Skip to main content

Growth Hormone and Bone

  • Chapter
  • First Online:

Abstract

Human growth hormone (GH) is a peptide hormone physiologically secreted in the anterior pituitary gland. GH is well known to affect linear height growth. GH treatment for its effect of growth in patients with many types of disorders of short stature has been expanding. In childhood, longitudinal bones become thick at the same time as long axis elongation, and bone quantity and bone mineral density (BMD) are elevated continuously until the adolescent stage. Because patients with GH deficiency have a short stature and relatively low BMD, GH likely plays a critical role in bone mineral metabolism. To improve linear growth and bone mineral metabolism, some recent studies have challenged GH treatment in patients with metabolic bone diseases, in addition to approved diseases. In this chapter, we describe the physiology of GH action, efficacy, and trials of GH treatment. The especially on bone mineral metabolism.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Van Cauter E, Plat L, Copinschi G. Interrelations between sleep and the somatotropic axis. Sleep. 1998;21:553–66.

    PubMed  Google Scholar 

  2. Melmed S, Kleinberg D, Ho K. Pituitary physiology and diagnostic evaluation. In: Kronenberg HM, Melmed S, Polonsky KS, Larsen PR, editors. Williams textbook of endocrinology. 12th ed. Philadelphia, PA: Saunders Elsevier; 2011. p. 186–97. Chapter 8.

    Google Scholar 

  3. Barinaga M, Yamonoto G, Rivier C, Vale W, Evans R, Rosenfeld MG. Transcriptional regulation of growth hormone gene expression by growth hormone-releasing factor. Nature. 1983;306:84–5.

    PubMed  CAS  Google Scholar 

  4. Gaylinn BD. Molecular and cell biology of the growth hormone-releasing hormone receptor. Growth Horm IGF Res. 1999;9:37–44.

    PubMed  CAS  Google Scholar 

  5. Kojima M, Hosoda H, Date Y, Nakazato M, Matsumoto H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 1999;402:656–60.

    PubMed  CAS  Google Scholar 

  6. Howard AD, Feighner SD, Cully DF, Arena JP, Liberator PA, Rosenblum CI, Hamelin M, Hreniuk DL, Palyha OC, Anderson J, Paress PS, Diaz C, Chou M, Liu KK, McKee KK, Pong SS, Chaung LY, Elbrecht A, Dashkevicz M, Heavens R, Rigby M, Sirinathsinghji DJ, Dean DC, Melillo DG, Patchett AA, Nargund R, Griffin PR, DeMartino JA, Gupta SK, Schaeffer JM, Smith RG, Van der Ploeg LH. A receptor in pituitary and hypothalamus that functions in growth hormone release. Science. 1996;273:974–7.

    PubMed  CAS  Google Scholar 

  7. Cummings DE, Purnell JQ, Frayo RS, Schmidova K, Wisse BE, Weigle DS. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes. 2011;50:1714–9.

    Google Scholar 

  8. Feldt-Rasmussen U. Metabolic effects of growth hormone. In: Ranke MB, Price DA, Reiter EO, editors. Growth hormone therapy in pediatrics-20 years of KIGS. Basel: Karger; 2007. p. 477–84.

    Google Scholar 

  9. Le Roith D. Seminars in medicine of the Beth Israel Deaconess Medical Center. Insulin-like growth factors. N Engl J Med. 1997;336:633–40.

    PubMed  Google Scholar 

  10. Yakar S, Liu JL, Stannard B, Butler A, Accili D, Sauer B, LeRoith D. Normal growth and development in the absence of hepatic insulin-like growth factor I. Proc Natl Acad Sci U S A. 1999;96:7324–9.

    PubMed Central  PubMed  CAS  Google Scholar 

  11. Ohlsson C, Nilsson A, Isaksson O, Lindahl A. Growth hormone induces multiplication of the slowly cycling germinal cells of the rat tibial growth plate. Proc Natl Acad Sci U S A. 1992;89:9826–30.

