubMed  Google Scholar 

  112. Hammad H, de Heer HJ, Soullie T, Angeli V, Trottein F, Hoogsteden HC, Lambrecht BN (2004) Activation of peroxisome proliferator-activated receptor-gamma in dendritic cells inhibits the development of eosinophilic airway inflammation in a mouse model of asthma. Am J Pathol 164(1):263–271

    CAS  PubMed  Google Scholar 

  113. Torocsik D, Barath M, Benko S, Szeles L, Dezso B, Poliska S, Hegyi Z, Homolya L, Szatmari I, Lanyi A, Nagy L (2010) Activation of liver X receptor sensitizes human dendritic cells to inflammatory stimuli. J Immunol 184(10):5456–5465. doi:10.4049/jimmunol.0902399

    PubMed  Google Scholar 

  114. Villablanca EJ, Raccosta L, Zhou D, Fontana R, Maggioni D, Negro A, Sanvito F, Ponzoni M, Valentinis B, Bregni M, Prinetti A, Steffensen KR, Sonnino S, Gustafsson JA, Doglioni C, Bordignon C, Traversari C, Russo V (2010) Tumor-mediated liver X receptor-alpha activation inhibits CC chemokine receptor-7 expression on dendritic cells and dampens antitumor responses. Nat Med 16(1):98–105. doi:10.1038/nm.2074

    CAS  PubMed  Google Scholar 

  115. Geyeregger R, Zeyda M, Bauer W, Kriehuber E, Saemann MD, Zlabinger GJ, Maurer D, Stulnig TM (2007) Liver X receptors regulate dendritic cell phenotype and function through blocked induction of the actin-bundling protein fascin. Blood 109(10):4288–4295. doi:10.1182/blood-2006-08-043422

    CAS  PubMed  Google Scholar 

  116. Herber DL, Cao W, Nefedova Y, Novitskiy SV, Nagaraj S, Tyurin VA, Corzo A, Cho HI, Celis E, Lennox B, Knight SC, Padhya T, McCaffrey TV, McCaffrey JC, Antonia S, Fishman M, Ferris RL, Kagan VE, Gabrilovich DI (2010) Lipid accumulation and dendritic cell dysfunction in cancer. Nat Med 16(8):880–886. doi:10.1038/nm.2172

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Yi H, Yu X, Gao P, Wang Y, Baek SH, Chen X, Kim HL, Subjeck JR, Wang XY (2009) Pattern recognition scavenger receptor SRA/CD204 down-regulates Toll-like receptor 4 signaling-dependent CD8 T cell activation. Blood 113(23):5819–5828. doi:10.1182/blood-2008-11-190033

    CAS  PubMed  Google Scholar 

  118. Zitvogel L, Kroemer G (2010) Targeting dendritic cell metabolism in cancer. Nat Med 16(8):858–859. doi:10.1038/nm0810-858

    CAS  PubMed  Google Scholar 

  119. Battistini A (2009) Interferon regulatory factors in hematopoietic cell differentiation and immune regulation. J Interferon Cytokine Res 29(12):765–780. doi:10.1089/jir.2009.0030

    CAS  PubMed  Google Scholar 

  120. Elser B, Lohoff M, Kock S, Giaisi M, Kirchhoff S, Krammer PH, Li-Weber M (2002) IFN-gamma represses IL-4 expression via IRF-1 and IRF-2. Immunity 17(6):703–712

    CAS  PubMed  Google Scholar 

  121. Fragale A, Gabriele L, Stellacci E, Borghi P, Perrotti E, Ilari R, Lanciotti A, Remoli AL, Venditti M, Belardelli F, Battistini A (2008) IFN regulatory factor-1 negatively regulates CD4 +CD25 + regulatory T cell differentiation by repressing Foxp3 expression. J Immunol 181(3):1673–1682

    CAS  PubMed  Google Scholar 

  122. Gabriele L, Fragale A, Borghi P, Sestili P, Stellacci E, Venditti M, Schiavoni G, Sanchez M, Belardelli F, Battistini A (2006) IRF-1 deficiency skews the differentiation of dendritic cells toward plasmacytoid and tolerogenic features. J Leukoc Biol 80(6):1500–1511. doi:10.1189/jlb.0406246

