Skip to main content

Oxidative Stress in Diabetes Mellitus and Possible Interventions

  • Chapter
  • First Online:
  • 1757 Accesses

Abstract

A substantial amount of evidence has demonstrated that diabetes is highly associated with oxidative stress. The unifying theory that hyperglycemia-induced elevations in superoxide production underlie the activation of many pathways involved in the onset, progression, and pathological consequences of diabetes naturally raised an interest in the role of antioxidant treatment. In this chapter, after analyzing the molecular mechanisms of the excessive oxidative stress in diabetes, we will discuss the potential therapeutic interventions including pharmaceutical agents, diet, and exercise.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. ed Sies H (1991) Oxidative stress: oxidants and antioxidants. Academic, London

    Google Scholar 

  2. King GL, Loeken MR (2004) Hyperglycemia-induced oxidative stress in diabetic complications. Histochem Cell Biol 122:333–338

    CAS  PubMed  Google Scholar 

  3. Nishikawa T, Edelstein D, Du XL et al (2000) Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404:787–790

    CAS  PubMed  Google Scholar 

  4. Schrauwen P, Hesselink MK (2004) Oxidative capacity, lipotoxicity, and mitochondrial damage in type 2 diabetes. Diabetes 53:1412–1417

    CAS  PubMed  Google Scholar 

  5. Yamagishi SI, Edelstein D, Du XL, Kaneda Y et al (2001) Leptin induces mitochondrial superoxide production and monocyte chemoattractant protein-1 expression in aortic endothelial cells by increasing fatty acid oxidation via protein kinase A. J Biol Chem 276(27):25096–25100

    CAS  PubMed  Google Scholar 

  6. Schwartz D, Malhotra A, Fink M (1999) Cytopathic hypoxia in sepsis: an overview. Sepsis 2:279–289

    Google Scholar 

  7. Pacher P, Szabo C (2006) Role of peroxynitrite in the pathogenesis of cardiovascular complications of diabetes. Curr Opin Pharmacol 6:136–141

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Greenacre A, Ischiropoulos H (2001) Tyrosine nitration: localisation, quantification, consequences for protein function and signal transduction. Free Radic Res 34:541–581

    CAS  PubMed  Google Scholar 

  9. Beckmann JS, Ye YZ, Anderson PJ et al (1994) Extensive nitration of protein tyrosines in human atherosclerosis detected by immunohistochemistry. Biol Chem Hoppe Seyler 375:81–88

    CAS  PubMed  Google Scholar 

  10. Mihm MJ, Jing L, Bauer JA (2000) Nitrotyrosine causes selective vascular endothelial dysfunction and DNA damage. J Cardiovasc Pharmacol 36:182–187

    CAS  PubMed  Google Scholar 

  11. Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Mabley JG, Soriano FG (2005) Role of nitrosative stress and poly(ADP-ribose) polymerase activation in diabetic vascular dysfunction. Curr Vasc Pharmacol 3:247–252

    CAS  PubMed  Google Scholar 

  13. Yim S, Malhotra A, Veves A (2007) Antioxidants and CVD in diabetes: where do we stand now. Curr Diab Rep 7:8–13

    CAS  PubMed  Google Scholar 

  14. Adaikalakoteswari A, Rema M, Mohan V et al (2007) Oxidative DNA damage and augmentation of poly(ADP-ribose) polymerase/nuclear factor-kappa B signaling in patients with type 2 diabetes and microangiopathy. Int J Biochem Cell Biol 39:1673–1684

    CAS  PubMed  Google Scholar 

  15. Craven PA, Studer RK, DeRubertis FR (1994) Impaired nitric oxide-dependent cyclic guanosine monophosphate generation in glomeruli from diabetic rats. Evidence for protein kinase C-mediated suppression of the cholinergic response. J Clin Invest 93:311–320

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Gorbunov NV, Osipov AN, Sweetland MA et al (1996) NO-redox paradox: direct oxidation of alpha-tocopherol and alpha-tocopherol-mediated oxidation of ascorbate. Biochem Biophys Res Commun 219(3):835–841

    CAS  PubMed  Google Scholar 

  17. Alper G, Olukman M, Irer S et al (2006) Effect of vitamin E and C supplementation combined with oral antidiabetic therapy on the endothelial dysfunction in the neonatally streptozotocin injected diabetic rat. Diabetes Metab Res Rev 22(3):190–197

    CAS  PubMed  Google Scholar 

  18. d’Uscio LV, Katusic ZS (2006) Increased vascular biosynthesis of tetrahydrobiopterin in apolipoprotein E-deficient mice. Am J Physiol Heart Circ Physiol 290:H2466–H2471

    PubMed  Google Scholar 

  19. Hammes HP, Du X, Edelstein D et al (2003) Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy. Nat Med 9:294–299

    CAS  PubMed  Google Scholar 

  20. Marchetti V, Menghini R, Rizza S et al (2006) Benfotiamine counteracts glucose toxicity effects on endothelial progenitor cell differentiation via Akt/FoxO signaling. Diabetes 55:2231–2237