    PubMed Central  PubMed  CAS  Google Scholar 

  12. Raben MS. Treatment of a pituitary dwarf with human growth hormone [Letter]. J Clin Endocrinol. 1958;18:901.

    CAS  Google Scholar 

  13. Burns EC, Tnner JM, Preece MA, Cameron N. Final height and pubertal development in 55 children with idiopathic growth hormone deficiency, treated for between 2 and 15 years with human growth hormone. Eur J Pediatr. 1981;137:155–64.

    PubMed  CAS  Google Scholar 

  14. Bundak R, Hindmarsh PC, Smith PJ, Brook CGD. Long term auxologic effects of human growth hormone. J Pediatr. 1988;112:875–9.

    PubMed  CAS  Google Scholar 

  15. Joss E, Juppinger K, Schwarz HP, Roten G. Final height of patients with pituitary growth failure and changes in growth variables after long-term hormonal therapy. Pediatr Res. 1983;17:676–9.

    PubMed  CAS  Google Scholar 

  16. Fradkin JE, Schonberger LB, Mills JL, Gunn WJ, Piper JM, Wysowski DK, Thomson R, Durako S, Brown P. Creutzfeldt-Jakob disease in pituitary growth hormone recipients in the United States. JAMA. 1991;265:880–4.

    PubMed  CAS  Google Scholar 

  17. Lawson Wilkins Pediatric Endocrine Society Committee, Underwood LE, Fisher DA, Frasier SD, Gertner JM, Kaplan SL, Kirkland RT, Lippe BM, Salvatore R. Degenerative neurologic disease in patients formerly treated with human growth hormone-Report of the Committee on Growth Hormone Use of the Lawson Wilkins Pediatric Endocrine Society, May 1985. J Pediatr. 1985;107:10.

    Google Scholar 

  18. Allen DB. Growth hormone treatment. In: Lifshitz F, editor. Pediatric endocrinology. 4th ed. CRC: Boca Raton; 2006. p. 87.

    Google Scholar 

  19. Timoin DL, Merimee TJ, Rabinowitz D, McKusick VA. Genetic aspects of clinical endocrinology. Recent Prog Horm Res. 1968;24:365–437.

    Google Scholar 

  20. Ranke MB. A note on adults with growth hormone deficiency. Acta Paediatr Scand Suppl. 1987;331:80–2.

    PubMed  CAS  Google Scholar 

  21. Van der Wefften Bosch JJ, Bot A. Growth of males with idiopathic hypopituitarism without growth hormone treatment. Clin Endocrinol. 1990;32:707–17.

    Google Scholar 

  22. August GP, Julius JR, Blethwn SL. Adult height in children with growth hormone deficiency who are treated with biosynthetic growth hormone: the National Cooperative Growth Study experience. Pediatrics. 1998;102:512–6.

    PubMed  CAS  Google Scholar 

  23. Cutfield WS, Lindberg A, Chatelain P, Price DA, Albertsson-Wikland K, Wilton P, Ranke MB. Final height following growth hormone treatment of idiopathic growth hormone deficiency in KIGS. In: Ranke BM, Wilton P, editors. Growth hormone therapy in KIGS—10 years’ experience. Heidelberg-Leipzig: Johann Ambrosius Barth; 1999. p. 93–110.

    Google Scholar 

  24. Karlberg J, Albertsson-Wikland K. Growth in full-term small-for-gestational-age infants: from birth to final height. Pediatr Res. 1995;38:733–9.

    PubMed  CAS  Google Scholar 

  25. Tenovuo A, Kero P, Piekkala P, Korvenranta H, Sillanpaa M, Erkkola R. Growth of 519 small for gestational age infants during the first two years of life. Acta Paediatr Scand. 1987;76:636–46.

    PubMed  CAS  Google Scholar 

  26. Hokken-Koelega AC, De Ridder MA, Lemmen RJ, Den Hartog H, De Muinck Keizer-Schrama SM, Drop SL. Children born small for gestational age: do they catch up? Pediatr Res. 1995;38:267–71.

    PubMed  CAS  Google Scholar 

  27. Albertsson-Wikland K, Karlberg J. Natural growth in children born small for gestational age with and without catchup growth. Acta Paediatr. 1994;399:64–70.

