Skip to main content

Oxidative Stress and Cardiovascular Disease in Diabetes

  • Chapter
  • First Online:
Studies in Diabetes

Abstract

This chapter reviews the impact of hyperglycemia-induced oxidative stress on cardiovascular disease (CVD)-related outcomes in diabetes. The prevalence of diabetes has markedly increased worldwide and continues to rise. CVD is the major cause of death in individuals with diabetes. Emerging evidence suggests a central role for oxidative stress in promoting endothelial dysfunction and vascular damage in diabetes. Oxidative stress occurs when the balance between the production of reactive oxygen species (ROS) and the ability of cells or tissues to detoxify the free radicals produced during metabolic activity is tilted in the favor of the former. The possible sources for the overproduction of ROS in diabetes are widespread and include mitochondrial superoxide production in endothelial cells and in the myocardium, enzymatic pathways, and auto-oxidation of glucose. Atherosclerosis and cardiomyopathy in type 2 diabetes are caused in part by pathway-selective insulin resistance, which increases mitochondrial ROS production from free fatty acids and by inactivation of antiatherosclerosis enzymes by ROS. Therapies interrupting these oxidative pathways in vascular tissue might help prevent CVD in this vulnerable population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shaw JE, Sicree RA, Zimmet PZ (2010) Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 87:4–14

    CAS  PubMed  Google Scholar 

  2. Haffner SM, Lehto S, Ronnemaa T et al (1998) Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med 339:229–234

    CAS  PubMed  Google Scholar 

  3. Haffner SM (2000) Coronary heart disease in patients with diabetes. N Engl J Med 342:1040–1042

    CAS  PubMed  Google Scholar 

  4. Hu FB, Stampfer MJ, Solomon CG et al (2001) The impact of diabetes mellitus on mortality from all causes and coronary heart disease in women: 20 years of follow-up. Arch Intern Med 161:1717–1723

    CAS  PubMed  Google Scholar 

  5. DCCT Study Group (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N Engl J Med 329:977–986

    Google Scholar 

  6. DCCT Study Group (1995) Effect of intensive diabetes treatment on nerve conduction in the Diabetes Control and Complications Trial. Ann Neurol 38:869–880

    Google Scholar 

  7. UKPDS Study Group (1998) Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet 352:837–853

    Google Scholar 

  8. Giacco F, Brownlee M (2010) Oxidative stress and diabetic complications. Circ Res 107:1058–1070

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Ramasamy R, Goldberg IJ (2010) Aldose reductase and cardiovascular diseases, creating human-like diabetic complications in an experimental model. Circ Res 106:1449–1458

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Baynes JW, Thorpe SR (2000) Glycoxidation and lipoxidation in atherogenesis. Free Radic Biol Med 28:1708–1716

    CAS  PubMed  Google Scholar 

  11. Heinecke JW (2002) Oxidized amino acids: culprits in human atherosclerosis and indicators of oxidative stress. Free Radic Biol Med 32:1090–1101

    CAS  PubMed  Google Scholar 

  12. Heinecke JW (2003) Oxidative stress: new approaches to diagnosis and prognosis in atherosclerosis. Am J Cardiol 91:12A–16A

    CAS  PubMed  Google Scholar 

  13. Pennathur S, Heinecke JW (2004) Mechanisms of oxidative stress in diabetes: implications for the pathogenesis of vascular disease and antioxidant therapy. Front Biosci 9:565–574

    CAS  PubMed  Google Scholar 

  14. Pennathur S, Heinecke JW (2007) Mechanisms for oxidative stress in diabetic cardiovascular disease. Antioxid Redox Signal 9:955–969

    CAS  PubMed  Google Scholar 

  15. Pennathur S, Bergt C, Shao B et al (2004) Human atherosclerotic intima and blood of patients with established coronary artery disease contain high density lipoprotein damaged by reactive nitrogen species. J Biol Chem 279:42977–42983

    CAS  PubMed  Google Scholar 

  16. Cross CE, Halliwell B, Borish ET et al (1987) Oxygen radicals and human disease. Ann Intern Med 107:526–545

    CAS  PubMed  Google Scholar 

  17. Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820

    CAS  PubMed  Google Scholar 

  18. Nishikawa T, Edelstein D, Du XL et al (2000) Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404:787–790

    CAS  PubMed  Google Scholar 

  19. Halliwell B (1995) Antioxidant characterization. Methodology and mechanism. Biochem Pharmacol 49:1341–1348

    CAS  PubMed  Google Scholar 

  20. Wallace DC (1992) Diseases of the mitochondrial DNA. Annu Rev Biochem 61:1175–1212

    CAS  PubMed  Google Scholar 

  21. Southorn PA, Powis G (1988) Free radicals in medicine. II. Involvement in human disease. Mayo Clin Proc 63:390–408

    CAS  PubMed  Google Scholar 

  22. Halliwell B, Gutteridge JM, Cross CE (1992) Free radicals, antioxidants, and human disease: where are we now? J Lab Clin Med 119:598–620

    CAS  PubMed  Google Scholar 

  23. Halliwell B (1996) Antioxidants in human health and disease. Annu Rev Nutr 16:33–50

    CAS  PubMed  Google Scholar 

  24. Halliwell B, Gutteridge J (1998) Free radicals in biology and medicine. Clarendon, Oxford

    Google Scholar 

  25. Sies H (1991) Oxidative stress: oxidants and antioxidants. Academic, New York

    Google Scholar 

  26. Sies H (1997) Antioxidants in disease mechanisms and therapy. Academic, San Diego

    Google Scholar 

  27. Bendich A (1990) Antioxidant nutrients and immune functions—introduction. Adv Exp Med Biol 262:1–12

    CAS  PubMed  Google Scholar 

  28. Rosen P, Nawroth PP, King G et al (2001) The role of oxidative stress in the onset and progression of diabetes and its complications: a summary of a Congress Series sponsored by UNESCO-MCBN, the American Diabetes Association and the German Diabetes Society. Diabetes Metab Res Rev 17:189–212

    CAS  PubMed  Google Scholar 

  29. Dizdaroglu M (1993) Chemistry of free radical damage to DNA and nucleoproteins. In: Aruoma O, Halliwell B (eds) DNA and free radicals. Ellis Horwood, Chichester, pp 19–39

    Google Scholar 

  30. Spencer JP, Wong J, Jenner A et al (1996) Base modification and strand breakage in isolated calf thymus DNA and in DNA from human skin epidermal keratinocytes exposed to peroxynitrite or 3-morpholinosydnonimine. Chem Res Toxicol 9:1152–1158

    CAS  PubMed  Google Scholar 

  31. Whiteman M, Jenner A, Halliwell B (1997) Hypochlorous acid-induced base modifications in isolated calf thymus DNA. Chem Res Toxicol 10:1240–1246

    CAS  PubMed  Google Scholar 

  32. Loft S, Fischer-Nielsen A, Jeding IB et al (1993) 8-Hydroxydeoxyguanosine as a urinary biomarker of oxidative DNA damage. J Toxicol Environ Health 40:391–404

    CAS  PubMed  Google Scholar 

  33. Aruoma OI, Halliwell B, Butler J et al (1989) Apparent inactivation of alpha 1-antiproteinase by sulphur-containing radicals derived from penicillamine. Biochem Pharmacol 38:4353–4357

    CAS  PubMed  Google Scholar 

  34. Hunt JV, Dean RT, Wolff SP et al (1988) Hydroxyl radical production and autoxidative glycosylation. Glucose autoxidation as the cause of protein damage in the experimental glycation model of diabetes mellitus and ageing. Biochem J 256:205–212

    CAS  PubMed  Google Scholar 

  35. Huggins TG, Wells-Knecht MC, Detorie NA et al (1993) Formation of o-tyrosine and dityrosine in proteins during radiolytic and metal-catalyzed oxidation. J Biol Chem 268:12341–12347

    CAS  PubMed  Google Scholar 

  36. Huggins TG, Staton MW, Dyer DG et al (1992) o-Tyrosine and dityrosine concentrations in oxidized proteins and lens proteins with age. Ann N Y Acad Sci 663:436–437

    CAS  PubMed  Google Scholar 

  37. Kaur H, Halliwell B (1994) Detection of hydroxyl radicals by aromatic hydroxylation. Methods Enzymol 233:67–82

    CAS  PubMed  Google Scholar 

  38. Du XL, Edelstein D, Dimmeler S et al (2001) Hyperglycemia inhibits endothelial nitric oxide synthase activity by posttranslational modification at the Akt site. J Clin Invest 108:1341–1348

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Cai H (2005) NAD(P)H oxidase-dependent self-propagation of hydrogen peroxide and vascular disease. Circ Res 96:818–822

    CAS  PubMed  Google Scholar 

  40. Hammes HP, Du X, Edelstein D et al (2003) Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy. Nat Med 9:294–299

    CAS  PubMed  Google Scholar 

  41. Heart Outcomes Prevention Evaluation Study Investigators (2000) Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy. Lancet 355:253–259

    Google Scholar 

  42. Guzik TJ, Harrison DG (2006) Vascular NADPH oxidases as drug targets for novel antioxidant strategies. Drug Discov Today 11:524–533

    CAS  PubMed  Google Scholar 

  43. Guzik TJ, Sadowski J, Guzik B et al (2006) Coronary artery superoxide production and NOX isoform expression in human coronary artery disease. Arterioscler Thromb Vasc Biol 26:333–339

    CAS  PubMed  Google Scholar 

  44. Landmesser U, Dikalov S, Price SR et al (2003) Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest 111:1201–1209

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Vasquez-Vivar J, Kalyanaraman B, Martasek P et al (1998) Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors. Proc Natl Acad Sci USA 95:9220–9225

    CAS  PubMed  Google Scholar 

  46. Klebanoff SJaC RA (1978) The neutrophil: function and clinical disorders. North Holland Biochemical Press, Amsterdam

    Google Scholar 

  47. Klebanoff SJ (1980) Oxygen metabolism and the toxic properties of phagocytes. Ann Intern Med 93:480–489

    CAS  PubMed  Google Scholar 

  48. Eiserich JP, Hristova M, Cross CE et al (1998) Formation of nitric oxide-derived inflammatory oxidants by myeloperoxidase in neutrophils. Nature 391:393–397

    CAS  PubMed  Google Scholar 

  49. Gaut JP, Byun J, Tran HD et al (2002) Myeloperoxidase produces nitrating oxidants in vivo. J Clin Invest 109:1311–1319

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Ishii H, Jirousek MR, Koya D et al (1996) Amelioration of vascular dysfunctions in diabetic rats by an oral PKC beta inhibitor [see comments]. Science 272:728–731