    CAS  PubMed  Google Scholar 

  123. Schiavoni G, Mattei F, Borghi P, Sestili P, Venditti M, Morse HC, 3rd, Belardelli F, Gabriele L (2004) ICSBP is critically involved in the normal development and trafficking of Langerhans cells and dermal dendritic cells. Blood 103(6):2221–2228. doi:10.1182/blood-2003-09-3007

    CAS  PubMed  Google Scholar 

  124. Aliberti J, Schulz O, Pennington DJ, Tsujimura H, Reis e Sousa C, Ozato K, Sher A (2003) Essential role for ICSBP in the in vivo development of murine CD8alpha + dendritic cells. Blood 101(1):305–310. doi:10.1182/blood-2002-04-1088

    CAS  PubMed  Google Scholar 

  125. Honda K, Mizutani T, Taniguchi T (2004) Negative regulation of IFN-alpha/beta signaling by IFN regulatory factor 2 for homeostatic development of dendritic cells. Proc Natl Acad Sci U S A 101(8):2416–2421

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Izaguirre A, Barnes BJ, Amrute S, Yeow WS, Megjugorac N, Dai J, Feng D, Chung E, Pitha PM, Fitzgerald-Bocarsly P (2003) Comparative analysis of IRF and IFN-alpha expression in human plasmacytoid and monocyte-derived dendritic cells. J Leukoc Biol 74(6):1125–1138. doi:10.1189/jlb.0603255

    CAS  PubMed  Google Scholar 

  127. Guiducci C, Ghirelli C, Marloie-Provost MA, Matray T, Coffman RL, Liu YJ, Barrat FJ, Soumelis V (2008) PI3K is critical for the nuclear translocation of IRF-7 and type I IFN production by human plasmacytoid predendritic cells in response to TLR activation. J Exp Med 205(2):315–322. doi:10.1084/jem.20070763

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Tailor P, Tamura T, Kong HJ, Kubota T, Kubota M, Borghi P, Gabriele L, Ozato K (2007) The feedback phase of type I interferon induction in dendritic cells requires interferon regulatory factor 8. Immunity 27(2):228–239. doi:10.1016/j.immuni.2007.06.009

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Tsujimura H, Tamura T, Kong HJ, Nishiyama A, Ishii KJ, Klinman DM, Ozato K (2004) Toll-like receptor 9 signaling activates NF-kappaB through IFN regulatory factor-8/IFN consensus sequence binding protein in dendritic cells. J Immunol 172(11):6820–6827

    CAS  PubMed  Google Scholar 

  130. Schmitz F, Heit A, Guggemoos S, Krug A, Mages J, Schiemann M, Adler H, Drexler I, Haas T, Lang R, Wagner H (2007) Interferon-regulatory-factor 1 controls Toll-like receptor 9-mediated IFN-beta production in myeloid dendritic cells. Eur J Immunol 37(2):315–327. doi:10.1002/eji.200636767

    CAS  PubMed  Google Scholar 

  131. Negishi H, Fujita Y, Yanai H, Sakaguchi S, Ouyang X, Shinohara M, Takayanagi H, Ohba Y, Taniguchi T, Honda K (2006) Evidence for licensing of IFN-gamma-induced IFN regulatory factor 1 transcription factor by MyD88 in Toll-like receptor-dependent gene induction program. Proc Natl Acad Sci U S A 103(41):15136–15141. doi:10.1073/pnas.0607181103

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Negishi H, Ohba Y, Yanai H, Takaoka A, Honma K, Yui K, Matsuyama T, Taniguchi T, Honda K (2005) Negative regulation of Toll-like-receptor signaling by IRF-4. Proc Natl Acad Sci U S A 102(44):15989–15994. doi:10.1073/pnas.0508327102

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Tourkova IL, Shurin GV, Ferrone S, Shurin MR (2009) Interferon regulatory factor 8 mediates tumor-induced inhibition of antigen processing and presentation by dendritic cells. Cancer Immunol Immunother 58(4):567–574. doi:10.1007/s00262-008-0579-1

    CAS  PubMed  Google Scholar 

  134. Tamura T, Yanai H, Savitsky D, Taniguchi T (2008) The IRF family transcription factors in immunity and oncogenesis. Annu Rev Immunol 26:535–584. doi:10.1146/annurev.immunol.26.021607.090400