    CAS  Google Scholar 

  28. Leger J, Levy-Marchal C, Bloch J, Pinet A, Chevenne K, Porquet D, Collin D, Czernichow P. Reduced final height and indications for insulin resistance in 20 year olds born small for gestational age; regional cohort study. BMJ. 1997;315:341–7.

    PubMed Central  PubMed  CAS  Google Scholar 

  29. VanPareren Y, Mulder P, Houdijk M, Jansen M, Reeser M, Hokken-Koelega A. Adult height after long-term, continuous growth hormone (GH) treatment in short children born small for gestational age; results of a randomized, double-blind dose–response GH trial. J Clin Endocrinol Metab. 2003;88:3584–90.

    CAS  Google Scholar 

  30. Bannink EMN, van Pareren Y, Teunissen NCM, Raat H, Mulder PGM, HokkenKoelega ACS. Quality of life in adolescents born small for gestational age: dose growth hormone make a difference. Horm Res. 2005;64:166–74.

    PubMed  CAS  Google Scholar 

  31. Hokken-Koelega ACS, Vam Pareren Y, Sas T, Arends N. Final height data, body composition and glucose metabolism in growth hormone-treated short children born small for gestational age. Horm Res. 2003;60:113–4.

    PubMed  CAS  Google Scholar 

  32. Turner H. A syndrome of infantilism, congenital webbed neck, and cubitus valgus. Endocrinology. 1938;28:566–74.

    Google Scholar 

  33. Soriano-Guillen L, Coste J, Ecosse E, Leger J, Tauber M, Cabrol S, Nicolio M, Brauner R, Chaussain JL, Carel JC. Adult height and pubertal growth in Turner syndrome after treatment with recombinant growth hormone. J Clin Endocrinol Metab. 2005;90:5197–204.

    PubMed  CAS  Google Scholar 

  34. Canadian Growth Hormone Advisory Committee. Impact of growth hormone supplementation on adult height in Turner syndrome: results of the Canadian randomized controlled trial. J Clin Endocrinol Metab. 2005;90:3360–6.

    Google Scholar 

  35. Gorman G, Fivush B, Frankenfield D, Warady B, Watkins S, Brem A, Neu A. Short stature and growth hormone use in pediatric hemodialysis patients. Pediatr Nephrol. 2005;20:1794–800.

    PubMed  Google Scholar 

  36. Shroff R, Rees L, Trompeter R, Hutchinson C, Ledermann S. Long-term outcome of chronic dialysis children. Pediatr Nephrol. 2006;21:257–64.

    PubMed  Google Scholar 

  37. Hokken-Koelega AC, Van Zaal MA, van Bergen W, de Ridder MA, Stijnen T, Wolff ED, de Jong RC, Donckerwolcke RA, de Muinck Keizer-Schrama SM, Drop SL. Final height and its predictive factors after renal transplantation in childhood. Pediatr Res. 1994;36:323–8.

    PubMed  CAS  Google Scholar 

  38. Andre JL, Bourquard R, Guillemin F, Krier MJ, Briancon S. Final height in children with chronic renal failure who have not received growth hormone. Pediatr Nephrol. 2003;18:685–9.

    PubMed  Google Scholar 

  39. Mehls O, Lindberg A, Nissel R, Wuhl E, Schaefer F, Tonshoff B, Haffner D. Growth hormone treatment in short children with chronic kidney disease. In: Ranke MB, Price DA, Reiter EO, editors. Growth hormone therapy in pediatrics—20 years of KIGS. Basel: Karger; 2007. p. 407–21.

    Google Scholar 

  40. Fine RN, Stablein D. Long-term use of recombinant human growth hormone in pediatric allograft recipients: a report of the NAPRTCS Transplant Registry. Pediatr Nephrol. 2005;20:404–8.

    PubMed  Google Scholar 

  41. Crompton CH, Australian and New Zealand Paediatric Nephrology Association. A long-term recombinant human growth hormone use in Australian children with renal disease. Nephrology (Carlton). 2004;9:325–30.

    CAS  Google Scholar 

  42. Wollmann HA, Schltz U, Grauer ML, Ranke MB. Reference values for height and weight in Prader-Willi syndrome based on 315 patients. Eur J Pediatr. 1998;157:634–42.