    CAS  PubMed  Google Scholar 

  51. King GL, Ishii H, Koya D (1997) Diabetic vascular dysfunctions: a model of excessive activation of protein kinase C. Kidney Int Suppl 60:S77–S85

    CAS  PubMed  Google Scholar 

  52. Ishii H, Koya D, King GL (1998) Protein kinase C activation and its role in the development of vascular complications in diabetes mellitus. J Mol Med 76:21–31

    CAS  PubMed  Google Scholar 

  53. Pennathur S, Ido Y, Heller JI et al (2005) Reactive carbonyls and polyunsaturated fatty acids produce a hydroxyl radical-like species: a potential pathway for oxidative damage of retinal proteins in diabetes. J Biol Chem 280:22706–22714

    CAS  PubMed  Google Scholar 

  54. Bergt C, Pennathur S, Fu X et al (2004) The myeloperoxidase product hypochlorous acid oxidizes HDL in the human artery wall and impairs ABCA1-dependent cholesterol transport. Proc Natl Acad Sci USA 101:13032–13037

    CAS  PubMed  Google Scholar 

  55. Bhattacharjee S, Pennathur S, Byun J (2001) NADPH oxidase of neutrophils elevates o,o′-dityrosine cross-links in proteins and urine during inflammation. Arch Biochem Biophys 395:69–77

    CAS  PubMed  Google Scholar 

  56. Shishehbor MH, Aviles RJ, Brennan ML et al (2003) Association of nitrotyrosine levels with cardiovascular disease and modulation by statin therapy. JAMA 289:1675–1680

    CAS  PubMed  Google Scholar 

  57. Shishehbor MH, Hazen SL (2004) Inflammatory and oxidative markers in atherosclerosis: relationship to outcome. Curr Atheroscler Rep 6:243–250

    PubMed  Google Scholar 

  58. Zheng L, Nukuna B, Brennan ML (2004) Apolipoprotein A-I is a selective target for myeloperoxidase-catalyzed oxidation and functional impairment in subjects with cardiovascular disease. J Clin Invest 114:529–541

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Shishehbor MH, Brennan ML, Aviles RJ et al (2003) Statins promote potent systemic antioxidant effects through specific inflammatory pathways. Circulation 108:426–431

    CAS  PubMed  Google Scholar 

  60. Wells-Knecht KJ, Lyons TJ, McCance DR et al (1994) 3-Deoxyfructose concentrations are increased in human plasma and urine in diabetes. Diabetes 43:1152–1156

    CAS  PubMed  Google Scholar 

  61. Mullarkey CJ, Edelstein D, Brownlee M (1990) Free radical generation by early glycation products: a mechanism for accelerated atherogenesis in diabetes. Biochem Biophys Res Commun 173:932–939

    CAS  PubMed  Google Scholar 

  62. Sakurai T, Tsuchiya S (1998) Superoxide production from non-enzymatically glycated protein. FEBS Lett 236:406–410

    Google Scholar 

  63. Schmidt A-M, Zhang J, Crandall J et al (1994) Interaction of advanced glycation end products with their endothelial cell receptor leads to enhanced expression of VCAM-1: a mechanism for augmented monocyte-vessel lesions. FASEB J 8:384

    Google Scholar 

  64. Schmidt AM, Hori O, Brett J et al (1994) Cellular receptors for advanced glycation end products. Implications for induction of oxidant stress and cellular dysfunction in the pathogenesis of vascular lesions. Arterioscler Thromb 14:1521–1528

    CAS  PubMed  Google Scholar 

  65. Wolff SP (1993) Diabetes mellitus and free radicals. Free radicals, transition metals and oxidative stress in the aetiology of diabetes mellitus and complications. Br Med Bull 49:642–652

    CAS  PubMed  Google Scholar 

  66. Bierhaus A, Chevion S, Chevion M et al (1997) Advanced glycation end product-induced activation of NF-B is suppressed by a-lipoic acid in cultured endothelial cells. Diabetes 46:1481–1490

    CAS  PubMed  Google Scholar 

  67. Stern DM, Yan SD, Yan SF et al (2002) Receptor for advanced glycation endproducts (RAGE) and the complications of diabetes. Ageing Res Rev 1:1–15

    CAS  PubMed  Google Scholar 

  68. Giardino I, Fard AK, Hatchell D (1998) Aminoguanidine inhibits reactive oxygen species formation, lipid peroxidation, and oxidant-induced apoptosis. Diabetes 47:1114–1120

    CAS  PubMed  Google Scholar 

  69. Baynes JW, Thorpe SR (1999) Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes 48:1–9

    CAS  PubMed  Google Scholar 

  70. Miyata T, van Ypersele de Strihou C, Kurokawa K et al (1999) Alterations in nonenzymatic biochemistry in uremia: origin and significance of “carbonyl stress” in long-term uremic complications. Kidney Int 55:389–399

    CAS  PubMed  Google Scholar 

  71. Miyata T, Ueda Y, Yoshida A et al (1997) Clearance of pentosidine, an advanced glycation end product, by different modalities of renal replacement therapy. Kidney Int 51:880–887

    CAS  PubMed  Google Scholar 

  72. Miyata T, Fu MX, Kurokawa K et al (1998) Autoxidation products of both carbohydrates and lipids are increased in uremic plasma: is there oxidative stress in uremia? Kidney Int 54:1290–1295

    CAS  PubMed  Google Scholar 

  73. Dyer DG, Blackledge JA, Thorpe SR et al (1991) Formation of pentosidine during nonenzymatic browning of proteins by glucose. Identification of glucose and other carbohydrates as possible precursors of pentosidine in vivo. J Biol Chem 266:11654–11660

    CAS  PubMed  Google Scholar 

  74. McCance DR, Dyer DG, Dunn JA et al (1993) Maillard reaction products and their relation to complications in insulin-dependent diabetes mellitus. J Clin Invest 91:2470–2478

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Monnier VM (2001) Transition metals redox: reviving an old plot for diabetic vascular disease. J Clin Invest 107:799–801

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Sell DR, Lapolla A, Odetti P et al (1992) Pentosidine formation in skin correlates with severity of complications in individuals with long-standing IDDM. Diabetes 41:1286–1292

    CAS  PubMed  Google Scholar 

  77. Schatteman GC, Hanlon HD, Jiao C et al (2000) Blood-derived angioblasts accelerate blood-flow restoration in diabetic mice. J Clin Invest 106:571–578

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Gallagher KA, Liu ZJ, Xiao M et al (2007) Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1 alpha. J Clin Invest 117:1249–1259

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Ceradini DJ, Yao D, Grogan RH et al (2008) Decreasing intracellular superoxide corrects defective ischemia-induced new vessel formation in diabetic mice. J Biol Chem 283:10930–10938

    CAS  PubMed  Google Scholar 

  80. Li J, Schmidt AM (1997) Characterization and functional analysis of the promoter of RAGE, the receptor for advanced glycation end products. J Biol Chem 272:16498–16506

    CAS  PubMed  Google Scholar 

  81. Lander HM, Tauras JM, Ogiste JS et al (1997) Activation of the receptor for advanced glycation end products triggers a p21(ras)-dependent mitogen-activated protein kinase pathway regulated by oxidant stress. J Biol Chem 272:17810–17814

    CAS  PubMed  Google Scholar 

  82. Vlassara H, Fuh H, Donnelly T et al (1995) Advanced glycation endproducts promote adhesion molecule (VCAM-1, ICAM-1) expression and atheroma formation in normal rabbits. Mol Med 1:447–456

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Schmidt AM, Hori O, Chen JX et al (1995) Advanced glycation endproducts interacting with their endothelial receptor induce expression of vascular cell adhesion molecule-1 (VCAM-1) in cultured human endothelial cells and in mice. A potential mechanism for the accelerated vasculopathy of diabetes. J Clin Invest 96:1395–1403

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Sengoelge G, Fodinger M, Skoupy S et al (1998) Endothelial cell adhesion molecule and PMNL response to inflammatory stimuli and AGE-modified fibronectin. Kidney Int 54:1637–1651

    CAS  PubMed  Google Scholar 

  85. Wautier J-L, Zoukourian C, Chappey O et al (1996) Receptor-mediated endothelial cell dysfunction in diabetic vasculopathy. Soluble receptor for advanced glycation end products blocks hyperpermeability in diabetic rats. J Clin Invest 97:238–243

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Yao D, Brownlee M (2010) Hyperglycemia-induced reactive oxygen species increase expression of the receptor for advanced glycation end products (RAGE) and RAGE ligands. Diabetes 59:249–255

    CAS  PubMed  Google Scholar 

  87. Soro-Paavonen A, Watson AM, Li J et al (2008) Receptor for advanced glycation end products (RAGE) deficiency attenuates the development of atherosclerosis in diabetes. Diabetes 57:2461–2469

    CAS  PubMed  Google Scholar 

  88. Vikramadithyan RK, Hu Y, Noh HL et al (2001) Human aldose reductase expression accelerates diabetic atherosclerosis in transgenic mice. J Clin Invest 115:2434–2443

    Google Scholar 

  89. Way KJ, Katai N, King GL (2001) Protein kinase C and the development of diabetic vascular complications. Diabet Med 18:945–959

    CAS  PubMed  Google Scholar 

  90. Geraldes P, King GL (2010) Activation of protein kinase C isoforms and its impact on diabetic complications. Circ Res 106:1319–1331

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Gopalakrishna R, Jaken S (2000) Protein kinase C signaling and oxidative stress. Free Radic Biol Med 28:1349–1361

    CAS  PubMed  Google Scholar 

  92. Nishizuka Y (1992) Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 258:607–614

    CAS  PubMed  Google Scholar 

  93. Hofmann J (1997) The potential for isoenzyme-selective modulation of protein kinase C. FASEB J 11:649–669

    CAS  PubMed  Google Scholar 

  94. Kanashiro CA, Khalil RA (1998) Signal transduction by protein kinase C in mammalian cells. Clin Exp Pharmacol Physiol 25:974–985

    CAS  PubMed  Google Scholar 

  95. Liu WS, Heckman CA (1998) The sevenfold way of PKC regulation. Cell Signal 10:529–542

    CAS  PubMed  Google Scholar 

  96. Shiba T, Inoguchi T, Sportsman JR et al (1993) Correlation of diacylglycerol level and protein kinase C activity in rat retina to retinal circulation. Am J Physiol 265:E783–E793