    CAS  PubMed  Google Scholar 

  135. Driggers PH, Ennist DL, Gleason SL, Mak WH, Marks MS, Levi BZ, Flanagan JR, Appella E, Ozato K (1990) An interferon gamma-regulated protein that binds the interferon-inducible enhancer element of major histocompatibility complex class I genes. Proc Natl Acad Sci U S A 87(10):3743–3747

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Orabona C, Puccetti P, Vacca C, Bicciato S, Luchini A, Fallarino F, Bianchi R, Velardi E, Perruccio K, Velardi A, Bronte V, Fioretti MC, Grohmann U (2006) Toward the identification of a tolerogenic signature in IDO-competent dendritic cells. Blood 107(7):2846–2854. doi:10.1182/blood-2005-10-4077

    CAS  PubMed  Google Scholar 

  137. Mattei F, Schiavoni G, Sestili P, Spadaro F, Fragale A, Sistigu A, Lucarini V, Spada M, Sanchez M, Scala S, Battistini A, Belardelli F, Gabriele L (2012) IRF-8 controls melanoma progression by regulating the cross talk between cancer and immune cells within the tumor microenvironment. Neoplasia 14(12):1223–1235

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Schiavoni G, Mattei F, Sestili P, Borghi P, Venditti M, Morse HC, 3rd, Belardelli F, Gabriele L (2002) ICSBP is essential for the development of mouse type I interferon-producing cells and for the generation and activation of CD8alpha(+) dendritic cells. J Exp Med 196(11):1415–1425

    CAS  PubMed Central  PubMed  Google Scholar 

  139. MacDonald BT, Tamai K, He X (2009) Wnt/beta-catenin signaling: components, mechanisms, and diseases. Develop Cell 17(1):9–26. doi:10.1016/j.devcel.2009.06.016

    CAS  Google Scholar 

  140. Klaus A, Birchmeier W (2009) Developmental signaling in myocardial progenitor cells: a comprehensive view of Bmp- and Wnt/beta-catenin signaling. Pediatr Cardiol 30(5):609–616. doi:10.1007/s00246-008-9352-7

    PubMed  Google Scholar 

  141. Chien AJ, Conrad WH, Moon RT (2009) A Wnt survival guide: from flies to human disease. J Invest Dermatol 129(7):1614–1627. doi:10.1038/jid.2008.445

    CAS  PubMed Central  PubMed  Google Scholar 

  142. Clevers H, Nusse R (2012) Wnt/beta-catenin signaling and disease. Cell 149(6):1192–1205. doi:10.1016/j.cell.2012.05.012

    CAS  PubMed  Google Scholar 

  143. Polakis P (2012) Wnt signaling in cancer. Cold Spring Harbor Perspect Biol 4(5). doi:10.1101/cshperspect.a008052

    Google Scholar 

  144. Zimmerman ZF, Moon RT, Chien AJ (2012) Targeting Wnt pathways in disease. Cold Spring Harbor Perspect Biol 4(11). doi:10.1101/cshperspect.a008086

    Google Scholar 

  145. Perez-Moreno M, Jamora C, Fuchs E (2003) Sticky business: orchestrating cellular signals at adherens junctions. Cell 112(4):535–548

    CAS  PubMed  Google Scholar 

  146. Nelson WJ, Nusse R (2004) Convergence of Wnt, beta-catenin, and cadherin pathways. Science 303(5663):1483–1487. doi:10.1126/science.1094291

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Yao H, Ashihara E, Maekawa T (2011) Targeting the Wnt/beta-catenin signaling pathway in human cancers. Expert Opin Ther Target 15(7):873–887. doi:10.1517/14728222.2011.577418

    CAS  Google Scholar 

  148. Fu Y, Zheng S, An N, Athanasopoulos T, Popplewell L, Liang A, Li K, Hu C, Zhu Y (2011) Beta-catenin as a potential key target for tumor suppression. Int J Cancer 129(7):1541–1551. doi:10.1002/ijc.26102

    CAS  PubMed  Google Scholar 

  149. Staal FJ, Clevers HC (2005) WNT signalling and haematopoiesis: a WNT-WNT situation. Nature Rev Immunol 5(1):21–30. doi:10.1038/nri1529

    CAS  Google Scholar 

  150. Heuberger J, Birchmeier W (2010) Interplay of cadherin-mediated cell adhesion and canonical Wnt signaling. Cold Spring Harbor Perspect Biol 2(2):a002915. doi:10.1101/cshperspect.a002915