    PubMed  CAS  Google Scholar 

  43. Hauffa BP, Schlippe G, Roos M, Gillessen-Kaesbach G, Gasser T. Spontaneous growth in German children and adolescents with genetically confirmed Prader-Willi syndrome. Acta Paediatr. 2000;89:1302–11.

    PubMed  CAS  Google Scholar 

  44. Lindgren AC, Hagenas L, Muller J, Blichfeldt S, Rosenborn M, Brismar T, Ritzen EM. Growth hormone treatment of children with Prader-Willi syndrome affects linear growth and body composition favourably. Acta Paediatr. 1998;87:28–31.

    PubMed  CAS  Google Scholar 

  45. Davies PSW, Evens S, Broomhead S, Clough H, Day JME, Laidlaw A, Barnes ND. Effect of growth hormone on height, weight, and body composition in Prader-Willi syndrome. Arch Dis Child. 1998;78:474–6.

    PubMed Central  PubMed  CAS  Google Scholar 

  46. Eiholzer U, L’Allemand D. Growth hormone normalizes height, prediction of final height and length in children with Prader-Willi syndrome after 4 years of therapy. Horm Res. 2000;53:185–92.

    PubMed  CAS  Google Scholar 

  47. Noonan JA. Hypertelorism with Turner phenotype. A new syndrome with associated congenital heart disease. Am J Dis Child. 1968;116:373–80.

    PubMed  CAS  Google Scholar 

  48. Ranke M, Heidemann P, Knupfer C, Enders H, Schmaltz AA, Bierich JR. Noonan syndrome: growth and clinical manifestations in 144 cases. Eur J Pediatr. 1988;148:220–7.

    PubMed  CAS  Google Scholar 

  49. Oiso D, Dahlgren J, Wikland KA, Westphal O. Improved final height with long-term growth hormone treatment in Noonan syndrome. Acta Paediatr. 2005;94:1232–7.

    Google Scholar 

  50. Limal JM, Parfait B, Cabrol S, Bonnet D, Leheup B, Lyonnet S, Vidaud M, Le Bouc Y. Noonan syndrome; relationships between genotype, growth and growth factors. J Clin Endocrinol Metab. 2006;91:300–6.

    PubMed  CAS  Google Scholar 

  51. Wit JM. Idiopathic short stature: definition, spontaneous growth and response to treatment. In: Ranke MB, Price DA, Reiter EO, editors. Growth hormone therapy in pediatrics-20 years of KIGS. Basel: Karger; 2007. p. 309–18.

    Google Scholar 

  52. Wit JM, Rekers-Mombarg LT. Final height gain by GH therapy in children with idiopathic short stature is dose dependent. J Clin Endocrinol Metab. 2002;87:604–11.

    PubMed  CAS  Google Scholar 

  53. Buzi F, Buchanan C, Morrell DJ, Preece MA. Antigenicity and efficacy of authentic sequence recombinant human growth hormone (somatropin): first year experience in the United Kingdom. Clin Endocrinol. 1989;30:531–8.

    CAS  Google Scholar 

  54. Sato T, Suzuki Y, Taketani T. Enhanced peripheral conversion of thyroxine to triiodothyronine during GH therapy in GH deficient children. J Clin Endocrinol Metab. 1977;45:324–9.

    PubMed  CAS  Google Scholar 

  55. Municchi G, Malozowski S, Nisula BC, Cristiano A, Rose SR. Nocturnal thyrotropin surge in growth hormone-deficient children. J Pediatr. 1992;121:214–20.

    PubMed  CAS  Google Scholar 

  56. Sherwin RS, Schulman GA, Hendler R, et al. Effect of growth hormone on oral glucose tolerance and circulating metabolic fuels in man. Diabetologia. 1983;24:155.

    PubMed  CAS  Google Scholar 

  57. Schnure JJ, Raskin P, Lipman RL. Growth hormone secretion during sleep: impairment in glucose tolerance and nonsuppressibility by hyper glycemia. J Clin Endocrinol Metab. 1971;33:234.