    CAS  PubMed  Google Scholar 

  97. Koya D, Jirousek MR, Lin YW et al (1997) Characterization of protein kinase C beta isoform activation on the gene expression of transforming growth factor-beta, extracellular matrix components, and prostanoids in the glomeruli of diabetic rats. J Clin Invest 100:115–126

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Geraldes P, Hiraoka-Yamamoto J, Matsumoto M et al (2009) Activation of PKC-delta and SHP-1 by hyperglycemia causes vascular cell apoptosis and diabetic retinopathy. Nat Med 15:1298–1306

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Ganz MB, Seftel A (2000) Glucose-induced changes in protein kinase C and nitric oxide are prevented by vitamin E. Am J Physiol Endocrinol Metab 278:E146–E152

    CAS  PubMed  Google Scholar 

  100. Kuboki K, Jiang ZY, Takahara N et al (2000) Regulation of endothelial constitutive nitric oxide synthase gene expression in endothelial cells and in vivo: a specific vascular action of insulin. Circulation 101:676–681

    CAS  PubMed  Google Scholar 

  101. Williams B, Gallacher B, Patel H et al (1997) Glucose-induced protein kinase C activation regulates vascular permeability factor mRNA expression and peptide production by human vascular smooth muscle cells in vitro. Diabetes 46:1497–1503

    CAS  PubMed  Google Scholar 

  102. Pieper GM, Riaz-ul H (1997) Activation of nuclear factor-kappaB in cultured endothelial cells by increased glucose concentration: prevention by calphostin C. J Cardiovasc Pharmacol 30:528–532

    CAS  PubMed  Google Scholar 

  103. Yerneni KK, Bai W, Khan BV, Medford RM, Natarajan R (1999) Hyperglycemia-induced activation of nuclear transcription factor kappaB in vascular smooth muscle cells. Diabetes 48:855–864

    CAS  PubMed  Google Scholar 

  104. Cosentino F, Eto M, De Paolis P, van der Loo B, Bachschmid M, Ullrich V, Kouroedov A, Delli Gatti C, Joch H, Volpe M, Luscher TF (2003) High glucose causes upregulation of cyclooxygenase-2 and alters prostanoid profile in human endothelial cells: role of protein kinase C and reactive oxygen species. Circulation 107:1017–1023

    CAS  PubMed  Google Scholar 

  105. Hink U, Li H, Mollnau H, Oelze M, Matheis E, Hartmann M, Skatchkov M, Thaiss F, Stahl RA, Warnholtz A, Meinertz T, Griendling K, Harrison DG, Forstermann U, Munzel T (2001) Mechanisms underlying endothelial dysfunction in diabetes mellitus. Circ Res 88:E14–E22

    CAS  PubMed  Google Scholar 

  106. Du X, Matsumura T, Edelstein D, Rossetti L, Zsengeller Z, Szabo C, Brownlee M (2003) Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J Clin Invest 112:1049–1057

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Pieper AA, Verma A, Zhang J, Snyder SH (1999) Poly(ADP-ribose) polymerase, nitric oxide and cell death. Trends Pharmacol Sci 20:171–181

    CAS  PubMed  Google Scholar 

  108. Death C (2000) The role of PARP. CRC, Boca Raton

    Google Scholar 

  109. Eliasson MJ, Sampei K, Mandir AS, Hurn PD, Traystman RJ, Bao J, Pieper A, Wang ZQ, Dawson TM, Snyder SH, Dawson VL (1997) Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia. Nat Med 3:1089–1095

    CAS  PubMed  Google Scholar 

  110. Zingarelli B, Salzman AL, Szabo C (1998) Genetic disruption of poly (ADP-ribose) synthetase inhibits the expression of P-selectin and intercellular adhesion molecule-1 in myocardial ischemia/reperfusion injury. Circ Res 83:85–94

    CAS  PubMed  Google Scholar 

  111. Burkart V, Wang ZQ, Radons J, Heller B, Herceg Z, Stingl L, Wagner EF, Kolb H (1999) Mice lacking the poly(ADP-ribose) polymerase gene are resistant to pancreatic beta-cell destruction and diabetes development induced by streptozocin. Nat Med 5:314–319

    CAS  PubMed  Google Scholar 

  112. Pieper A et al (1997) Poly(ADP-ribose) polymerase-deficient mice are protected from STZ-induced diabetes. Proc Natl Acad Sci USA 96:3059–3064

    Google Scholar 

  113. Szabo C, Cuzzocrea S, Zingarelli B, O’Connor M, Salzman AL (1997) Endothelial dysfunction in a rat model of endotoxic shock. Importance of the activation of poly (ADP-ribose) synthetase by peroxynitrite. J Clin Invest 100:723–735

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Hagen T, Vidal-Puig A (2002) Mitochondrial uncoupling proteins in human physiology and disease. Minerva Med 93:41–57

    CAS  PubMed  Google Scholar 

  115. Ross R (1999) Atherosclerosis—an inflammatory disease. N Engl J Med 340:115–126

    CAS  PubMed  Google Scholar 

  116. Brown MS, Goldstein JL (1992) Koch’s postulates for cholesterol. Cell 71:187–188

    CAS  PubMed  Google Scholar 

  117. Goldstein JL, Ho YK, Basu SK, Brown MS (1979) Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sci USA 76:333–337

    CAS  PubMed  Google Scholar 

  118. Witztum JL, Steinberg D (1991) Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest 88:1785–1792

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Dandona P, Thusu K, Cook S, Snyder B, Makowski J, Armstrong D, Nicotera T (1996) Oxidative damage to DNA in diabetes mellitus. Lancet 347:444–445

    CAS  PubMed  Google Scholar 

  120. Leinonen J, Lehtimaki T, Toyokuni S, Okada K, Tanaka T, Hiai H, Ochi H, Laippala P, Rantalaiho V, Wirta O, Pasternack A, Alho H (1997) New biomarker evidence of oxidative DNA damage in patients with non-insulin-dependent diabetes mellitus. FEBS Lett 417:150–152

    CAS  PubMed  Google Scholar 

  121. Griesbacher A, Kinderhauser M, Andert S (1995) Enhanced serum levels of TBARS in diabetes mellitus. Am J Med 98:469–475

    Google Scholar 

  122. Sundaram RK, Bhaskar A, Vijayalingam S, Viswanathan M, Mohan R, Shanmugasundaram KR (1996) Antioxidant status and lipid peroxidation in type II diabetes mellitus with and without complications. Clin Sci (Lond) 90:255–260

    CAS  Google Scholar 

  123. Velazques E, Winocour P, Kesteven P, Alberti K, Laker M (1991) Relation of lipid peroxides to macrovascular disease in type 2 diabetes. Diabet Med 8:752–758

    Google Scholar 

  124. McRury S, Gordon D, Wilson R et al (1993) A comparison of different methods of assessing free radical activity in type 2 diabetes and peripheral vascular disease. Diabet Med 10:331–335

    Google Scholar 

  125. Nishigaki I, Hagihara M, Tsunekawa H, Maseki M, Yagi K (1981) Lipid peroxide levels of serum lipoprotein fractions of diabetic patients. Biochem Med 25:373–378

    CAS  PubMed  Google Scholar 

  126. Altomare E, Vendemiale G, Chicco D, Procacci V, Cirelli F (1992) Increased lipid peroxidation in type 2 poorly controlled diabetic patients. Diabete Metab 18:264–271

    CAS  PubMed  Google Scholar 

  127. Jennings PE, Jones AF, Florkowski CM, Lunec J, Barnett AH (1987) Increased diene conjugates in diabetic subjects with microangiopathy. Diabet Med 4:452–456

    CAS  PubMed  Google Scholar 

  128. Haffner SM, Agil A, Mykkanen L, Stern MP, Jialal I (1995) Plasma oxidizability in subjects with normal glucose tolerance, impaired glucose tolerance, and NIDDM. Diabetes Care 18:646–653

    CAS  PubMed  Google Scholar 

  129. Gopaul NK, Anggard EE, Mallet AI, Betteridge DJ, Wolff SP, Nourooz-Zadeh J (1995) Plasma 8-epi-PGF2 alpha levels are elevated in individuals with non-insulin dependent diabetes mellitus. FEBS Lett 368:225–229

    CAS  PubMed  Google Scholar 

  130. Nourooz-Zadeh J, Tajaddini-Sarmadi J, McCarthy S, Betteridge DJ, Wolff SP (1995) Elevated levels of authentic plasma hydroperoxides in NIDDM. Diabetes 44:1054–1058

    CAS  PubMed  Google Scholar 

  131. Nourooz-Zadeh J, Rahimi A, Tajaddini-Sarmadi J, Tritschler H, Rosen P, Halliwell B, Betteridge DJ, Ziegler R, Nawroth PP (1997) Relationships between plasma measures of oxidative stress and metabolic control in NIDDM. Diabetologia 40:647–653

    CAS  PubMed  Google Scholar 

  132. Davi G, Ciabattoni G, Consoli A, Mezzetti A, Falco A, Santarone S, Pennese E, Vitacolonna E, Bucciarelli T, Costantini F, Capani F, Patrono C (1999) In vivo formation of 8-iso-prostaglandin f2alpha and platelet activation in diabetes mellitus: effects of improved metabolic control and vitamin E supplementation. Circulation 99:224–229

    CAS  PubMed  Google Scholar 

  133. Tesfamariam B (1994) Free radicals in diabetic endothelial cell dysfunction. Free Radic Biol Med 16:383–391

    CAS  PubMed  Google Scholar 

  134. Jones AF, Winkles JW, Jennings PE, Florkowski CM, Lunec J, Barnett AH (1988) Serum antioxidant activity in diabetes mellitus. Diabetes Res 7:89–92

    CAS  PubMed  Google Scholar 

  135. Tilton RG, Kawamura T, Chang KC, Ido Y, Bjercke RJ, Stephan CC, Brock TA, Williamson JR (1997) Vascular dysfunction induced by elevated glucose levels in rats is mediated by vascular endothelial growth factor. J Clin Invest 99:2192–2202

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Cohen R (1993) Dysfunction of vascular endothelium in diabetes mellitus. Circulation 87:V67–V76

    Google Scholar 

  137. Pieper G, Gross G (1998) Oxygen free radicals abolish endothelium dependent relaxation in diabetic art aorta. Am J Physiol 255:H825–H833

    Google Scholar 

  138. Lyons TJ (1991) Oxidized low density lipoproteins: a role in the pathogenesis of atherosclerosis in diabetes? Diabet Med 8:411–419

    CAS  PubMed  Google Scholar 

  139. Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL (1989) Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity [see comments]. N Engl J Med 320:915–924