    CAS  PubMed  Google Scholar 

  21. Goldin A, Beckman JA, Schmidt AM et al (2006) Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation 114:597–605

    CAS  PubMed  Google Scholar 

  22. Hofmann MA, Drury S, Fu C et al (1999) RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell 97:889–901

    CAS  PubMed  Google Scholar 

  23. Lander HM, Tauras JM, Ogiste JS et al (1997) Activation of the receptor for advanced glycation end products triggers a p21(ras)-dependent mitogen-activated protein kinase pathway regulated by oxidant stress. J Biol Chem 272:17810–17814

    CAS  PubMed  Google Scholar 

  24. Berg TJ, Dahl-Jorgensen K, Torjesen PA et al (1997) Increased serum levels of advanced glycation end products (AGEs) in children and adolescents with IDDM. Diabetes Care 20:1006–1008

    CAS  PubMed  Google Scholar 

  25. Berg TJ, Bangstad HJ, Torjesen PA et al (1997) Advanced glycation end products in serum predict changes in the kidney morphology of patients with insulin-dependent diabetes mellitus. Metabolism 46:661–665

    CAS  PubMed  Google Scholar 

  26. Hammes HP, Martin S, Federlin K et al (1991) Aminoguanidine treatment inhibits the development of experimental diabetic retinopathy. Proc Natl Acad Sci USA 88:11555–11558

    CAS  PubMed  Google Scholar 

  27. Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820

    CAS  PubMed  Google Scholar 

  28. Sorbinil Retinopathy Trial Research Group (1990) A randomized trial of sorbinil, an aldose reductase inhibitor, in diabetic retinopathy. Arch Ophthalmol 108:1234–1244

    Google Scholar 

  29. Greene DA, Arezzo JC, Brown MB (1999) Effect of aldose reductase inhibition on nerve conduction and morphometry in diabetic neuropathy. Zenarestat Study Group. Neurology 53:580–591

    CAS  PubMed  Google Scholar 

  30. Kolm-Litty V, Sauer U, Nerlich A et al (1998) High glucose induced transforming growth factor beta1 production is mediated by the hexosamine pathway in porcine glomerular mesangial cells. J Clin Invest 101:160–169

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Du XL, Edelstein D, Dimmeler S et al (2001) Hyperglycemia inhibits endothelial nitric oxide synthase activity by posttranslational modification at the Akt site. J Clin Invest 108:1341–1348

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Su Y, Liu XM, Sun YM et al (2008) Endothelial dysfunction in impaired fasting glycemia, impaired glucose tolerance, and type 2 diabetes mellitus. Am J Cardiol 102(4):497–498

    CAS  PubMed  Google Scholar 

  33. McVeigh GE, Brennan GM, Johnston GD et al (1992) Impaired endothelium- dependent and independent vasodilation in patients with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 35(8):771–776

    CAS  PubMed  Google Scholar 

  34. Watts GF, O’Brien SF, Silvester W et al (1996) Impaired endothelium-dependent and independent dilatation of forearm resistance arteries in men with diet-treated non-insulin-dependent diabetes: role of dyslipidaemia. Clin Sci (Lond) 91:567–573

    CAS  Google Scholar 

  35. Williams SB, Cusco JA, Roddy MA et al (1996) Impaired nitric oxide-mediated vasodilation in patients with noninsulin-dependent diabetes mellitus. J Am Coll Cardiol 27:567–574

    CAS  PubMed  Google Scholar 

  36. Doupis J, Rahangdale S, Gnardellis C et al (2011) Effects of diabetes and obesity on vascular reactivity, inflammatory cytokines, and growth factors. Obesity (Silver Spring) 19(4):729–735

    CAS  Google Scholar 

  37. Henry RMA, Ferreira I, Kostense PJ et al (2004) Type 2 diabetes is associated with impaired endothelium-dependent, flow-mediated dilation, but impaired glucose metabolism is not: The Hoorn Study. Atherosclerosis 174:49–56

    CAS  PubMed  Google Scholar 

  38. Nitenberg A, Valensi P, Sachs R et al (1993) Impairment of coronary vascular reserve and ACh-induced coronary vasodilation in diabetic patients with angiographically normal coronary arteries and normal left ventricular systolic function. Diabetes 42:1017–1025

    CAS  PubMed  Google Scholar 

  39. Prior JO, Quinones MJ, Hernandez-Pampaloni M et al (2005) Coronary circulatory dysfunction in insulin resistance, impaired glucose tolerance, and type 2 diabetes mellitus. Circulation 111:2291–2298

    CAS  PubMed  Google Scholar 

  40. Woodman RJ, Chew GT, Watts GF (2005) Mechanisms, significance and treatment of vascular dysfunction in type 2 diabetes mellitus : focus on lipid-regulating therapy. Drugs 65:31–74

    CAS  PubMed  Google Scholar 

  41. Thorand B, Baumert J, Chambless L et al, for the MONICA/KORA Study Group (2006) Elevated markers of endothelial dysfunction predict type 2 diabetes mellitus in middle-aged men and women from the general population. Arterioscler Thromb Vasc Biol 26:398–405

