Skip to main content

Complications in the Coronary Circulation Associated with Diabetes

  • Chapter
  • First Online:

Abstract

Diabetes substantially increases the risk of developing coronary disease. Several factors associated with diabetes promote increased oxidative stress and endothelial dysfunction. In the coronary microcirculation, endothelial dysfunction causes chronic vasodilation that leads to increased capillary pressure and hyperperfusion, which in turn leads to morphologic changes that narrow the lumen, and limits the ability of the diabetic coronary circulation to increase myocardial perfusion to meet an increase in myocardial nutrient demand. This chapter summarizes some of the key areas of diabetic complications associated with diabetes in the coronary circulation. A better understanding of underlying microvascular and endothelial pathophysiology associated with diabetes would advance development of new targets for prevention and treatment of vascular complications associated with the disease. Future research should focus on areas to improve strategies to prevent and treat diabetes and its complications at the molecular, cellular, organ, animal, and population levels.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Magid D, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER, Moy CS, Mussolino ME, Nichol G, Paynter NP, Schreiner PJ, Sorlie PD, Stein J, Turan TN, Virani SS, Wong ND, Woo D, Turner MB (2013) Heart disease and stroke statistics—2013 update: a report from the American Heart Association. Circulation 127:e6–e245

    Article  PubMed  Google Scholar 

  2. Herman WH (2013) The economic costs of diabetes: is it time for a new treatment paradigm? Diabetes Care 36:775–776

    Article  PubMed  Google Scholar 

  3. McDonagh PF, Hokama JY (2000) Microvascular perfusion and transport in the diabetic heart. Microcirculation 7:163–181

    Article  CAS  PubMed  Google Scholar 

  4. Knudson JD, Dincer UD, Bratz IN, Sturek M, Dick GM, Tune JD (2007) Mechanisms of coronary dysfunction in obesity and insulin resistance. Microcirculation 14:317–338

    Article  CAS  PubMed  Google Scholar 

  5. Kojda G, Harrison D (1999) Interactions between NO and reactive oxygen species: pathophysiological importance in atherosclerosis, hypertension, diabetes and heart failure. Cardiovasc Res 43:562–571

    Article  CAS  PubMed  Google Scholar 

  6. Kranidis A, Zamanis N, Mitrakou A, Patsilinakos S, Bouki T, Tountas N, Anthopoulos P, Raptis S, Anthopoulos L (1997) Coronary microcirculation evaluation with transesophageal echocardiography Doppler in type II diabetics. Int J Cardiol 59:119–124

    Article  CAS  PubMed  Google Scholar 

  7. Nitenberg A, Valensi P, Sachs R, Dali M, Aptecar E, Attali JR (1993) Impairment of coronary vascular reserve and ACh-induced coronary vasodilation in diabetic patients with angiographically normal coronary arteries and normal left ventricular systolic function. Diabetes 42:1017–1025

    Article  CAS  PubMed  Google Scholar 

  8. Zhao CT, Wang M, Siu CW, Hou YL, Wang T, Tse HF, Yiu KH (2012) Myocardial dysfunction in patients with type 2 diabetes mellitus: role of endothelial progenitor cells and oxidative stress. Cardiovasc Diabetol 11:147

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Masi S, Lautamaki R, Guiducci L, Di Cecco P, Porciello C, Pardini S, Morales MA, Chubuchny V, Salvadori PA, Emdin M, Sironi AM, Knuuti J, Neglia D, Nuutila P, Ferrannini E, Iozzo P (2012) Similar patterns of myocardial metabolism and perfusion in patients with type 2 diabetes and heart disease of ischaemic and non-ischaemic origin. Diabetologia 55:2494–2500

    Article  CAS  PubMed  Google Scholar 

  10. Momose M, Abletshauser C, Neverve J, Nekolla SG, Schnell O, Standl E, Schwaiger M, Bengel FM (2002) Dysregulation of coronary microvascular reactivity in asymptomatic patients with type 2 diabetes mellitus. Eur J Nucl Med Mol Imaging 29:1675–1679

    Article  PubMed  Google Scholar 

  11. Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376

    Article  CAS  PubMed  Google Scholar 

  12. Frisbee JC, Maier KG, Stepp DW (2002) Oxidant stress-induced increase in myogenic activation of skeletal muscle resistance arteries in obese Zucker rats. Am J Physiol Heart Circ Physiol 283:H2160–H2168