    CAS  PubMed  Google Scholar 

  140. Heinecke JW (1997) Mechanisms of oxidative damage of low density lipoprotein in human atherosclerosis. Curr Opin Lipidol 8:268–274

    CAS  PubMed  Google Scholar 

  141. Esterbauer H, Gebicki J, Puhl H, Jurgens G (1992) The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radic Biol Med 13:341–390

    CAS  PubMed  Google Scholar 

  142. Pop-Busui R, Kirkwood I, Schmid H, Marinescu V, Schroeder J, Larkin D, Yamada E, Raffel DM, Stevens MJ (2004) Sympathetic dysfunction in type 1 diabetes: association with impaired myocardial blood flow reserve and diastolic dysfunction. J Am Coll Cardiol 44:2368–2374

    CAS  PubMed  Google Scholar 

  143. Baynes JW (1991) Role of oxidative stress in development of complications of diabetes. Diabetes 40:405–412

    CAS  PubMed  Google Scholar 

  144. Leeuwenburgh C, Hardy MM, Hazen SL, Wagner P, Oh-ishi S, Steinbrecher UP, Heinecke JW (1997) Reactive nitrogen intermediates promote low density lipoprotein oxidation in human atherosclerotic intima. J Biol Chem 272:1433–1436

    CAS  PubMed  Google Scholar 

  145. Leeuwenburgh C, Rasmussen JE, Hsu FF, Mueller DM, Pennathur S, Heinecke JW (1997) Mass spectrometric quantification of markers for protein oxidation by tyrosyl radical, copper, and hydroxyl radical in low density lipoprotein isolated from human atherosclerotic plaques. J Biol Chem 272:3520–3526

    CAS  PubMed  Google Scholar 

  146. Pennathur S, Wagner JD, Leeuwenburgh C, Litwak KN, Heinecke JW (2001) A hydroxyl radical-like species oxidizes cynomolgus monkey artery wall proteins in early diabetic vascular disease. J Clin Invest 107:853–860

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Abu-Soud HM, Hazen SL (2000) Nitric oxide is a physiological substrate for mammalian peroxidases. J Biol Chem 275:37524–37532

    CAS  PubMed  Google Scholar 

  148. Beckman JS, Chen J, Ischiropoulos H, Crow JP (1994) Oxidative chemistry of peroxynitrite. Methods Enzymol 233:229–240

    CAS  PubMed  Google Scholar 

  149. Brennan ML, Hazen SL (2003) Emerging role of myeloperoxidase and oxidant stress markers in cardiovascular risk assessment. Curr Opin Lipidol 14:353–359

    CAS  PubMed  Google Scholar 

  150. Brennan ML, Penn MS, Van Lente F, Nambi V, Shishehbor MH, Aviles RJ, Goormastic M, Pepoy ML, McErlean ES, Topol EJ, Nissen SE, Hazen SL (2003) Prognostic value of myeloperoxidase in patients with chest pain. N Engl J Med 349:1595–1604

    CAS  PubMed  Google Scholar 

  151. Hazen SL (2004) Myeloperoxidase and plaque vulnerability. Arterioscler Thromb Vasc Biol 24:1143–1146

    CAS  PubMed  Google Scholar 

  152. Lamharzi N, Renard CB, Kramer F, Pennathur S, Heinecke JW, Chait A, Bornfeldt KE (2004) Hyperlipidemia in concert with hyperglycemia stimulates the proliferation of macrophages in atherosclerotic lesions: potential role of glucose-oxidized LDL. Diabetes 53:3217–3225

    CAS  PubMed  Google Scholar 

  153. Leeuwenburgh C, Hansen P, Shaish A, Holloszy JO, Heinecke JW (1998) Markers of protein oxidation by hydroxyl radical and reactive nitrogen species in tissues of aging rats. Am J Physiol 274:R453–R461

    CAS  PubMed  Google Scholar 

  154. Leeuwenburgh C, Hansen PA, Holloszy JO, Heinecke JW (1999) Oxidized amino acids in the urine of aging rats: potential markers for assessing oxidative stress in vivo. Am J Physiol 276:R128–R135

    CAS  PubMed  Google Scholar 

  155. Pennathur S, Jackson-Lewis V, Przedborski S, Heinecke JW (1999) Mass spectrometric quantification of 3-nitrotyrosine, ortho-tyrosine, and o,o′-dityrosine in brain tissue of 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine-treated mice, a model of oxidative stress in Parkinson’s disease. J Biol Chem 274:34621–34628

    CAS  PubMed  Google Scholar 

  156. Wells-Knecht MC, Lyons TJ, McCance DR, Thorpe SR, Baynes JW (1997) Age-dependent increase in ortho-tyrosine and methionine sulfoxide in human skin collagen is not accelerated in diabetes. Evidence against a generalized increase in oxidative stress in diabetes. J Clin Invest 100:839–846

    CAS  PubMed Central  PubMed  Google Scholar 

  157. Dyer DG, Dunn JA, Thorpe SR, Bailie KE, Lyons TJ, McCance DR, Baynes JW (1993) Accumulation of maillard reaction products in skin collagen in diabetes and aging. J Clin Invest 91:2463–2469

    CAS  PubMed Central  PubMed  Google Scholar 

  158. Bonetti PO, Lerman LO, Lerman A (2003) Endothelial dysfunction: a marker of atherosclerotic risk. Arterioscler Thromb Vasc Biol 23:168–175

    CAS  PubMed  Google Scholar 

  159. Deanfield JE, Halcox JP, Rabelink TJ (2007) Endothelial function and dysfunction: testing and clinical relevance. Circulation 115:1285–1295

    PubMed  Google Scholar 

  160. Moncada S, Palmer RM, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43:109–142

    CAS  PubMed  Google Scholar 

  161. Pieper GM, Gross GJ (1988) Oxygen free radicals abolish endothelium-dependent relaxation in diabetic rat aorta. Am J Physiol 255:H825–H833

    CAS  PubMed  Google Scholar 

  162. Langenstroer P, Pieper GM (1992) Regulation of spontaneous EDRF release in diabetic rat aorta by oxygen free radicals. Am J Physiol 263:H257–H265

    CAS  PubMed  Google Scholar 

  163. Diederich D, Skopec J, Diederich A, Dai FX (1994) Endothelial dysfunction in mesenteric resistance arteries of diabetic rats: role of free radicals. Am J Physiol 266:H1153–H1161

    CAS  PubMed  Google Scholar 

  164. Hattori Y, Kawasaki H, Abe K, Kanno M (1991) Superoxide dismutase recovers altered endothelium-dependent relaxation in diabetic rat aorta. Am J Physiol 261:H1086–H1094

    CAS  PubMed  Google Scholar 

  165. Keegan A, Walbank H, Cotter MA, Cameron NE (1995) Chronic vitamin E treatment prevents defective endothelium-dependent relaxation in diabetic rat aorta. Diabetologia 38:1475–1478

    CAS  PubMed  Google Scholar 

  166. Rosen P, Ballhausen T, Bloch W, Addicks K (1995) Endothelial relaxation is disturbed by oxidative stress in the diabetic rat heart: influence of tocopherol as antioxidant. Diabetologia 38:1157–1168

    CAS  PubMed  Google Scholar 

  167. Dai FX, Diederich A, Skopec J, Diederich D (1993) Diabetes-induced endothelial dysfunction in streptozotocin-treated rats: role of prostaglandin endoperoxides and free radicals. J Am Soc Nephrol 4:1327–1336

    CAS  PubMed  Google Scholar 

  168. Laight DW, Carrier MJ, Anggard EE (2000) Antioxidants, diabetes and endothelial dysfunction. Cardiovasc Res 47:457–464

    CAS  PubMed  Google Scholar 

  169. Darley-Usmar V, White R (1997) Disruption of vascular signalling by the reaction of nitric oxide with superoxide: implications for cardiovascular disease. Exp Physiol 82:305–316

    CAS  PubMed  Google Scholar 

  170. Ghafourifar P, Bringold U, Klein SD, Richter C (2001) Mitochondrial nitric oxide synthase, oxidative stress and apoptosis. Biol Signals Recept 10:57–65

    CAS  PubMed  Google Scholar 

  171. Rask-Madsen C, King GL (2007) Mechanisms of disease: endothelial dysfunction in insulin resistance and diabetes. Nat Clin Pract Endocrinol Metab 3:46–56

    CAS  PubMed  Google Scholar 

  172. Roth S (1997) Role of nitric oxide in retinal cell death. Clin Neurosci 4:216–223

    CAS  PubMed  Google Scholar 

  173. Liu B, Gao HM, Wang JY, Jeohn GH, Cooper CL, Hong JS (2002) Role of nitric oxide in inflammation-mediated neurodegeneration. Ann N Y Acad Sci 962:318–331

    CAS  PubMed  Google Scholar 

  174. Chen CA, Wang TY, Varadharaj S, Reyes LA, Hemann C, Talukder MA, Chen YR, Druhan LJ, Zweier JL (2010) S-glutathionylation uncouples eNOS and regulates its cellular and vascular function. Nature 468:1115–1118

    CAS  PubMed Central  PubMed  Google Scholar 

  175. Bardell AL, MacLeod KM (2001) Evidence for inducible nitric-oxide synthase expression and activity in vascular smooth muscle of streptozotocin-diabetic rats. J Pharmacol Exp Ther 296:252–259

    CAS  PubMed  Google Scholar 

  176. Nishigaki R, Guo F, Onda M, Yamada N, Yokoyama M, Naito Z, Asano G, ShimizuSuganuma M, Shichinohe K, Aramaki T (1999) Ultrastructural changes and immunohistochemical localization of nitric oxide synthase, advanced glycation end products and NF-kappa B in aorta of streptozotocin treated Mongolian gerbils. Nihon Ika Daigaku Zasshi 66:166–175

    CAS  PubMed  Google Scholar 

  177. Semenkovich CF, Heinecke JW (1997) The mystery of diabetes and atherosclerosis: time for a new plot. Diabetes 46:327–334

    CAS  PubMed  Google Scholar 

  178. Rossi GP, Maiolino G, Zanchetta M, Sticchi D, Pedon L, Cesari M, Montemurro D, De Toni R, Zavattiero S, Pessina AC (2006) The T-786C endothelial nitric oxide synthase genotype predicts cardiovascular mortality in high-risk patients. J Am Coll Cardiol 48:1166–1174

    CAS  PubMed  Google Scholar 

  179. Szabo G, Bahrle S (2005) Role of nitrosative stress and poly(ADP-ribose) polymerase activation in myocardial reperfusion injury. Curr Vasc Pharmacol 3:215–220