    Google Scholar 

  42. Lim SC, Caballero AE, Smakowski P et al (1999) Soluble intercellular adhesion molecule, vascular cell adhesion molecule, and impaired microvascular reactivity are early markers of vasculopathy in type 2 diabetic individuals without microalbuminuria. Diabetes Care 22:1865–1870

    CAS  PubMed  Google Scholar 

  43. Guerci B, Kearney-Schwartz A, Bohme P et al (2001) Endothelial dysfunction and type 2 diabetes. Part 1: physiology and methods for exploring the endothelial function. Diabetes Metab 27:425–434

    CAS  PubMed  Google Scholar 

  44. Papaioannou GI, Seip RL, Grey NJ et al (2004) Brachial artery reactivity in asymptomatic patients with type 2 diabetes mellitus and microalbuminuria (from the detection of ischemia in asymptomatic diabetics-brachial artery reactivity study). Am J Cardiol 94:294–299

    PubMed  Google Scholar 

  45. Saouaf R, Arora S, Smakowski P et al (1998) Reactive hyperemic response of the brachial artery: comparison of proximal and distal occlusion. Acad Radiol 5:556–560

    CAS  PubMed  Google Scholar 

  46. Heiss G, Sharrett AR, Barnes R et al (1991) Carotid atherosclerosis measured by B-mode ultrasound in populations: associations with cardiovascular risk factors in the ARIC study. Am J Epidemiol 134:250–256

    CAS  PubMed  Google Scholar 

  47. O’Leary DH, Polak JF, Kronmal RA et al (1999) Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. Cardiovascular Health Study Collaborative Research Group. N Engl J Med 340:14–22

    PubMed  Google Scholar 

  48. Tooke JE, Ostergren J, Fagrell B (1983) Synchronous assessment of human skin microcirculation by laser Doppler flowmetry and dynamic capillaroscopy. Int J Microcirc Clin Exp 2:277–284

    CAS  PubMed  Google Scholar 

  49. Cinar MG, Ulker S, Alper G et al (2001) Effect of dietary vitamin E supplementation on vascular reactivity of thoracic aorta in streptozotocin-diabetic rats. Pharmacology 62:56–64

    CAS  PubMed  Google Scholar 

  50. Keegan A, Walbank H, Cotter MA et al (1995) Chronic vitamin E treatment prevents defective endothelium-dependent relaxation in diabetic rat aorta. Diabetologia 38:1475–1478

    CAS  PubMed  Google Scholar 

  51. Doupis J, Veves A (2007) Antioxidants, diabetes and endothelial dysfunction. US Endocrine Diseases 2:61–65

    Google Scholar 

  52. Stewart-Lee AL, Forster LA, Nourooz-Zadeh J et al (1994) Vitamin E protects against impairment of endothelium-mediated relaxations in cholesterol-fed rabbits. Arterioscler Thromb 14:494–499

    CAS  PubMed  Google Scholar 

  53. Beckman JA, Goldfine AB, Gordon MB et al (2003) Oral antioxidant therapy improves endothelial function in type 1 but not type 2 diabetes mellitus. Am J Physiol Heart Circ Physiol 285:H2392–H2398

    CAS  PubMed  Google Scholar 

  54. Stephens NG, Parsons A, Schofield PM et al (1996) Randomised controlled trial of vitamin E in patients with coronary disease: Cambridge Heart Antioxidant Study (CHAOS). Lancet 347(9004):781–786

    CAS  PubMed  Google Scholar 

  55. Sacco M, Pellegrini F, Roncaglioni MC et al (2003) Primary prevention of cardiovascular events with low-dose aspirin and vitamin E in type 2 diabetic patients: results of the Primary Prevention Project (PPP) trial. Diabetes Care 26:3264–3272

    CAS  PubMed  Google Scholar 

  56. Economides PA, Khaodhiar L, Caselli A et al (2005) The effect of vitamin E on endothelial function of micro- and macrocirculation and left ventricular function in type 1 and type 2 diabetic patients. Diabetes 54(1):204–211

    CAS  PubMed  Google Scholar 

  57. Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto miocardico (1999) Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial. Lancet 354(9177):447–455

    Google Scholar 

  58. Marchioli R, Levantesi G, Macchia A et al (2006) Vitamin E increases the risk of developing heart failure after myocardial infarction: results from the GISSI-Prevenzione trial. J Cardiovasc Med (Hagerstown) 7:347–350

    Google Scholar 

  59. Yusuf S, Dagenais G, Pogue J et al (2000) Vitamin E supplementation and cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med 342(3):154–160

    CAS  PubMed  Google Scholar 

  60. Lonn E, Bosch J, Yusuf S et al (2005) Effects of long-term vitamin E supplementation on cardiovascular events and cancer: a randomized controlled trial. JAMA 293(11):1338–1347

    PubMed  Google Scholar 

  61. Eidelman RS, Hollar D, Hebert PR et al (2004) Randomized trials of vitamin E in the treatment and prevention of cardiovascular disease. Arch Intern Med 164(14):1552–1556