    PubMed  CAS  Google Scholar 

  58. Lampit M, Nave T, Hochberg X. Water and sodium retention during short-term administration of growth hormone to short normal children. Horm Res. 1998;50:83–8.

    PubMed  CAS  Google Scholar 

  59. Otten BJ, Rotteveel JJ, Cruysberg JRM. Pseudotumor cerebri following treatment with growth hormone. Horm Res. 1992;37 Suppl 4:16.

    Google Scholar 

  60. Maneatis T, Baptista J, Connelly K, Blethen S. Growth hormone safety update from the national cooperative growth study. J Pediatr Endocrinol. 2000;13:1035–44.

    Google Scholar 

  61. Skottner A, Clark RG, Robinson IC, Fryklund L. Recombinant human insulin-like growth factor: testing the somatomedin hypothesis in hypophysectomized rats. J Endocrinol. 1987;112:123–32.

    PubMed  CAS  Google Scholar 

  62. Leung K, Rajkovic IA, Reters E, Markus I, Van Wyk JJ, Ho KK. Insulin-like growth factor I and insulin down-regulate growth hormone (GH) receptors in rat osteoblasts: evidence for a peripheral feedback loop regulating GH action. Endocrinology. 1996;137:2694–702.

    PubMed  CAS  Google Scholar 

  63. Hock JM, Centrella M, Canalis E. Insulin-like growth factor I has independent effects on bone matrix formation and cell replication. Endocrinology. 1988;122:254–60.

    PubMed  CAS  Google Scholar 

  64. Nishiyama K, Sugimoto T, Kaji H, Kanatani M, Kobayashi T, Chihara K. Stimulatory effect of growth hormone on bone resorption and osteoclast differentiation. Endocrinology. 1996;137:35–41.

    PubMed  CAS  Google Scholar 

  65. Klefter O, Feldt-Rasmussen U. Is increase in bone mineral content caused by increase in skeletal muscle mass/strength in adult patients with GH-treated GH deficiency? A systematic literature analysis. Eur J Endocrinol. 2009;161:213–21.

    PubMed  CAS  Google Scholar 

  66. Ho PJ, Fig LM, Barkan AL, Shapiro B. Bone mineral density of the axial skeleton in acromegaly. J Nucl Med. 1992;33:1608–12.

    PubMed  CAS  Google Scholar 

  67. Russell-Aulet M, Shapiro B, Jaffe CA, Gross MD, Barkan AL. Peak bone mass in young healthy men is correlated with the magnitude of endogenous growth hormone secretion. J Clin Endocrinol Metab. 1998;83:3463–8.

    PubMed  CAS  Google Scholar 

  68. Baroncelli GI, Bertelloni S, Ceccarelli C, Saggese G. Measurement of volumetric bone mineral density accurately determines degree of lumbar undermineralization in children with growth hormone deficiency. J Clin Endocrinol Metab. 1998;83:3150–4.

    PubMed  CAS  Google Scholar 

  69. Saggese G, Baroncelli GI, Bertelloni S, Barsanti S. The effect of long-term growth hormone (GH) treatment on bone mineral density in children with GH deficiency. Role of GH in the attainment of peak bone mass. J Clin Endocrinol Metab. 1996;81:3077–83.

    PubMed  CAS  Google Scholar 

  70. Sass TC, De Muinck Keizer-Schrama SM, Stijnen T, Asarfi A, Van Leeuwen WJ, Van Teunenbroek A, Van Rijn RR, Drop SL. A longitudinal study on bone mineral density until adulthood in girls with Turner’s syndrome participating in a growth hormone injection frequency-response trial. Clin Endocrinol (Oxf). 2000;52:531–6.

    CAS  Google Scholar 

  71. Carrel AL, Myers SE, Whitman BY, Allen DB. Sustained benefits of growth hormone on body composition, fat utilization, physical strength and agility, and growth in Prader-Willi syndrome are dose-dependent. J Pediatr Endocrinol Metab. 2001;14:1097–105.

    PubMed  CAS  Google Scholar 

  72. Ranke MB, Guilbaud O, Lindberg A, Cole T. Prediction of the growth response in children with various growth disorders treated with growth hormone: analyses of data from the Kabi Pharmacia International growth study. International Board of the Kabi Pharmacia International Growth Study. Acta Paediatr. 1993;82 Suppl 392:82–8.