    Google Scholar 

  151. Polakis P (2007) The many ways of Wnt in cancer. Curr Opin Genet Develop 17(1):45–51. doi:10.1016/j.gde.2006.12.007

    CAS  Google Scholar 

  152. Yaguchi T, Goto Y, Kido K, Mochimaru H, Sakurai T, Tsukamoto N, Kudo-Saito C, Fujita T, Sumimoto H, Kawakami Y (2012) Immune suppression and resistance mediated by constitutive activation of Wnt/beta-catenin signaling in human melanoma cells. J Immunol 189(5):2110–2117. doi:10.4049/jimmunol.1102282

    CAS  PubMed  Google Scholar 

  153. Staal FJ, Sen JM (2008) The canonical Wnt signaling pathway plays an important role in lymphopoiesis and hematopoiesis. Eur J Immunol 38(7):1788–1794. doi:10.1002/eji.200738118

    CAS  PubMed Central  PubMed  Google Scholar 

  154. Lento W, Congdon K, Voermans C, Kritzik M, Reya T (2013) Wnt signaling in normal and malignant hematopoiesis. Cold Spring Harbor Perspect Biol 5(2). doi:10.1101/cshperspect.a008011

    Google Scholar 

  155. Staal FJ, Luis TC (2010) Wnt signaling in hematopoiesis: crucial factors for self-renewal, proliferation, and cell fate decisions. J Cell Biochem 109(5):844–849. doi:10.1002/jcb.22467

    CAS  PubMed  Google Scholar 

  156. Yu Q, Sharma A, Sen JM (2010) TCF1 and beta-catenin regulate T cell development and function. Immunol Res 47(1–3):45–55. doi:10.1007/s12026-009-8137-2

    CAS  PubMed Central  PubMed  Google Scholar 

  157. Gattinoni L, Ji Y, Restifo NP (2010) Wnt/beta-catenin signaling in T cell immunity and cancer immunotherapy. Clin Cancer Res 16(19):4695–4701. doi:10.1158/1078-0432.CCR-10-0356

    CAS  PubMed Central  PubMed  Google Scholar 

  158. Xue HH, Zhao DM (2012) Regulation of mature T cell responses by the Wnt signaling pathway. Ann New York Acad Sci 1247:16–33. doi:10.1111/j.1749-6632.2011.06302.x

    CAS  Google Scholar 

  159. Ding Y, Shen S, Lino AC, Curotto de Lafaille MA, Lafaille JJ (2008) Beta-catenin stabilization extends regulatory T cell survival and induces anergy in nonregulatory T cells. Nature Med 14(2):162–169. doi:10.1038/nm1707

    CAS  PubMed  Google Scholar 

  160. Tang A, Amagai M, Granger LG, Stanley JR, Udey MC (1993) Adhesion of epidermal Langerhans cells to keratinocytes mediated by E-cadherin. Nature 361(6407):82–85. doi:10.1038/361082a0

    CAS  PubMed  Google Scholar 

  161. Jakob T, Brown MJ, Udey MC (1999) Characterization of E-cadherin-containing junctions involving skin-derived dendritic cells. J Invest Dermatol 112(1):102–108. doi:10.1046/j.1523-1747.1999.00475.x

    CAS  PubMed  Google Scholar 

  162. Zhou J, Cheng P, Youn JI, Cotter MJ, Gabrilovich DI (2009) Notch and wingless signaling cooperate in regulation of dendritic cell differentiation. Immunity 30(6):845–859. doi:10.1016/j.immuni.2009.03.021

    CAS  PubMed Central  PubMed  Google Scholar 

  163. Jiang A, Bloom O, Ono S, Cui W, Unternaehrer J, Jiang S, Whitney JA, Connolly J, Banchereau J, Mellman I (2007) Disruption of E-cadherin-mediated adhesion induces a functionally distinct pathway of dendritic cell maturation. Immunity 27(4):610–624. doi:10.1016/j.immuni.2007.08.015

    PubMed Central  PubMed  Google Scholar 

  164. Van den Bossche J, Malissen B, Mantovani A, De Baetselier P, Van Ginderachter JA (2012) Regulation and function of the E-cadherin/catenin complex in cells of the monocyte-macrophage lineage and DCs. Blood 119(7):1623–1633. doi:10.1182/blood-2011-10-384289