    CAS  PubMed  Google Scholar 

  62. Shekelle PG, Morton SC, Jungvig LK et al (2004) Effect of supplemental vitamin E for the prevention and treatment of cardiovascular disease. J Gen Intern Med 19(4):380–389

    PubMed Central  PubMed  Google Scholar 

  63. Miller ER, Pastor-Barriuso R, Dalal D et al (2005) Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality. Ann Intern Med 142(1):37–46

    CAS  PubMed  Google Scholar 

  64. Lonn E, Yusuf S, Hoogwerf B et al (2002) Effects of vitamin E on cardiovascular and microvascular outcomes in high-risk patients with diabetes: results of the HOPE study and MICRO-HOPE substudy. Diabetes Care 25:1919–1927

    CAS  PubMed  Google Scholar 

  65. Lonn E, Yusuf S, Dzavik V et al (2001) Effects of ramipril and vitamin E on atherosclerosis: the study to evaluate carotid ultrasound changes in patients treated with ramipril and vitamin E (SECURE). Circulation 103:919–925

    CAS  PubMed  Google Scholar 

  66. Kataja-Tuomola M, Sundell JR, Mannisto S et al (2008) Effect of alpha-tocopherol and beta-carotene supplementation on the incidence of type 2 diabetes. Diabetologia 51:47–53

    CAS  PubMed  Google Scholar 

  67. Song Y, Cook NR, Albert CM et al (2009) Effects of vitamins C and E and β-carotene on the risk of type 2 diabetes in women at high risk of cardiovascular disease: a randomized controlled trial. Am J Clin Nutr 90:429–437

    CAS  PubMed  Google Scholar 

  68. Beckman JA, Goldfine AB, Gordon MB et al (2001) Ascorbate restores endothelium-dependent vasodilation impaired by acute hyperglycemia in humans. Circulation 103:1618–1623

    CAS  PubMed  Google Scholar 

  69. Timimi FK, Ting HH, Haley EA, Roddy MA et al (1998) Vitamin C improves endothelium-dependent vasodilation in patients with insulin-dependent diabetes mellitus. J Am Coll Cardiol 31:552–557

    CAS  PubMed  Google Scholar 

  70. Ting HH, Timimi FK, Boles KS et al (1996) Vitamin C improves endothelium-dependent vasodilation in patients with non-insulin-dependent diabetes mellitus. J Clin Invest 97:22–28

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Schneider MP, Delles C, Schmidt BM et al (2005) Superoxide scavenging effects of N-acetylcysteine and vitamin C in subjects with essential hypertension. Am J Hypertens 18:1111–1117

    CAS  PubMed  Google Scholar 

  72. Enstrom JE, Kanim LE, Klein MA et al (1992) Vitamin C intake and mortality among a sample of the United States population. Epidemiology 3:194–202

    CAS  PubMed  Google Scholar 

  73. Tousoulis D, Antoniades C, Tountas C et al (2003) Vitamin C affects thrombosis/fibrinolysis system and reactive hyperemia in patients with type 2 diabetes and coronary artery disease. Diabetes Care 26:2749–2753

    CAS  PubMed  Google Scholar 

  74. Boekholdt SM, Meuwese MC, Day NE et al (2006) Plasma concentrations of ascorbic acid and C-reactive protein, and risk of future coronary artery disease, in apparently healthy men and women: the EPIC-Norfolk prospective population study. Br J Nutr 96:516–522

    CAS  PubMed  Google Scholar 

  75. Chen H, Karne RJ, Hall G et al (2006) High-dose oral vitamin C partially replenishes vitamin C levels in patients with type 2 diabetes and low vitamin C levels but does not improve endothelial dysfunction or insulin resistance. Am J Physiol Heart Circ Physiol 290(1):H137–H145

    CAS  PubMed  Google Scholar 

  76. Kocak G et al (2000) Alpha-lipoic acid treatment ameliorates metabolic parameters, blood pressure, vascular reactivity and morphology of vessels already damaged by streptozotocin-diabetes. Diabetes Nutr Metab 13:308–318

    CAS  PubMed  Google Scholar 

  77. Black K, Qu X, Seale JP et al (1998) Metabolic effects of thioctic acid in rodent models of insulin resistance and diabetes. Clin Exp Pharmacol Physiol 25:712–714

    CAS  PubMed  Google Scholar 

  78. Kowluru RA, Odenbach S (2004) Effect of long-term administration of alpha-lipoic acid on retinal capillary cell death and the development of retinopathy in diabetic rats. Diabetes 53:3233–3238

    CAS  PubMed  Google Scholar 

  79. Bierhaus A, Chevion S, Chevion M et al (1997) Advanced glycation end product-induced activation of NF-kappaB is suppressed by alpha-lipoic acid in cultured endothelial cells. Diabetes 46:1481–1490

    CAS  PubMed  Google Scholar 

  80. Ziegler D et al (1995) Treatment of symptomatic diabetic peripheral neuropathy with the anti-oxidant alpha-lipoic acid. A 3-week multicentre randomized controlled trial (ALADIN Study). Diabetologia 38:1425–1433