    CAS  PubMed  Google Scholar 

  13. Kold-Petersen H, Brondum E, Nilsson H, Flyvbjerg A, Aalkjaer C (2012) Impaired myogenic tone in isolated cerebral and coronary resistance arteries from the goto-kakizaki rat model of type 2 diabetes. J Vasc Res 49:267–278

    Article  CAS  PubMed  Google Scholar 

  14. Matsumoto T, Noguchi E, Kobayashi T, Kamata K (2007) Mechanisms underlying the chronic pioglitazone treatment-induced improvement in the impaired endothelium-dependent relaxation seen in aortas from diabetic rats. Free Radic Biol Med 42:993–1007

    Article  CAS  PubMed  Google Scholar 

  15. Miura H, Wachtel RE, Loberiza FR Jr, Saito T, Miura M, Nicolosi AC, Gutterman DD (2003) Diabetes mellitus impairs vasodilation to hypoxia in human coronary arterioles: reduced activity of ATP-sensitive potassium channels. Circ Res 92:151–158

    Article  CAS  PubMed  Google Scholar 

  16. Belin de Chantemele EJ, Vessieres E, Guihot AL, Toutain B, Maquignau M, Loufrani L, Henrion D (2009) Type 2 diabetes severely impairs structural and functional adaptation of rat resistance arteries to chronic changes in blood flow. Cardiovasc Res 81:788–796

    Article  PubMed  Google Scholar 

  17. Szerafin T, Erdei N, Fulop T, Pasztor ET, Edes I, Koller A, Bagi Z (2006) Increased cyclooxygenase-2 expression and prostaglandin-mediated dilation in coronary arterioles of patients with diabetes mellitus. Circ Res 99:e12–e17

    Article  CAS  PubMed  Google Scholar 

  18. Tesfamariam B, Cohen RA (1992) Free radicals mediate endothelial cell dysfunction caused by elevated glucose. Am J Physiol 263:H321–H326

    CAS  PubMed  Google Scholar 

  19. Liu Y, Terata K, Rusch NJ, Gutterman DD (2001) High glucose impairs voltage-gated K(+) channel current in rat small coronary arteries. Circ Res 89:146–152

    Article  CAS  PubMed  Google Scholar 

  20. Li H, Chai Q, Gutterman DD, Liu Y (2003) Elevated glucose impairs cAMP-mediated dilation by reducing Kv channel activity in rat small coronary smooth muscle cells. Am J Physiol Heart Circ Physiol 285:H1213–H1219

    CAS  PubMed  Google Scholar 

  21. Schmidt RE, Dorsey DA, Beaudet LN, Peterson RG (2003) Analysis of the Zucker Diabetic Fatty (ZDF) type 2 diabetic rat model suggests a neurotrophic role for insulin/IGF-I in diabetic autonomic neuropathy. Am J Pathol 163:21–28

    Article  CAS  PubMed  Google Scholar 

  22. Oltman CL, Coppey LJ, Gellett JS, Davidson EP, Lund DD, Yorek MA (2005) Progression of vascular and neural dysfunction in sciatic nerves of Zucker diabetic fatty and Zucker rats. Am J Physiol Endocrinol Metab 289:E113–E122

    Article  CAS  PubMed  Google Scholar 

  23. Sparks JD, Shaw WN, Corsetti JP, Bolognino M, Pesek JF, Sparks CE (2000) Insulin-treated Zucker diabetic fatty rats retain the hypertriglyceridemia associated with obesity. Metabolism 49:1424–1430

    Article  CAS  PubMed  Google Scholar 

  24. Oltman CL, Richou LL, Davidson EP, Coppey LJ, Lund DD, Yorek MA (2006) Progression of coronary and mesenteric vascular dysfunction in Zucker obese and Zucker diabetic fatty rats. Am J Physiol Heart Circ Physiol 291:H1780–H1787

    Article  CAS  PubMed  Google Scholar 

  25. Reed MJ, Meszaros K, Entes LJ, Claypool MD, Pinkett JG, Gadbois TM, Reaven GM (2000) A new rat model of type 2 diabetes: the fat-fed, streptozotocin-treated rat. Metabolism 49:1390–1394

    Article  CAS  PubMed  Google Scholar 

  26. Srinivasan K, Viswanad B, Asrat L, Kaul CL, Ramarao P (2005) Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacol Res 52:313–320

    Article  CAS  PubMed  Google Scholar 

  27. Davidson EP, Coppey LJ, Holmes A, Dake B, Yorek MA (2011) Effect of treatment of high fat fed/low dose streptozotocin-diabetic rats with Ilepatril on vascular and neural complications. Eur J Pharmacol 668:497–506