    Google Scholar 

  165. Siddiqui KR, Laffont S, Powrie F (2010) E-cadherin marks a subset of inflammatory dendritic cells that promote T cell-mediated colitis. Immunity 32(4):557–567. doi:10.1016/j.immuni.2010.03.017

    CAS  PubMed Central  PubMed  Google Scholar 

  166. Jakob T, Udey MC (1998) Regulation of E-cadherin-mediated adhesion in Langerhans cell-like dendritic cells by inflammatory mediators that mobilize Langerhans cells in vivo. J Immunol 160(8):4067–4073

    CAS  PubMed  Google Scholar 

  167. Riedl E, Stockl J, Majdic O, Scheinecker C, Knapp W, Strobl H (2000) Ligation of E-cadherin on in vitro-generated immature Langerhans-type dendritic cells inhibits their maturation. Blood 96(13):4276–4284

    CAS  PubMed  Google Scholar 

  168. Riedl E, Stockl J, Majdic O, Scheinecker C, Rappersberger K, Knapp W, Strobl H (2000) Functional involvement of E-cadherin in TGF-beta 1-induced cell cluster formation of in vitro developing human Langerhans-type dendritic cells. J Immunol 165(3):1381–1386

    CAS  PubMed  Google Scholar 

  169. Manicassamy S, Reizis B, Ravindran R, Nakaya H, Salazar-Gonzalez RM, Wang YC, Pulendran B (2010) Activation of beta-catenin in dendritic cells regulates immunity versus tolerance in the intestine. Science 329(5993):849–853. doi:10.1126/science.1188510

    CAS  PubMed Central  PubMed  Google Scholar 

  170. Vander Lugt B, Beck ZT, Fuhlbrigge RC, Hacohen N, Campbell JJ, Boes M (2011) TGF-beta suppresses beta-catenin-dependent tolerogenic activation program in dendritic cells. PloS One 6(5):e20099. doi:10.1371/journal.pone.0020099

    CAS  PubMed Central  PubMed  Google Scholar 

  171. Yasmin N, Konradi S, Eisenwort G, Schichl YM, Seyerl M, Bauer T, Stockl J, Strobl H (2013) Beta-Catenin promotes the differentiation of epidermal Langerhans dendritic cells. J Invest Dermatol 133(5):1250–1259. doi:10.1038/jid.2012.481

    CAS  PubMed  Google Scholar 

  172. Oderup C, Lajevic M, Butcher EC (2013) Canonical and noncanonical wnt proteins program dendritic cell responses for tolerance. J Immunol 190(12):6126–6134. doi:10.4049/jimmunol.1203002

    CAS  PubMed  Google Scholar 

  173. Chien AJ, Moore EC, Lonsdorf AS, Kulikauskas RM, Rothberg BG, Berger AJ, Major MB, Hwang ST, Rimm DL, Moon RT (2009) Activated Wnt/beta-catenin signaling in melanoma is associated with decreased proliferation in patient tumors and a murine melanoma model. Proc Nat Acad Sci U S A 106(4):1193–1198. doi:10.1073/pnas.0811902106

    CAS  Google Scholar 

  174. Fu C, Jiang A (2010) Generation of tolerogenic dendritic cells via the E-cadherin/beta-catenin-signaling pathway. Immunol Res 46(1–3):72–78. doi:10.1007/s12026-009-8126-5

    CAS  PubMed  Google Scholar 

  175. Orr SJ, Burg AR, Chan T, Quigley L, Jones GW, Ford JW, Hodge D, Razzook C, Sarhan J, Jones YL, Whittaker GC, Boelte KC, Lyakh L, Cardone M, O’Connor GM, Tan C, Li H, Anderson SK, Jones SA, Zhang W, Taylor PR, Trinchieri G, McVicar DW (2013) LAB/NTAL facilitates fungal/PAMP-induced IL-12 and IFN-gamma production by repressing beta-catenin activation in dendritic cells. PLoS Pathog 9(5):e1003357. doi:10.1371/journal.ppat.1003357

    CAS  PubMed Central  PubMed  Google Scholar 

  176. Alessandrini A, De Haseth S, Fray M, Miyajima M, Colvin RB, Williams WW, Benedict Cosimi A, Benichou G (2011) Dendritic cell maturation occurs through the inhibition of GSK-3beta. Cell Immunol 270(2):114–125. doi:10.1016/j.cellimm.2011.04.007