    CAS  PubMed  Google Scholar 

  81. Reljanovic M et al (1999) Treatment of diabetic polyneuropathy with the antioxidant thioctic acid (alpha-lipoic acid): a two year multicenter randomized double-blind placebo-controlled trial (ALADIN II). Alpha Lipoic Acid in Diabetic Neuropathy. Free Radic Res 31:171–179

    CAS  PubMed  Google Scholar 

  82. Ziegler D et al (1999) Treatment of symptomatic diabetic polyneuropathy with the antioxidant alpha-lipoic acid: a 7-month multicenter randomized controlled trial (ALADIN III Study). ALADIN III Study Group. Alpha-Lipoic Acid in Diabetic Neuropathy. Diabetes Care 22:1296–1301

    CAS  PubMed  Google Scholar 

  83. Ziegler D, Ametov A, Barinov A et al (2006) Oral treatment with alpha-lipoic acid improves symptomatic diabetic polyneuropathy: the SYDNEY 2 trial. Diabetes Care 29:2365–2370

    CAS  PubMed  Google Scholar 

  84. Ziegler D, Schatz H, Conrad F et al (1997) Effects of treatment with the antioxidant alpha-lipoic acid on cardiac autonomic neuropathy in NIDDM patients. A 4-month randomized controlled multicenter trial (DEKAN Study). Deutsche Kardiale Autonome Neuropathie. Diabetes Care 20:369–373

    CAS  PubMed  Google Scholar 

  85. Sola S, Mir MQ, Cheema FA et al (2005) Irbesartan and lipoic acid improve endothelial function and reduce markers of inflammation in the metabolic syndrome: results of the Irbesartan and Lipoic Acid in Endothelial Dysfunction (ISLAND) study. Circulation 111:343–348

    CAS  PubMed  Google Scholar 

  86. The Scandinavian Simvastatin Survival Study (4S) (1994) Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease. Lancet 344:1383–1389

    Google Scholar 

  87. Tsubouchi H, Inoguchi T, Sonta T et al (2005) Statin attenuates high glucose-induced and diabetes-induced oxidative stress in vitro and in vivo evaluated by electron spin resonance measurement. Free Radic Biol Med 39:444–452

    CAS  PubMed  Google Scholar 

  88. Ceylan A, Karasu C, Aktan F et al (2003) Effects of simvastatin treatment on oxidant/antioxidant state and ultrastructure of diabetic rat myocardium. Gen Physiol Biophys 22:535–547

    CAS  PubMed  Google Scholar 

  89. Wagner AH, Kohler T, Ruckschloss U et al (2000) Improvement of nitric oxide-dependent vasodilatation by HMG-CoA reductase inhibitors through attenuation of endothelial superoxide anion formation. Arterioscler Thromb Vasc Biol 20:61–69

    CAS  PubMed  Google Scholar 

  90. Wassmann S, Laufs U, Baumer AT et al (2001) HMG-CoA reductase inhibitors improve endothelial dysfunction in normocholesterolemic hypertension via reduced production of reactive oxygen species. Hypertension 37:1450–1457

    CAS  PubMed  Google Scholar 

  91. Ceylan A, Karasu C, Aktan F et al (2004) Simvastatin treatment restores vasoconstriction and the inhibitory effect of LPC on endothelial relaxation via affecting oxidizing metabolism in diabetic rats. Diabetes Nutr Metab 17:203–210

    CAS  PubMed  Google Scholar 

  92. Rosenson RS, Tangney CC, Levine DM et al (2005) Association between reduced low density lipoprotein oxidation and inhibition of monocyte chemoattractant protein-1 production in statin-treated subjects. J Lab Clin Med 145:83–87

    CAS  PubMed  Google Scholar 

  93. Maron DJ, Fazio S, Linton MF (2000) Current perspectives on statins. Circulation 101:207–213

    CAS  PubMed  Google Scholar 

  94. Morawietz H, Erbs S, Holtz J et al (2006) Endothelial protection, AT1 blockade and cholesterol-dependent oxidative stress: the EPAS trial. Circulation 114:I296–I301

    PubMed  Google Scholar 

  95. Pietsch A, Erl W, Lorenz RL (1996) Lovastatin reduces expression of the combined adhesion and scavenger receptor CD36 in human monocytic cells. Biochem Pharmacol 52:433–439

    CAS  PubMed  Google Scholar 

  96. Umetani N, Kanayama Y, Okamura M et al (1996) Lovastatin inhibits gene expression of type-I scavenger receptor in THP-1 human macrophages. Biochim Biophys Acta 1303:199–206

    PubMed  Google Scholar 

  97. Aviram M, Rosenblat M, Bisgaier CL et al (1998) Atorvastatin and gemfibrozil metabolites, but not the parent drugs, are potent antioxidants against lipoprotein oxidation. Atherosclerosis 138:271–280