    CAS  PubMed  Google Scholar 

  180. Virag L, Szabo C (2002) The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol Rev 54:375–429

    CAS  PubMed  Google Scholar 

  181. Soriano FG, Virag L, Szabo C (2001) Diabetic endothelial dysfunction: role of reactive oxygen and nitrogen species production and poly(ADP-ribose) polymerase activation. J Mol Med 79:437–448

    CAS  PubMed  Google Scholar 

  182. Szabo C (2009) Role of nitrosative stress in the pathogenesis of diabetic vascular dysfunction. Br J Pharmacol 156:713–727

    CAS  PubMed  Google Scholar 

  183. Soriano FG, Pacher P, Mabley J, Liaudet L, Szabo C (2001) Rapid reversal of the diabetic endothelial dysfunction by pharmacological inhibition of poly(ADP-ribose) polymerase. Circ Res 89:684–691

    CAS  PubMed  Google Scholar 

  184. Pacher P, Liaudet L, Soriano FG, Mabley JG, Szabo E, Szabo C (2002) The role of poly(ADP-ribose) polymerase activation in the development of myocardial and endothelial dysfunction in diabetes. Diabetes 51:514–521

    CAS  PubMed  Google Scholar 

  185. Szabo C, Zanchi A, Komjati K, Pacher P, Krolewski AS, Quist WC, LoGerfo FW, Horton ES, Veves A (2002) Poly(ADP-Ribose) polymerase is activated in subjects at risk of developing type 2 diabetes and is associated with impaired vascular reactivity. Circulation 106:2680–2686

    CAS  PubMed  Google Scholar 

  186. An D, Rodrigues B (2006) Role of changes in cardiac metabolism in development of diabetic cardiomyopathy. Am J Physiol Heart Circ Physiol 291:H1489–H1506

    CAS  PubMed  Google Scholar 

  187. Poornima IG, Parikh P, Shannon RP (2006) Diabetic cardiomyopathy: the search for a unifying hypothesis. Circ Res 98:596–605

    CAS  PubMed  Google Scholar 

  188. Ridker PM, Stampfer MJ, Rifai N (2001) Novel risk factors for systemic atherosclerosis: a comparison of C-reactive protein, fibrinogen, homocysteine, lipoprotein(a), and standard cholesterol screening as predictors of peripheral arterial disease. JAMA 285:2481–2485

    CAS  PubMed  Google Scholar 

  189. Schonbeck U, Varo N, Libby P, Buring J, Ridker PM (2001) Soluble CD40L and cardiovascular risk in women. Circulation 104:2266–2268

    CAS  PubMed  Google Scholar 

  190. Lobbes MB, Lutgens E, Heeneman S, Cleutjens KB, Kooi ME, van Engelshoven JM, Daemen MJ, Nelemans PJ (2006) Is there more than C-reactive protein and fibrinogen? The prognostic value of soluble CD40 ligand, interleukin-6 and oxidized low-density lipoprotein with respect to coronary and cerebral vascular disease. Atherosclerosis 187:18–25

    CAS  PubMed  Google Scholar 

  191. Haberland ME, Fong D, Cheng L (1988) Malondialdehyde-altered protein occurs in atheroma of Watanabe heritable hyperlipidemic rabbits. Science 241:215–218

    CAS  PubMed  Google Scholar 

  192. Yla-Herttuala S, Palinski W, Butler SW, Picard S, Steinberg D, Witztum JL (1994) Rabbit and human atherosclerotic lesions contain IgG that recognizes epitopes of oxidized LDL. Arterioscler Thromb 14:32–40

    CAS  PubMed  Google Scholar 

  193. Yla-Herttuala S, Palinski W, Rosenfeld ME, Parthasarathy S, Carew TE, Butler S, Witztum JL, Steinberg D (1989) Evidence for the presence of oxidatively modified low density lipoprotein in atherosclerotic lesions of rabbit and man. J Clin Invest 84:1086–1095

    CAS  PubMed Central  PubMed  Google Scholar 

  194. Heinecke JW, Rosen H, Chait A (1984) Iron and copper promote modification of low density lipoprotein by human arterial smooth muscle cells in culture. J Clin Invest 74:1890–1894

    CAS  PubMed Central  PubMed  Google Scholar 

  195. Morel DW, DiCorleto PE, Chisolm GM (1984) Endothelial and smooth muscle cells alter low density lipoprotein in vitro by free radical oxidation. Arteriosclerosis 4:357–364

    CAS  PubMed  Google Scholar 

  196. Steinbrecher UP, Parthasarathy S, Leake DS, Witztum JL, Steinberg D (1984) Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. Proc Natl Acad Sci USA 81:3883–3887

    CAS  PubMed  Google Scholar 

  197. Steinberg D (2002) Atherogenesis in perspective: hypercholesterolemia and inflammation as partners in crime. Nat Med 8:1211–1217

    CAS  PubMed  Google Scholar 

  198. Glass CK, Witztum JL (2001) Atherosclerosis. The road ahead. Cell 104:503–516

    CAS  PubMed  Google Scholar 

  199. Carew TE, Schwenke DC, Steinberg D (1987) Antiatherogenic effect of probucol unrelated to its hypocholesterolemic effect: evidence that antioxidants in vivo can selectively inhibit low density lipoprotein degradation in macrophage-rich fatty streaks and slow the progression of atherosclerosis in the Watanabe heritable hyperlipidemic rabbit. Proc Natl Acad Sci USA 84:7725–7729

    CAS  PubMed  Google Scholar 

  200. Kita T, Nagano Y, Yokode M, Ishii K, Kume N, Ooshima A, Yoshida H, Kawai C (1987) Probucol prevents the progression of atherosclerosis in Watanabe heritable hyperlipidemic rabbit, an animal model for familial hypercholesterolemia. Proc Natl Acad Sci USA 84:5928–5931

    CAS  PubMed  Google Scholar 

  201. Parthasarathy S, Young SG, Witztum JL, Pittman RC, Steinberg D (1986) Probucol inhibits oxidative modification of low density lipoprotein. J Clin Invest 77:641–644

    CAS  PubMed Central  PubMed  Google Scholar 

  202. Houstis N, Rosen ED, Lander ES (2006) Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 440:944–948

    CAS  PubMed  Google Scholar 

  203. Keaney JF Jr, Larson MG, Vasan RS, Wilson PW, Lipinska I, Corey D, Massaro JM, Sutherland P, Vita JA, Benjamin EJ (2003) Obesity and systemic oxidative stress: clinical correlates of oxidative stress in the Framingham Study. Arterioscler Thromb Vasc Biol 23:434–439

    CAS  PubMed  Google Scholar 

  204. Urakawa H, Katsuki A, Sumida Y, Gabazza EC, Murashima S, Morioka K, Maruyama N, Kitagawa N, Tanaka T, Hori Y, Nakatani K, Yano Y, Adachi Y (2003) Oxidative stress is associated with adiposity and insulin resistance in men. J Clin Endocrinol Metab 88:4673–4676

    CAS  PubMed  Google Scholar 

  205. Graham TE, Yang Q, Bluher M, Hammarstedt A, Ciaraldi TP, Henry RR, Wason CJ, Oberbach A, Jansson PA, Smith U, Kahn BB (2006) Retinol-binding protein 4 and insulin resistance in lean, obese, and diabetic subjects. N Engl J Med 354:2552–2563

    CAS  PubMed  Google Scholar 

  206. Abel ED, Peroni O, Kim JK, Kim YB, Boss O, Hadro E, Minnemann T, Shulman GI, Kahn BB (2001) Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature 409:729–733

    CAS  PubMed  Google Scholar 

  207. Yang Q, Graham TE, Mody N, Preitner F, Peroni OD, Zabolotny JM, Kotani K, Quadro L, Kahn BB (2005) Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 436:356–362

    CAS  PubMed  Google Scholar 

  208. Van Gaal LF, Mertens IL, De Block CE (2006) Mechanisms linking obesity with cardiovascular disease. Nature 444:875–880

    PubMed  Google Scholar 

  209. Hansen LL, Ikeda Y, Olsen GS, Busch AK, Mosthaf L (1999) Insulin signaling is inhibited by micromolar concentrations of H(2)O(2). Evidence for a role of H(2)O(2) in tumor necrosis factor alpha-mediated insulin resistance. J Biol Chem 274:25078–25084

    CAS  PubMed  Google Scholar 

  210. Rudich A, Kozlovsky N, Potashnik R, Bashan N (1997) Oxidant stress reduces insulin responsiveness in 3T3-L1 adipocytes. Am J Physiol 272:E935–E940

    CAS  PubMed  Google Scholar 

  211. Rudich A, Tirosh A, Potashnik R, Hemi R, Kanety H, Bashan N (1998) Prolonged oxidative stress impairs insulin-induced GLUT4 translocation in 3T3-L1 adipocytes. Diabetes 47:1562–1569

    CAS  PubMed  Google Scholar 

  212. Molnar D, Decsi T, Koletzko B (2004) Reduced antioxidant status in obese children with multimetabolic syndrome. Int J Obes Relat Metab Disord 28:1197–1202

    CAS  PubMed  Google Scholar 

  213. Krieger-Brauer HI, Kather H (1992) Human fat cells possess a plasma membrane-bound H2O2-generating system that is activated by insulin via a mechanism bypassing the receptor kinase. J Clin Invest 89:1006–1013

    CAS  PubMed Central  PubMed  Google Scholar 

  214. Pop-Busui R (2010) Cardiac autonomic neuropathy in diabetes: a clinical perspective. Diabetes Care 33:434–441

    PubMed  Google Scholar 

  215. Navarro X, Kennedy WR, Sutherland DE (1991) Autonomic neuropathy and survival in diabetes mellitus: effects of pancreas transplantation. Diabetologia 34(Suppl 1):S108–S112

    PubMed  Google Scholar 

  216. O’Brien IA, McFadden JP, Corrall RJ (1991) The influence of autonomic neuropathy on mortality in insulin-dependent diabetes. Q J Med 79:495–502

    PubMed  Google Scholar 

  217. Ewing DJ, Campbell IW, Clarke BF (1980) Assessment of cardiovascular effects in diabetic autonomic neuropathy and prognostic implications. Ann Intern Med 92:308–311

    CAS  PubMed  Google Scholar 

  218. Gerritsen J, Dekker JM, TenVoorde BJ, Kostense PJ, Heine RJ, Bouter LM, Heethaar RM, Stehouwer CD (2001) Impaired autonomic function is associated with increased mortality, especially in subjects with diabetes, hypertension, or a history of cardiovascular disease: the Hoorn Study. Diabetes Care 24:1793–1798