    CAS  PubMed  Google Scholar 

  177. Dejean AS, Beisner DR, Ch’en IL, Kerdiles YM, Babour A, Arden KC, Castrillon DH, DePinho RA, Hedrick SM (2009) Transcription factor Foxo3 controls the magnitude of T cell immune responses by modulating the function of dendritic cells. Nat Immunol 10(5):504–513. doi:10.1038/ni.1729

    CAS  PubMed Central  PubMed  Google Scholar 

  178. Essers MA, de Vries-Smits LM, Barker N, Polderman PE, Burgering BM, Korswagen HC (2005) Functional interaction between beta-catenin and FOXO in oxidative stress signaling. Science 308(5725):1181–1184. doi:10.1126/science.1109083

    CAS  PubMed  Google Scholar 

  179. Almeida M, Han L, Martin-Millan M, O’Brien CA, Manolagas SC (2007) Oxidative stress antagonizes Wnt signaling in osteoblast precursors by diverting beta-catenin from T cell factor- to forkhead box O-mediated transcription. J Biol Chem 282(37):27298–27305. doi:10.1074/jbc.M702811200

    CAS  PubMed  Google Scholar 

  180. Hoogeboom D, Essers MA, Polderman PE, Voets E, Smits LM, Burgering BM (2008) Interaction of FOXO with beta-catenin inhibits beta-catenin/T cell factor activity. J Biol Chem 283(14):9224–9230. doi:10.1074/jbc.M706638200

    CAS  PubMed  Google Scholar 

  181. Hoogeboom D, Burgering BM (2009) Should I stay or should I go: beta-catenin decides under stress. Biochimica et biophysica acta 1796(2):63–74. doi:10.1016/j.bbcan.2009.02.002

    CAS  PubMed  Google Scholar 

  182. Jin T, George Fantus I, Sun J (2008) Wnt and beyond Wnt: multiple mechanisms control the transcriptional property of beta-catenin. Cell Signal 20(10):1697–1704. doi:10.1016/j.cellsig.2008.04.014

    CAS  PubMed  Google Scholar 

  183. Kwon C, Cheng P, King IN, Andersen P, Shenje L, Nigam V, Srivastava D (2011) Notch post-translationally regulates beta-catenin protein in stem and progenitor cells. Nature Cell Biol 13(10):1244–1251. doi:10.1038/ncb2313

    CAS  PubMed Central  PubMed  Google Scholar 

  184. Bray SJ (2006) Notch signalling: a simple pathway becomes complex. Nature Rev Mol Cell Biol 7(9):678–689. doi:10.1038/nrm2009

    CAS  Google Scholar 

  185. Kopan R, Ilagan MX (2009) The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137(2):216–233. doi:10.1016/j.cell.2009.03.045

    CAS  PubMed Central  PubMed  Google Scholar 

  186. South AP, Cho RJ, Aster JC (2012) The double-edged sword of Notch signaling in cancer. Semin Cell Develop Biol 23(4):458–464. doi:10.1016/j.semcdb.2012.01.017

    CAS  Google Scholar 

  187. Cheng P, Gabrilovich D (2008) Notch signaling in differentiation and function of dendritic cells. Immunol Res 41(1):1–14. doi:10.1007/s12026-007-8011-z

    CAS  PubMed Central  PubMed  Google Scholar 

  188. Bigas A, Espinosa L (2012) Hematopoietic stem cells: to be or Notch to be. Blood 119(14):3226–3235. doi:10.1182/blood-2011-10-355826

    CAS  PubMed  Google Scholar 

  189. Radtke F, Macdonald HR, Tacchini-Cottier F (2013) Regulation of innate and adaptive immunity by Notch. Nature Rev Immunol 13(6):427–437. doi:10.1038/nri3445

    CAS  Google Scholar 

  190. Andersson ER, Sandberg R, Lendahl U (2011) Notch signaling: simplicity in design, versatility in function. Development 138(17):3593–3612. doi:10.1242/dev.063610

    CAS  PubMed  Google Scholar 

  191. Hayward P, Kalmar T, Arias AM (2008) Wnt/Notch signalling and information processing during development. Development 135(3):411–424. doi:10.1242/dev.000505