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Kajikuri J, Watanabe Y, Ito Y, Ito R, Yamamoto T, Itoh T (2009) Characteristic changes in coronary artery at the early hyperglycaemic stage in a rat type 2 diabetes model and the effects of pravastatin. Br J Pharmacol 158:621–632

    Article  CAS  PubMed  Google Scholar 

  29. Matsumoto T, Noguchi E, Ishida K, Kobayashi T, Yamada N, Kamata K (2008) Metformin normalizes endothelial function by suppressing vasoconstrictor prostanoids in mesenteric arteries from OLETF rats, a model of type 2 diabetes. Am J Physiol Heart Circ Physiol 295:H1165–H1176

    Article  CAS  PubMed  Google Scholar 

  30. Obrosova IG, Drel VR, Oltman CL, Mashtalir N, Tibrewala J, Groves JT, Yorek MA (2007) Role of nitrosative stress in early neuropathy and vascular dysfunction in streptozotocin-diabetic rats. Am J Physiol Endocrinol Metab 293:E1645–E1655

    Article  CAS  PubMed  Google Scholar 

  31. Park Y, Capobianco S, Gao X, Falck JR, Dellsperger KC, Zhang C (2008) Role of EDHF in type 2 diabetes-induced endothelial dysfunction. Am J Physiol Heart Circ Physiol 295:H1982–H1988

    Article  CAS  PubMed  Google Scholar 

  32. Ergul A (2011) Endothelin-1 and diabetic complications: focus on the vasculature. Pharmacol Res 63:477–482

    Article  CAS  PubMed  Google Scholar 

  33. Wu SQ, Hopfner RL, McNeill JR, Wilson TW, Gopalakrishnan V (2000) Altered paracrine effect of endothelin in blood vessels of the hyperinsulinemic, insulin resistant obese Zucker rat. Cardiovasc Res 45:994–1000

    Article  CAS  PubMed  Google Scholar 

  34. Gupte S, Labinskyy N, Gupte R, Csiszar A, Ungvari Z, Edwards JG (2010) Role of NAD(P)H oxidase in superoxide generation and endothelial dysfunction in Goto-Kakizaki (GK) rats as a model of nonobese NIDDM. PLoS ONE 5:e11800

    Article  PubMed Central  PubMed  Google Scholar 

  35. Lin CY, Peng CY, Huang TT, Wu ML, Lai YL, Peng DH, Chen PF, Chen HF, Yen BL, Wu KK, Yet SF (2012) Exacerbation of oxidative stress-induced cell death and differentiation in induced pluripotent stem cells lacking heme oxygenase-1. Stem Cells Dev 21:1675–1687

    Article  CAS  PubMed  Google Scholar 

  36. Huang A, Yang YM, Feher A, Bagi Z, Kaley G, Sun D (2012) Exacerbation of endothelial dysfunction during the progression of diabetes: role of oxidative stress. Am J Physiol Regul Integr Comp Physiol 302:R674–R681

    Article  CAS  PubMed  Google Scholar 

  37. Suarez-Pinzon WL, Szabo C, Rabinovitch A (1997) Development of autoimmune diabetes in NOD mice is associated with the formation of peroxynitrite in pancreatic islet beta-cells. Diabetes 46:907–911

    Article  CAS  PubMed  Google Scholar 

  38. Bubolz AH, Wu Q, Larsen BT, Gutterman DD, Liu Y (2007) Ebselen reduces nitration and restores voltage-gated potassium channel function in small coronary arteries of diabetic rats. Am J Physiol Heart Circ Physiol 293:H2231–H2237

    Article  CAS  PubMed  Google Scholar 

  39. Miura H, Liu Y, Gutterman DD (1999) Human coronary arteriolar dilation to bradykinin depends on membrane hyperpolarization: contribution of nitric oxide and Ca2+-activated K+ channels. Circulation 99:3132–3138

    Article  CAS  PubMed  Google Scholar 

  40. Kersten JR, Brooks LA, Dellsperger KC (1995) Impaired microvascular response to graded coronary occlusion in diabetic and hyperglycemic dogs. Am J Physiol 268:H1667–H1674

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Oltman, C.L. (2014). Complications in the Coronary Circulation Associated with Diabetes. In: Obrosova, I., Stevens, M., Yorek, M. (eds) Studies in Diabetes. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4899-8035-9_3

Download citation

Publish with us

Policies and ethics