    CAS  PubMed  Google Scholar 

  219. Maser RE, Mitchell BD, Vinik AI, Freeman R (2003) The association between cardiovascular autonomic neuropathy and mortality in individuals with diabetes: a meta-analysis. Diabetes Care 26:1895–1901

    PubMed  Google Scholar 

  220. Pop-Busui R, Evans GW, Gerstein HC, Fonseca V, Fleg JL, Hoogwerf BJ, Genuth S, Grimm RH, Corson MA, Prineas R (2010) Effects of cardiac autonomic dysfunction on mortality risk in the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial. Diabetes Care 33:1578–1584

    CAS  PubMed  Google Scholar 

  221. Vinik AI, Ziegler D (2007) Diabetic cardiovascular autonomic neuropathy. Circulation 115:387–397

    PubMed  Google Scholar 

  222. Stella P, Ellis D, Maser RE, Orchard TJ (2000) Cardiovascular autonomic neuropathy (expiration and inspiration ratio) in type 1 diabetes. Incidence and predictors. J Diabetes Complications 14:1–6

    CAS  PubMed  Google Scholar 

  223. Witte DR, Tesfaye S, Chaturvedi N, Eaton SE, Kempler P, Fuller JH (2005) Risk factors for cardiac autonomic neuropathy in type 1 diabetes mellitus. Diabetologia 48:164–171

    CAS  PubMed  Google Scholar 

  224. Pop-Busui R, Sullivan KA, Van Huysen C, Bayer L, Cao X, Towns R, Stevens MJ (2001) Depletion of taurine in experimental diabetic neuropathy: implications for nerve metabolic, vascular, and functional deficits. Exp Neurol 168:259–272

    CAS  PubMed  Google Scholar 

  225. Stevens MJ, Obrosova I, Cao X, Van Huysen C, Greene DA (2000) Effects of DL-alpha-lipoic acid on peripheral nerve conduction, blood flow, energy metabolism, and oxidative stress in experimental diabetic neuropathy. Diabetes 49(6):1006–1015

    Google Scholar 

  226. Edwards JL, Vincent AM, Cheng HT, Feldman EL (2008) Diabetic neuropathy: mechanisms to management. Pharmacol Ther 120:1–34

    CAS  PubMed  Google Scholar 

  227. Kellogg AP, Converso K, Wiggin T, Stevens M, Pop-Busui R (2009) Effects of cyclooxygenase-2 gene inactivation on cardiac autonomic and left ventricular function in experimental diabetes. Am J Physiol Heart Circ Physiol 296:H453–H461

    CAS  PubMed  Google Scholar 

  228. Axelrod S, Lishner M, Oz O, Bernheim J, Ravid M (1987) Spectral analysis of fluctuations in heart rate: an objective evaluation of autonomic nervous control in chronic renal failure. Nephron 45:202–206

    CAS  PubMed  Google Scholar 

  229. Taskiran M, Rasmussen V, Rasmussen B, Fritz-Hansen T, Larsson HB, Jensen GB, Hilsted J (2004) Left ventricular dysfunction in normotensive type 1 diabetic patients: the impact of autonomic neuropathy. Diabet Med 21:524–530

    CAS  PubMed  Google Scholar 

  230. Givertz MM, Sawyer DB, Colucci WS (2001) Antioxidants and myocardial contractility: illuminating the “Dark Side” of beta-adrenergic receptor activation? Circulation 103:782–783

    CAS  PubMed  Google Scholar 

  231. Iwai-Kanai E, Hasegawa K, Araki M, Kakita T, Morimoto T, Sasayama S (1999) Alpha- and beta-adrenergic pathways differentially regulate cell type-specific apoptosis in rat cardiac myocytes. Circulation 100:305–311

    CAS  PubMed  Google Scholar 

  232. Paulson DJ, Light KE (1981) Elevation of serum and ventricular norepinephrine content in the diabetic rat. Res Commun Chem Pathol Pharmacol 33:559–562

    CAS  PubMed  Google Scholar 

  233. Drake-Holland AJ, Van der Vusse GJ, Roemen TH, Hynd JW, Mansaray M, Wright ZM, Noble MI (2001) Chronic catecholamine depletion switches myocardium from carbohydrate to lipid utilisation. Cardiovasc Drugs Ther 15:111–117

    CAS  PubMed  Google Scholar 

  234. Schrauwen P, Hoeks J, Hesselink MK (2006) Putative function and physiological relevance of the mitochondrial uncoupling protein-3: involvement in fatty acid metabolism? Prog Lipid Res 45:17–41

    CAS  PubMed  Google Scholar 

  235. Francis GS (2001) Diabetic cardiomyopathy: fact or fiction? Heart 85:247–248

    CAS  PubMed  Google Scholar 

  236. Frustaci A, Kajstura J, Chimenti C, Jakoniuk I, Leri A, Maseri A, Nadal-Ginard B, Anversa P (2000) Myocardial cell death in human diabetes. Circ Res 87:1123–1132

    CAS  PubMed  Google Scholar 

  237. Fang ZY, Najos-Valencia O, Leano R, Marwick TH (2003) Patients with early diabetic heart disease demonstrate a normal myocardial response to dobutamine. J Am Coll Cardiol 42:446–453

    CAS  PubMed  Google Scholar 

  238. Fang ZY, Yuda S, Anderson V, Short L, Case C, Marwick TH (2003) Echocardiographic detection of early diabetic myocardial disease. J Am Coll Cardiol 41:611–617

    CAS  PubMed  Google Scholar 

  239. Bell DS (2003) Diabetic cardiomyopathy. Diabetes Care 26:2949–2951

    PubMed  Google Scholar 

  240. Fang ZY, Prins JB, Marwick TH (2004) Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications. Endocr Rev 25:543–567

    CAS  PubMed  Google Scholar 

  241. Kahn JK, Zola B, Juni JE, Vinik AI (1986) Radionuclide assessment of left ventricular diastolic filling in diabetes mellitus with and without cardiac autonomic neuropathy. J Am Coll Cardiol 7:1303–1309

    CAS  PubMed  Google Scholar 

  242. Vered A, Battler A, Segal P, Liberman D, Yerushalmi Y, Berezin M, Neufeld HN (1984) Exercise-induced left ventricular dysfunction in young men with asymptomatic diabetes mellitus (diabetic cardiomyopathy). Am J Cardiol 54:633–637

    CAS  PubMed  Google Scholar 

  243. Felten SY, Peterson RG, Shea PA, Besch HR Jr, Felten DL (1982) Effects of streptozotocin diabetes on the noradrenergic innervation of the rat heart: a longitudinal histofluorescence and neurochemical study. Brain Res Bull 8:593–607

    CAS  PubMed  Google Scholar 

  244. Scacco S, Vergari R, Scarpulla RC, Technikova-Dobrova Z, Sardanelli A, Lambo R, Lorusso V, Papa S (2000) cAMP-Dependent phosphorylation of the nuclear encoded 18-kDa (IP) subunit of respiratory complex I and activation of the complex in serum-starved mouse fibroblast cultures. J Biol Chem 275:17578–17582

    CAS  PubMed  Google Scholar 

  245. Communal C, Singh K, Pimentel DR, Colucci WS (1998) Norepinephrine stimulates apoptosis in adult rat ventricular myocytes by activation of the beta-adrenergic pathway. Circulation 98:1329–1334

    CAS  PubMed  Google Scholar 

  246. Eichhorn EJ, Bristow MR (1996) Medical therapy can improve the biological properties of the chronically failing heart. A new era in the treatment of heart failure. Circulation 94:2285–2296

    CAS  PubMed  Google Scholar 

  247. Bristow MR (2000) Mechanistic and clinical rationales for using beta-blockers in heart failure. J Card Fail 6:8–14

    CAS  PubMed  Google Scholar 

  248. Sugiyama T, Kurata C, Tawarahara K, Nakano T (2000) Is abnormal iodine-123-MIBG kinetics associated with left ventricular dysfunction in patients with diabetes mellitus? J Nucl Cardiol 7:562–568

    CAS  PubMed  Google Scholar 

  249. Scognamiglio R, Casara D, Avogaro A (2000) Myocardial dysfunction and adrenergic innervation in patients with type 1 diabetes mellitus. Diabetes Nutr Metab 13:346–349

    CAS  PubMed  Google Scholar 

  250. Opie (1998) Fuels: aerobic and anaerobic metabolism. In: RWSK W (ed) The heart physiology, from cell to circulation. Lippincott-Raven, Philadelphia, pp 295–341

    Google Scholar 

  251. Goodwin GW, Ahmad F, Doenst T, Taegtmeyer H (1998) Energy provision from glycogen, glucose, and fatty acids on adrenergic stimulation of isolated working rat hearts. Am J Physiol 274:H1239–H1247

    CAS  PubMed  Google Scholar 

  252. Brown M, Marshall DR, Sobel BE, Bergmann SR (1987) Delineation of myocardial oxygen utilization with carbon-11-labeled acetate. Circulation 76:687–696

    CAS  PubMed  Google Scholar 

  253. Collins-Nakai RL, Noseworthy D, Lopaschuk GD (1994) Epinephrine increases ATP production in hearts by preferentially increasing glucose metabolism. Am J Physiol 267:H1862–H1871

    CAS  PubMed  Google Scholar 

  254. Herrero P, Peterson LR, McGill JB, Matthew S, Lesniak D, Dence C, Gropler RJ (2006) Increased myocardial fatty acid metabolism in patients with type 1 diabetes mellitus. J Am Coll Cardiol 47:598–604

    CAS  PubMed  Google Scholar 

  255. Feuvray D, Lopaschuk GD (1997) Controversies on the sensitivity of the diabetic heart to ischemic injury: the sensitivity of the diabetic heart to ischemic injury is decreased. Cardiovasc Res 34:113–120

    CAS  PubMed  Google Scholar 

  256. Hirabara SM, Silveira LR, Alberici LC, Leandro CV, Lambertucci RH, Polimeno GC, Cury Boaventura MF, Procopio J, Vercesi AE, Curi R (2006) Acute effect of fatty acids on metabolism and mitochondrial coupling in skeletal muscle. Biochim Biophys Acta 1757:57–66