    CAS  PubMed  Google Scholar 

  98. Hernandez-Perera O, Perez-Sala D, Navarro-Antolin J et al (1998) Effects of the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors, atorvastatin and simvastatin, on the expression of endothelin-1 and endothelial nitric oxide synthase in vascular endothelial cells. J Clin Invest 101:2711–2719

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Yu Y, Ohmori K, Chen Y et al (2004) Effects of pravastatin on progression of glucose intolerance and cardiovascular remodeling in a type II diabetes model. J Am Coll Cardiol 44:904–913

    CAS  PubMed  Google Scholar 

  100. Jimenez A, Arriero MM, Lopez-Blaya A et al (2001) Regulation of endothelial nitric oxide synthase expression in the vascular wall and in mononuclear cells from hypercholesterolemic rabbits. Circulation 104:1822–1830

    CAS  PubMed  Google Scholar 

  101. Landmesser U, Engberding N, Bahlmann FH et al (2004) Statin-induced improvement of endothelial progenitor cell mobilization, myocardial neovascularization, left ventricular function, and survival after experimental myocardial infarction requires endothelial nitric oxide synthase. Circulation 110:1933–1939

    CAS  PubMed  Google Scholar 

  102. Colhoun HM, Betteridge DJ, Durrington PN et al (2004) Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre randomised placebo-controlled trial. Lancet 364:685–696

    CAS  PubMed  Google Scholar 

  103. Collins R, Armitage J, Parish S et al (2003) MRC/BHF Heart Protection Study of cholesterol-lowering with simvastatin in 5963 people with diabetes: a randomised placebo-controlled trial. Lancet 361:2005–2016

    PubMed  Google Scholar 

  104. Mansourati J, Newman LG, Roman SH et al (2001) Lipid lowering does not improve endothelial function in subjects with poorly controlled diabetes. Diabetes Care 24:2152–2153

    CAS  PubMed  Google Scholar 

  105. Dogra GK, Watts GF, Chan DC et al (2005) Statin therapy improves brachial artery vasodilator function in patients with type 1 diabetes and microalbuminuria. Diabet Med 22:239–242

    CAS  PubMed  Google Scholar 

  106. Mullen MJ, Wright D, Donald AE et al (2000) Atorvastatin but not l-arginine improves endothelial function in type I diabetes mellitus: a double-blind study. J Am Coll Cardiol 36:410–416

    CAS  PubMed  Google Scholar 

  107. Tsunekawa T, Hayashi T, Kano H et al (2001) Cerivastatin, a hydroxymethylglutaryl coenzyme a reductase inhibitor, improves endothelial function in elderly diabetic patients within 3 days. Circulation 104:376–379

    CAS  PubMed  Google Scholar 

  108. Economides PA, Caselli A, Tiani E et al (2004) The effects of atorvastatin on endothelial function in diabetic patients and subjects at risk for type 2 diabetes. J Clin Endocrinol Metab 89:740–747

    CAS  PubMed  Google Scholar 

  109. Tan KC, Chow WC, Tam SC et al (2002) Atorvastatin lowers C-reactive protein and improves endothelium-dependent vasodilation in type 2 diabetes mellitus. J Clin Endocrinol Metab 87:563–568

    CAS  PubMed  Google Scholar 

  110. Tousoulis D, Antoniades C, Vasiliadou C et al (2007) Effects of atorvastatin and vitamin C on forearm hyperaemic blood flow, asymmetrical dimethylarginine levels and the inflammatory process in patients with type 2 diabetes mellitus. Heart 93:244–246

    CAS  PubMed  Google Scholar 

  111. Ceriello A, Taboga C, Tonutti L et al (2002) Evidence for an independent and cumulative effect of postprandial hypertriglyceridemia and hyperglycemia on endothelial dysfunction and oxidative stress generation: effects of short- and long-term simvastatin treatment. Circulation 106:1211–1218

    PubMed  Google Scholar 

  112. Boger RH (2004) Asymmetric dimethylarginine, an endogenous inhibitor of nitric oxide synthase, explains the “l-arginine paradox” and acts as a novel cardiovascular risk factor. J Nutr 134:2842S–2847S (discussion 2853S)

    PubMed  Google Scholar 

  113. Oak JH, Cai H (2007) Attenuation of angiotensin II signaling recouples eNOS and inhibits nonendothelial NOX activity in diabetic mice. Diabetes 56:118–126

    CAS  PubMed  Google Scholar 

  114. Rajagopalan S, Kurz S, Munzel T et al (1996) Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J Clin Invest 97:1916–1923

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Laursen JB, Rajagopalan S, Galis Z et al (1997) Role of superoxide in angiotensin II-induced but not catecholamine-induced hypertension. Circulation 95:588–593

    CAS  PubMed  Google Scholar 

  116. Bendall JK, Rinze R, Adlam R et al (2007) Endothelial Nox2 overexpression potentiates vascular oxidative stress and hemodynamic response to angiotensin II: studies in endothelial-targeted Nox2 transgenic mice. Circ Res 100:1016–1025