    CAS  PubMed  Google Scholar 

  192. Hoyne GF, Le Roux I, Corsin-Jimenez M, Tan K, Dunne J, Forsyth LM, Dallman MJ, Owen MJ, Ish-Horowicz D, Lamb JR (2000) Serrate1-induced notch signalling regulates the decision between immunity and tolerance made by peripheral CD4(+) T cells. Int Immunol 12(2):177–185

    CAS  PubMed  Google Scholar 

  193. Wong KK, Carpenter MJ, Young LL, Walker SJ, McKenzie G, Rust AJ, Ward G, Packwood L, Wahl K, Delriviere L, Hoyne G, Gibbs P, Champion BR, Lamb JR, Dallman MJ (2003) Notch ligation by Delta1 inhibits peripheral immune responses to transplantation antigens by a CD8 + cell-dependent mechanism. J Clin Invest 112(11):1741–1750. doi:10.1172/JCI18020

    CAS  PubMed Central  PubMed  Google Scholar 

  194. Rutz S, Mordmuller B, Sakano S, Scheffold A (2005) Notch ligands Delta-like1, Delta-like4 and Jagged1 differentially regulate activation of peripheral T helper cells. Eur J Immunol 35(8):2443–2451. doi:10.1002/eji.200526294

    CAS  PubMed  Google Scholar 

  195. Kostianovsky AM, Maier LM, Baecher-Allan C, Anderson AC, Anderson DE (2007) Up-regulation of gene related to anergy in lymphocytes is associated with Notch-mediated human T cell suppression. J Immunol 178(10):6158–6163

    CAS  PubMed  Google Scholar 

  196. Bugeon L, Gardner LM, Rose A, Gentle M, Dallman MJ (2008) Cutting edge: Notch signaling induces a distinct cytokine profile in dendritic cells that supports T cell-mediated regulation and IL-2-dependent IL-17 production. J Immunol 181(12):8189–8193

    CAS  PubMed  Google Scholar 

  197. Rodilla V, Villanueva A, Obrador-Hevia A, Robert-Moreno A, Fernandez-Majada V, Grilli A, Lopez-Bigas N, Bellora N, Alba MM, Torres F, Dunach M, Sanjuan X, Gonzalez S, Gridley T, Capella G, Bigas A, Espinosa L (2009) Jagged1 is the pathological link between Wnt and Notch pathways in colorectal cancer. Proc Nat Acad Sci U S A 106(15):6315–6320. doi:10.1073/pnas.0813221106

    CAS  Google Scholar 

  198. Najdi R, Holcombe RF, Waterman ML (2011) Wnt signaling and colon carcinogenesis: beyond APC. J Carcinogenesis 10:5. doi:10.4103/1477-3163.78111

    CAS  Google Scholar 

  199. Valenta T, Hausmann G, Basler K (2012) The many faces and functions of beta-catenin. EMBO J 31(12):2714–2736. doi:10.1038/emboj.2012.150

    CAS  PubMed  Google Scholar 

  200. Trinchieri G (2012) Cancer and inflammation: an old intuition with rapidly evolving new concepts. Annu Rev Immunol 30:677–706. doi:10.1146/annurev-immunol-020711-075008

    CAS  PubMed  Google Scholar 

  201. Deng J, Miller SA, Wang HY, Xia W, Wen Y, Zhou BP, Li Y, Lin SY, Hung MC (2002) Beta-catenin interacts with and inhibits NF-kappa B in human colon and breast cancer. Cancer Cell 2(4):323–334

    CAS  PubMed  Google Scholar 

  202. Nejak-Bowen K, Kikuchi A, Monga SP (2013) Beta-catenin-NF-kappaB interactions in murine hepatocytes: a complex to die for. Hepatology 57(2):763–774. doi:10.1002/hep.26042

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported in part by the intramural research program of the National Cancer Institute, National Institutes of Health (NIH). C. Fu and A. Jiang were supported by a Roswell Park Alliance Foundation Award. The authors appreciate the critical review of this chapter by Dr. Joost Oppenheim.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur A. Hurwitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jiang, A., Stagliano, K., Cuss, S., Triplett, A., Fu, C., Hurwitz, A. (2014). Transcriptional Regulation of Dendritic Cells in the Tumor Microenvironment. In: Gabrilovich, D., Hurwitz, A. (eds) Tumor-Induced Immune Suppression. Springer, New York, NY. https://doi.org/10.1007/978-1-4899-8056-4_9

Download citation

Publish with us

Policies and ethics