    CAS  PubMed  Google Scholar 

  257. Chatham JC, McNeill JH (1996) The heart in diabetes. Kluwer Academic, Norwell

    Google Scholar 

  258. Packer M, O’Connor CM, Ghali JK, Pressler ML, Carson PE, Belkin RN, Miller AB, Neuberg GW, Frid D, Wertheimer JH, Cropp AB, DeMets DL (1996) Effect of amlodipine on morbidity and mortality in severe chronic heart failure. Prospective randomized amlodipine survival evaluation study group. N Engl J Med 335:1107–1114

    CAS  PubMed  Google Scholar 

  259. Buxton DB, Schwaiger M, Nguyen A, Phelps ME, Schelbert HR (1988) Radiolabeled acetate as a tracer of myocardial tricarboxylic acid cycle flux. Circ Res 63:628–634

    CAS  PubMed  Google Scholar 

  260. Katz AM (1986) Potential deleterious effects of inotropic agents in the therapy of chronic heart failure. Circulation 73:III184–III190

    CAS  PubMed  Google Scholar 

  261. Mueller HS, Ayres SM (1977) The role of propranolol in the treatment of acute myocardial infarction. Prog Cardiovasc Dis 19:405–412

    CAS  PubMed  Google Scholar 

  262. Haft J (1974) Treatment of arrhythmias by intracardiac electrical stimulation. Prog Cardiovasc Dis 16:539–568

    CAS  PubMed  Google Scholar 

  263. McDonald KM, Garr M, Carlyle PF, Francis GS, Hauer K, Hunter DW, Parish T, Stillman A, Cohn JN (1994) Relative effects of alpha 1-adrenoceptor blockade, converting enzyme inhibitor therapy, and angiotensin II subtype 1 receptor blockade on ventricular remodeling in the dog. Circulation 90:3034–3046

    CAS  PubMed  Google Scholar 

  264. Tsutsui H, Spinale FG, Nagatsu M, Schmid PG, Ishihara K, DeFreyte G, Cooper G, Carabello BA (1994) Effects of chronic beta-adrenergic blockade on the left ventricular and cardiocyte abnormalities of chronic canine mitral regurgitation. J Clin Invest 93:2639–2648

    CAS  PubMed Central  PubMed  Google Scholar 

  265. Lawes CM, Parag V, Bennett DA, Suh I, Lam TH, Whitlock G, Barzi F, Woodward M (2004) Blood glucose and risk of cardiovascular disease in the Asia Pacific region. Diabetes Care 27:2836–2842

    CAS  PubMed  Google Scholar 

  266. Held C, Gerstein HC, Yusuf S, Zhao F, Hilbrich L, Anderson C, Sleight P, Teo K (2007) Glucose levels predict hospitalization for congestive heart failure in patients at high cardiovascular risk. Circulation 115:1371–1375

    CAS  PubMed  Google Scholar 

  267. Is the current definition for diabetes relevant to mortality risk from all causes and cardiovascular and noncardiovascular diseases? (2003) Diabetes Care 26:688–696

    Google Scholar 

  268. Brunner EJ, Shipley MJ, Witte DR, Fuller JH, Marmot MG (2006) Relation between blood glucose and coronary mortality over 33 years in the Whitehall Study. Diabetes Care 29:26–31

    PubMed  Google Scholar 

  269. Selvin E, Coresh J, Golden SH, Brancati FL, Folsom AR, Steffes MW (2005) Glycemic control and coronary heart disease risk in persons with and without diabetes: the atherosclerosis risk in communities study. Arch Intern Med 165:1910–1916

    PubMed  Google Scholar 

  270. Gerstein HC, Swedberg K, Carlsson J, McMurray JJ, Michelson EL, Olofsson B, Pfeffer MA, Yusuf S (2008) The hemoglobin A1c level as a progressive risk factor for cardiovascular death, hospitalization for heart failure, or death in patients with chronic heart failure: an analysis of the Candesartan in Heart failure: Assessment of Reduction in Mortality and Morbidity (CHARM) program. Arch Intern Med 168:1699–1704

    CAS  PubMed  Google Scholar 

  271. Gregg EW, Gu Q, Cheng YJ, Narayan KM, Cowie CC (2007) Mortality trends in men and women with diabetes, 1971 to 2000. Ann Intern Med 147:149–155

    PubMed  Google Scholar 

  272. Nathan DM (1998) Some answers, more controversy, from UKPDS. United Kingdom Prospective Diabetes Study. Lancet 352:832–833

    CAS  PubMed  Google Scholar 

  273. Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, McQueen M, Budaj A, Pais P, Varigos J, Lisheng L (2004) Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case–control study. Lancet 364:937–952

    PubMed  Google Scholar 

  274. Gerstein HC, Islam S, Anand S, Almahmeed W, Damasceno A, Dans A, Lang CC, Luna MA, McQueen M, Rangarajan S, Rosengren A, Wang X, Yusuf S (2010) Dysglycaemia and the risk of acute myocardial infarction in multiple ethnic groups: an analysis of 15,780 patients from the INTERHEART study. Diabetologia 53:2509–2517

    CAS  PubMed  Google Scholar 

  275. DCCT Study Group (1998) the effect of intensive diabetes therapy on measures of autonomic nervous system function in the Diabetes Control and Complications Trial (DCCT). Diabetologia 41:416–423

    Google Scholar 

  276. Epidemiology of Diabetes Interventions and Complications (EDIC) (1999) Design, implementation, and preliminary results of a long-term follow-up of the Diabetes Control and Complications Trial Cohort. Diabetes Care 22:99–111

    Google Scholar 

  277. DCCT/EDIC Study Group (2000) Retinopathy and nephropathy in patients with type 1 diabetes four years after a trial of intensive therapy. The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. N Engl J Med 342:381–389

    Google Scholar 

  278. DCCT/EDIC Study Group (2002) effect of intensive therapy on the microvascular complications of type 1 diabetes mellitus. JAMA 287:2563–2569

    Google Scholar 

  279. DCCT/EDIC Study Group, Writing, Group (2003) Sustained effect of intensive treatment of type 1 diabetes mellitus on development and progression of diabetic nephropathy: the Epidemiology of Diabetes Interventions and Complications (EDIC) study. JAMA 290:2159–2167

    Google Scholar 

  280. Nathan DM, Cleary PA, Backlund JY, Genuth SM, Lachin JM, Orchard TJ, Raskin P, Zinman B (2005) Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med 353:2643–2653

    PubMed  Google Scholar 

  281. Pop-Busui R, Low PA, Waberski BH, Martin CL, Albers JW, Feldman EL, Sommer C, Cleary PA, Lachin JM, Herman WH (2009) Effects of prior intensive insulin therapy on cardiac autonomic nervous system function in type 1 diabetes mellitus: the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications study (DCCT/EDIC). Circulation 119:2886–2893

    CAS  PubMed Central  PubMed  Google Scholar 

  282. UKPDS (1998) Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet 352:854–865

    Google Scholar 

  283. Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA (2008) 10-Year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med 359:1577–1589

    CAS  PubMed  Google Scholar 

  284. Duckworth W, Abraira C, Moritz T, Reda D, Emanuele N, Reaven PD, Zieve FJ, Marks J, Davis SN, Hayward R, Warren SR, Goldman S, McCarren M, Vitek ME, Henderson WG, Huang GD (2009) Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med 360:129–139

    CAS  PubMed  Google Scholar 

  285. Gerstein HC, Miller ME, Byington RP, Goff DC Jr, Bigger JT, Buse JB, Cushman WC, Genuth S, Ismail-Beigi F, Grimm RH Jr, Probstfield JL, Simons-Morton DG, Friedewald WT (2008) Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 358:2545–2559

    CAS  PubMed  Google Scholar 

  286. Patel A, MacMahon S, Chalmers J, Neal B, Billot L, Woodward M, Marre M, Cooper M, Glasziou P, Grobbee D, Hamet P, Harrap S, Heller S, Liu L, Mancia G, Mogensen CE, Pan C, Poulter N, Rodgers A, Williams B, Bompoint S, de Galan BE, Joshi R, Travert F (2008) Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 358:2560–2572

    CAS  PubMed  Google Scholar 

  287. Monnier L, Mas E, Ginet C, Michel F, Villon L, Cristol JP, Colette C (2006) Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA 295:1681–1687

    CAS  PubMed  Google Scholar 

  288. Packer L, Tritschler HJ (1996) Alpha-lipoic acid: the metabolic antioxidant. Free Radic Biol Med 20:625–626

    CAS  PubMed  Google Scholar 

  289. Tuomilehto J, Kuulasmaa K, Torppa J (1987) WHO MONICA Project: geographic variation in mortality from cardiovascular diseases. Baseline data on selected population characteristics and cardiovascular mortality. World Health Stat Q 40:171–184

    CAS  PubMed  Google Scholar 

  290. Ye Z, Song H (2008) Antioxidant vitamins intake and the risk of coronary heart disease: meta-analysis of cohort studies. Eur J Cardiovasc Prev Rehabil 15:26–34

    PubMed  Google Scholar 

  291. Wright ME, Lawson KA, Weinstein SJ, Pietinen P, Taylor PR, Virtamo J, Albanes D (2006) Higher baseline serum concentrations of vitamin E are associated with lower total and cause-specific mortality in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study. Am J Clin Nutr 84:1200–1207

    CAS  PubMed  Google Scholar 

  292. Loria CM, Klag MJ, Caulfield LE, Whelton PK (2000) Vitamin C status and mortality in US adults. Am J Clin Nutr 72:139–145

    CAS  PubMed  Google Scholar 

  293. Stephens NG, Parsons A, Schofield PM, Kelly F, Cheeseman K, Mitchinson MJ (1996) Randomised controlled trial of vitamin E in patients with coronary disease: Cambridge Heart Antioxidant Study (CHAOS). Lancet 347:781–786

    CAS  PubMed  Google Scholar 

  294. Salonen RM, Nyyssonen K, Kaikkonen J, Porkkala-Sarataho E, Voutilainen S, Rissanen TH, Tuomainen TP, Valkonen VP, Ristonmaa U, Lakka HM, Vanharanta M, Salonen JT, Poulsen HE (2003) Six-year effect of combined vitamin C and E supplementation on atherosclerotic progression: the Antioxidant Supplementation in Atherosclerosis Prevention (ASAP) Study. Circulation 107:947–953

    CAS  PubMed  Google Scholar 

  295. Vivekananthan DP, Penn MS, Sapp SK, Hsu A, Topol EJ (2003) Use of antioxidant vitamins for the prevention of cardiovascular disease: meta-analysis of randomised trials. Lancet 361:2017–2023