    CAS  PubMed  Google Scholar 

  117. Cheetham C, O’Driscoll G, Stanton K et al (2001) Losartan, an angiotensin type I receptor antagonist, improves conduit vessel endothelial function in Type II diabetes. Clin Sci (Lond) 100:13–17

    CAS  Google Scholar 

  118. Cheetham C, Collis J, O’Driscoll G et al (2000) Losartan, an angiotensin type 1 receptor antagonist, improves endothelial function in non-insulin-dependent diabetes. J Am Coll Cardiol 36:1461–1466

    CAS  PubMed  Google Scholar 

  119. O’Driscoll G, Green D, Maiorana A et al (1999) Improvement in endothelial function by angiotensin-converting enzyme inhibition in non-insulin-dependent diabetes mellitus. J Am Coll Cardiol 33:1506–1511

    PubMed  Google Scholar 

  120. Giugliano D, Marfella R, Acampora R et al (1998) Effects of perindopril and carvedilol on endothelium-dependent vascular functions in patients with diabetes and hypertension. Diabetes Care 21:631–636

    CAS  PubMed  Google Scholar 

  121. Komers R, Simkova R, Kazdova L et al (2004) Effects of ACE inhibition and AT1-receptor blockade on haemodynamic responses to l-arginine in type 1 diabetes. J Renin Angiotensin Aldosterone Syst 5:33–38

    CAS  PubMed  Google Scholar 

  122. Schalkwijk CG, Smulders LJ et al (2000) ACE-inhibition modulates some endothelial functions in healthy subjects and in normotensive type 1 diabetic patients. Eur J Clin Invest 30:853–860

    CAS  PubMed  Google Scholar 

  123. McFarlane R, McCredie RJ, Bonney MA et al (1999) Angiotensin converting enzyme inhibition and arterial endothelial function in adults with type 1 diabetes mellitus. Diabet Med 16:62–66

    CAS  PubMed  Google Scholar 

  124. Mullen MJ, Clarkson P, Donald AE et al (1998) Effect of enalapril on endothelial function in young insulin-dependent diabetic patients: a randomized, double-blind study. J Am Coll Cardiol 31:1330–1335

    CAS  PubMed  Google Scholar 

  125. Yusuf S, Sleight P, Pogue J et al (2000) Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med 342:145–153

    CAS  PubMed  Google Scholar 

  126. Dahlof B, Devereux RB, Kjeldsen SE et al (2002) Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet 359:995–1003

    CAS  PubMed  Google Scholar 

  127. Nickenig G, Sachinidis A, Michaelsen F et al (1997) Upregulation of vascular angiotensin II receptor gene expression by low-density lipoprotein in vascular smooth muscle cells. Circulation 95:473–478

    CAS  PubMed  Google Scholar 

  128. Morawietz H, Rueckschloss U, Niemann B et al (1999) Angiotensin II induces LOX-1, the human endothelial receptor for oxidized low-density lipoprotein. Circulation 100:899–902

    CAS  PubMed  Google Scholar 

  129. Caballero AE, Saouaf R, Lim SC et al (2003) The effects of troglitazone, an insulin-sensitizing agent, on the endothelial function in early and late type 2 diabetes: a placebo-controlled randomized clinical trial. Metabolism 52:173–180

    CAS  PubMed  Google Scholar 

  130. Mittermayer F, Schaller G, Pleiner J et al (2007) Rosiglitazone prevents free fatty acid-induced vascular endothelial dysfunction. J Clin Endocrinol Metab 92:2574–2580

    CAS  PubMed  Google Scholar 

  131. Libby P, Plutzky J (2007) Inflammation in diabetes mellitus: role of peroxisome proliferator-activated receptor-alpha and peroxisome proliferator-activated receptor-gamma agonists. Am J Cardiol 99:27B–40B

    CAS  PubMed  Google Scholar 

  132. Mazzone T, Meyer PM, Feinstein SB et al (2006) Effect of pioglitazone compared with glimepiride on carotid intima-media thickness in type 2 diabetes: a randomized trial. JAMA 296:2572–2581

    CAS  PubMed  Google Scholar 

  133. Stocker DJ, Taylor AJ, Langley RW et al (2007) A randomized trial of the effects of rosiglitazone and metformin on inflammation and subclinical atherosclerosis in patients with type 2 diabetes. Am Heart J 153(445):e1–e6

    PubMed  Google Scholar 

  134. Sorrentino SA, Bahlmann FH, Besler C et al (2007) Oxidant stress impairs in vivo reendothelialization capacity of endothelial progenitor cells from patients with type 2 diabetes mellitus: restoration by the peroxisome proliferator-activated receptor-gamma agonist rosiglitazone. Circulation 116:163–173

    CAS  PubMed  Google Scholar 

  135. Wang CH, Ting MK, Verma S et al (2006) Pioglitazone increases the numbers and improves the functional capacity of endothelial progenitor cells in patients with diabetes mellitus. Am Heart J 152(1051):e1–e8

    PubMed  Google Scholar 

  136. Tao L, Liu HR, Gao E et al (2003) Antioxidative, antinitrative, and vasculoprotective effects of a peroxisome proliferator-activated receptor-gamma agonist in hypercholesterolemia. Circulation 108:2805–2811

    CAS  PubMed  Google Scholar 

  137. Nissen SE, Wolski K (2007) Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med 356:2457–2471

    CAS  PubMed  Google Scholar 

  138. Couzin J (2007) Drug safety. Heart attack risk overshadows a popular diabetes therapy. Science 316:1550–1551

    CAS  PubMed  Google Scholar 

  139. Erdmann E, Dormandy JA, Charbonnel B et al (2007) The effect of pioglitazone on recurrent myocardial infarction in 2,445 patients with type 2 diabetes and previous myocardial infarction: results from the PROactive (PROactive 05) Study. J Am Coll Cardiol 49:1772–1780

    CAS  PubMed  Google Scholar 

  140. Negro R, Dazzi D, Hassan H et al (2004) Pioglitazone reduces blood pressure in non-dipping diabetic patients. Minerva Endocrinol 29:11–17

    CAS  PubMed  Google Scholar 

  141. Kushi LH, Folsom AR, Prineas RJ et al (1996) Dietary antioxidant vitamins and death from coronary heart disease in postmenopausal women. N Engl J Med 334(18):1156–1162

    CAS  PubMed  Google Scholar 

  142. Kris-Etherton P, Eckel RH, Howard BV et al (2001) Lyon Diet Heart Study: benefits of a Mediterranean-style, National Cholesterol Education Program/American Heart Association step I dietary pattern on cardiovascular disease. Circulation 103:1823–1825

    CAS  PubMed  Google Scholar 

  143. Doupis J, Dimosthenopoulos C, Diamanti K et al (2009) Metabolic syndrome and Mediterranean dietary pattern in a sample of young, male, Greek navy recruits. Nutr Metab Cardiovasc Dis 19(6):e7–e8

    CAS  PubMed  Google Scholar 

  144. Perez-Jimenez F, Alvarez de Cienfuegos G, Badimon L et al (2005) International conference on the healthy effect of virgin olive oil. Eur J Clin Invest 35(7):421–424

    CAS  PubMed  Google Scholar 

  145. Esposito K, Marfella R, Ciotola M et al (2004) Effect of a mediterranean-style diet on endothelial dysfunction and markers of vascular inflammation in the metabolic syndrome: a randomized trial. JAMA 292(12):1440–1446

    CAS  PubMed  Google Scholar 

  146. Van Dam RM, Hu FB (2005) Coffee consumption and risk of type 2 diabetes: a systematic review. JAMA 294(1):97–104

    PubMed  Google Scholar 

  147. Pereira MA, Parker ED, Folsom AR (2006) Coffee consumption and risk of type 2 diabetes mellitus: an 11-year prospective study of 28 812 postmenopausal women. Arch Intern Med 166(12):1311–1316

    PubMed  Google Scholar 

  148. Kuriyama S, Shimazu T, Ohmori K et al (2006) Green tea consumption and mortality due to cardiovascular disease, cancer, and all causes in Japan: the Ohsaki study. JAMA 296(10):1255–1265

    CAS  PubMed  Google Scholar 

  149. Iso H, Date C, Wakai K et al (2006) The relationship between green tea and total caffeine intake and risk for self-reported type 2 diabetes among Japanese adults. Ann Intern Med 144(8):554–562

    PubMed  Google Scholar 

  150. Doupis J, Schramm JC, Veves A (2009) Endothelial dysfunction, inflammation, and exercise. In: Regensteiner J (ed) Diabetes and exercise, 1st edn. Humana, Clifton

    Google Scholar 

  151. Colberg SR, Grieco CR (2009) Exercise in the treatment and prevention of diabetes. Curr Sports Med Rep 8(4):169–175

    PubMed  Google Scholar 

  152. Lumini JA, Magalhaes J, Oliveira PJ et al (2008) Beneficial effects of exercise on muscle mitochondrial function in diabetes mellitus. Sports Med 38(9):735–750

    PubMed  Google Scholar 

  153. Tucker PS, Fisher-Wellman K, Bloomer RJ (2008) Can exercise minimize postprandial oxidative stress in patients with type 2 diabetes? Curr Diabetes Rev 4(4):309–319

    CAS  PubMed  Google Scholar 

  154. Nojima H, Watanabe H, Yamane K, Hiroshima University Health Promotion Study Group et al (2008) Effect of aerobic exercise training on oxidative stress in patients with type 2 diabetes mellitus. Metabolism 57(2):170–176

    CAS  PubMed  Google Scholar 

  155. Rush JW, Aultman CD (2008) Vascular biology of angiotensin and the impact of physical activity. Appl Physiol Nutr Metab 33(1):162–172

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aristidis Veves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Didangelos, T., Doupis, J., Veves, A. (2014). Oxidative Stress in Diabetes Mellitus and Possible Interventions. In: Obrosova, I., Stevens, M., Yorek, M. (eds) Studies in Diabetes. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4899-8035-9_12

Download citation

Publish with us

Policies and ethics