    CAS  PubMed  Google Scholar 

  296. Schurks M, Glynn RJ, Rist PM, Tzourio C, Kurth T (2010) Effects of vitamin E on stroke subtypes: meta-analysis of randomised controlled trials. BMJ 341:c5702

    PubMed Central  PubMed  Google Scholar 

  297. Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C (2012) Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases. Cochrane Database of Syst Rev (3):CD007176. doi: 10.1002/14651858.CD007176.pub2

    Google Scholar 

  298. Kris-Etherton PM, Lichtenstein AH, Howard BV, Steinberg D, Witztum JL (2004) Antioxidant vitamin supplements and cardiovascular disease. Circulation 110:637–641

    CAS  PubMed  Google Scholar 

  299. Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C (2007) Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis. JAMA 297:842–857

    CAS  PubMed  Google Scholar 

  300. Heinecke JW (2001) Is the emperor wearing clothes? Clinical trials of vitamin E and the LDL oxidation hypothesis. Arterioscler Thromb Vasc Biol 21:1261–1264

    CAS  PubMed  Google Scholar 

  301. Heinecke JW (2003) Clinical trials of vitamin E in coronary artery disease: is it time to reconsider the low-density lipoprotein oxidation hypothesis? Curr Atheroscler Rep 5:83–87

    PubMed  Google Scholar 

  302. Mashima R, Witting PK, Stocker R (2001) Oxidants and antioxidants in atherosclerosis. Curr Opin Lipidol 12:411–418

    CAS  PubMed  Google Scholar 

  303. Meagher EA, Barry OP, Lawson JA, Rokach J, FitzGerald GA (2001) Effects of vitamin E on lipid peroxidation in healthy persons. JAMA 285:1178–1182

    CAS  PubMed  Google Scholar 

  304. Yusuf S, Dagenais G, Pogue J, Bosch J, Sleight P (2000) Vitamin E supplementation and cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med 342:154–160

    CAS  PubMed  Google Scholar 

  305. Boaz M, Smetana S, Weinstein T, Matas Z, Gafter U, Iaina A, Knecht A, Weissgarten Y, Brunner D, Fainaru M, Green MS (2000) Secondary prevention with antioxidants of cardiovascular disease in end stage renal disease (SPACE): randomised placebo-controlled trial. Lancet 356:1213–1218

    CAS  PubMed  Google Scholar 

  306. Butler R, Morris AD, Belch JJ, Hill A, Struthers AD (2000) Allopurinol normalizes endothelial dysfunction in type 2 diabetics with mild hypertension. Hypertension 35:746–751

    CAS  PubMed  Google Scholar 

  307. Collins R, Armitage J, Parish S, Sleigh P, Peto R (2003) MRC/BHF Heart Protection Study of cholesterol-lowering with simvastatin in 5963 people with diabetes: a randomised placebo-controlled trial. Lancet 361:2005–2016

    PubMed  Google Scholar 

  308. Bosch J, Yusuf S, Gerstein HC, Pogue J, Sheridan P, Dagenais G, Diaz R, Avezum A, Lanas F, Probstfield J, Fodor G, Holman RR (2006) Effect of ramipril on the incidence of diabetes. N Engl J Med 355:1551–1562

    PubMed  Google Scholar 

  309. Lopes HF, Martin KL, Nashar K, Morrow JD, Goodfriend TL, Egan BM (2003) DASH diet lowers blood pressure and lipid-induced oxidative stress in obesity. Hypertension 41:422–430

    CAS  PubMed  Google Scholar 

  310. Sofi F, Cesari F, Abbate R, Gensini GF, Casini A (2008) Adherence to Mediterranean diet and health status: meta-analysis. BMJ 337:a1344

    PubMed Central  PubMed  Google Scholar 

  311. Esposito K, Maiorino MI, Ciotola M, Di Palo C, Scognamiglio P, Gicchino M, Petrizzo M, Saccomanno F, Beneduce F, Ceriello A, Giugliano D (2009) Effects of a Mediterranean-style diet on the need for antihyperglycemic drug therapy in patients with newly diagnosed type 2 diabetes: a randomized trial. Ann Intern Med 151:306–314

    PubMed  Google Scholar 

  312. Esposito K, Marfella R, Ciotola M, Di Palo C, Giugliano F, Giugliano G, D’Armiento M, D’Andrea F, Giugliano D (2004) Effect of a mediterranean-style diet on endothelial dysfunction and markers of vascular inflammation in the metabolic syndrome: a randomized trial. JAMA 292:1440–1446

    CAS  PubMed  Google Scholar 

  313. Shai I, Schwarzfuchs D, Henkin Y, Shahar DR, Witkow S, Greenberg I, Golan R, Fraser D, Bolotin A, Vardi H, Tangi-Rozental O, Zuk-Ramot R, Sarusi B, Brickner D, Schwartz Z, Sheiner E, Marko R, Katorza E, Thiery J, Fiedler GM, Bluher M, Stumvoll M, Stampfer MJ (2008) Weight loss with a low-carbohydrate, Mediterranean, or low-fat diet. N Engl J Med 359:229–241

    CAS  PubMed  Google Scholar 

  314. Chrysohoou C, Panagiotakos DB, Pitsavos C, Das UN, Stefanadis C (2004) Adherence to the Mediterranean diet attenuates inflammation and coagulation process in healthy adults: The ATTICA Study. J Am Coll Cardiol 44:152–158

    PubMed  Google Scholar 

  315. Dai J, Jones DP, Goldberg J, Ziegler TR, Bostick RM, Wilson PW, Manatunga AK, Shallenberger L, Jones L, Vaccarino V (2008) Association between adherence to the Mediterranean diet and oxidative stress. Am J Clin Nutr 88:1364–1370

    CAS  PubMed Central  PubMed  Google Scholar 

  316. Fidanza F, Alberti A, Lanti M, Menotti A (2004) Mediterranean Adequacy Index: correlation with 25-year mortality from coronary heart disease in the Seven Countries Study. Nutr Metab Cardiovasc Dis 14:254–258

    CAS  PubMed  Google Scholar 

  317. Fung TT, Rexrode KM, Mantzoros CS, Manson JE, Willett WC, Hu FB (2009) Mediterranean diet and incidence of and mortality from coronary heart disease and stroke in women. Circulation 119:1093–1100

    PubMed Central  PubMed  Google Scholar 

  318. Knoops KT, de Groot LC, Kromhout D, Perrin AE, Moreiras-Varela O, Menotti A, van Staveren WA (2004) Mediterranean diet, lifestyle factors, and 10-year mortality in elderly European men and women: the HALE project. JAMA 292:1433–1439

    PubMed  Google Scholar 

  319. Trichopoulou A, Costacou T, Bamia C, Trichopoulos D (2003) Adherence to a Mediterranean diet and survival in a Greek population. N Engl J Med 348:2599–2608

    PubMed  Google Scholar 

  320. Panagiotakos DB, Chrysohoou C, Pitsavos C, Tzioumis K, Papaioannou I, Stefanadis C, Toutouzas P (2002) The association of Mediterranean diet with lower risk of acute coronary syndromes in hypertensive subjects. Int J Cardiol 82:141–147

    PubMed  Google Scholar 

  321. Pitsavos C, Panagiotakos DB, Chrysohoou C, Papaioannou I, Papadimitriou L, Tousoulis D, Stefanadis C, Toutouzas P (2003) The adoption of Mediterranean diet attenuates the development of acute coronary syndromes in people with the metabolic syndrome. Nutr J 2:1

    PubMed Central  PubMed  Google Scholar 

  322. Pitsavos C, Panagiotakos DB, Chrysohoou C, Skoumas J, Papaioannou I, Stefanadis C, Toutouzas PK (2002) The effect of Mediterranean diet on the risk of the development of acute coronary syndromes in hypercholesterolemic people: a case–control study (CARDIO2000). Coron Artery Dis 13:295–300

    PubMed  Google Scholar 

  323. de Lorgeril M, Renaud S, Mamelle N, Salen P, Martin JL, Monjaud I, Guidollet J, Touboul P, Delaye J (1994) Mediterranean alpha-linolenic acid-rich diet in secondary prevention of coronary heart disease. Lancet 343:1454–1459

    PubMed  Google Scholar 

  324. Tuttle KR, Shuler LA, Packard DP, Milton JE, Daratha KB, Bibus DM, Short RA (2008) Comparison of low-fat versus Mediterranean-style dietary intervention after first myocardial infarction (from The Heart Institute of Spokane Diet Intervention and Evaluation Trial). Am J Cardiol 101:1523–1530

    PubMed  Google Scholar 

  325. Stoclet JC, Chataigneau T, Ndiaye M, Oak MH, El Bedoui J, Chataigneau M, Schini-Kerth VB (2004) Vascular protection by dietary polyphenols. Eur J Pharmacol 500:299–313

    CAS  PubMed  Google Scholar 

  326. Hooper L, Kroon PA, Rimm EB, Cohn JS, Harvey I, Le Cornu KA, Ryder JJ, Hall WL, Cassidy A (2008) Flavonoids, flavonoid-rich foods, and cardiovascular risk: a meta-analysis of randomized controlled trials. Am J Clin Nutr 88:38–50

    CAS  PubMed  Google Scholar 

  327. Desch S, Schmidt J, Kobler D, Sonnabend M, Eitel I, Sareban M, Rahimi K, Schuler G, Thiele H (2010) Effect of cocoa products on blood pressure: systematic review and meta-analysis. Am J Hypertens 23:97–103

    CAS  PubMed  Google Scholar 

  328. Engler MB, Engler MM (2006) The emerging role of flavonoid-rich cocoa and chocolate in cardiovascular health and disease. Nutr Rev 64:109–118

    PubMed  Google Scholar 

  329. Mostofsky E, Levitan EB, Wolk A, Mittleman MA (2010) Chocolate intake and incidence of heart failure: a population-based prospective study of middle-aged and elderly women. Circ Heart Fail 3:612–616

    CAS  PubMed Central  PubMed  Google Scholar 

  330. Pop-Busui R, Stevens MJ, Raffel DM, White EA, Mehta M, Plunkett CD, Brown MB, Feldman EL (2013) Effects of triple antioxidant therapy on measures of cardiovascular autonomic neuropathy and on myocardial blood flow in type 1 diabetes: a randomised controlled trial. Diabetologia 56(8):1835–1844

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodica Pop-Busui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pop-Busui, R., Mehta, M., Pennathur, S. (2014). Oxidative Stress and Cardiovascular Disease in Diabetes. In: Obrosova, I., Stevens, M., Yorek, M. (eds) Studies in Diabetes. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4899-8035-9_11

Download citation

Publish with us

Policies and ethics