    Google Scholar 

  73. Schönau E, Westermann F, Rauch F, Stabrey A, Wassmer G, Keller E, Brämswig J, Blum WF, German Lilly Growth Response Study Group. A new and accurate prediction model for growth response to growth hormone treatment in children with growth hormone deficiency. Eur J Endocrinol. 2001;144:13–20.

    PubMed  Google Scholar 

  74. Fujimoto S, Kubo T, Tanaka H, Miura M, Seino Y. Urinary pyridinoline and deoxypyridinoline in healthy children and in children with growth hormone deficiency. J Clin Endocrinol Metab. 1995;80:1922–8.

    PubMed  CAS  Google Scholar 

  75. Seino Y, Yamashita S, Morisaki Y, Tanaka H, Chihara K, Tanaka T. Japanese growth prediction model for prepubertal children with growth hormone deficiency. J Pediatr Endocrinol Metab. 2012;25:909–15.

    PubMed  CAS  Google Scholar 

  76. Scott CI Jr. Dwarfism. Clin Symp 1988;1–32.

    Google Scholar 

  77. Hertel T, Seino Y. Skeletal dysplasia. In: Novo Nordisk A/S, editor. Growth hormone therapy in children and adults. Bagsvaerd: Novo Nordisk A/S; 2004. p. 61–74.

    Google Scholar 

  78. Shiang RTL, Zhu YZ, Church DM, Fielder TJ, Bocia M, Winodur ST, Wasmuth MM. Mutations in the transmembrane domain of FGFR3 cause the most common genetic form of dwarfism, achondroplasia. Cell. 1994;78:335–42.

    PubMed  CAS  Google Scholar 

  79. Rousseau FBJ, Legeai ML, Pelet A, Rozet JM, Marotearx P, Le MM, Munnich A. Mutations in the gene encoding fibroblast growth factor receptor-3 in achondroplasia. Nature. 1994;371:252–4.

    PubMed  CAS  Google Scholar 

  80. Horton WA, Rotter JI, Rimoin DL, Scott Jr CI, Hall JG. Standard growth curves for achondroplasia. J Pediatr. 1978;93:435–8.

    PubMed  CAS  Google Scholar 

  81. Koike M, Yamanaka Y, Inoue M, Tanaka H, Nishimura R, Seino Y. Insulin-like growth factor-1 rescues the mutated FGF receptor 3 (G380R) expressing ATDC5 cells from apoptosis through phosphatidylinositol 3-kinase and MAPK. J Bone Miner Res. 2003;18:2043–51.

    PubMed  CAS  Google Scholar 

  82. Seino Y, Yamate T, Kanzaki S, Kubo T, Tanaka H. Achondroplasia: effect of growth hormone in 40 patients. Clin Pediatr Endocrinol. 1994;3:41–5.

    Google Scholar 

  83. Tanaka H, Kubo T, Yamate T, Ono T, Kanzaki S, Seino Y. Effect of growth hormone therapy in children with achondroplasia: growth pattern, hypothalamic-pituitary function, and genotype. Eur J Endocrinol. 1998;138:276–80.

    Google Scholar 

  84. Ramaswami U, Rumsby G, Spoudeas HA, Hindmarsh PC, Brook CGD. Treatment of achondroplasia with growth hormone: six year of experience. Pediatr Res. 1999;46:435–9.

    PubMed  CAS  Google Scholar 

  85. Hagenas L, Aagenaes O, Eklof O, Hertel T, Kaitila I, Mohnike K, Perhentuupa J, Ritzen M, Sipila I, Muller J. Growth hormone treatment in achondroplasia: 2 year resuols of a dose–response study. Clin Pediatr Endocrinol. 1997;6:93–8.

    Google Scholar 

  86. Riepe FG, Krone N, Sippell WG. Disproportionate stature but normal height in hypochondroplasia. Eur J Pediatr. 2005;164:397–9.

    PubMed  Google Scholar 

  87. Appan S, Laurent S, Chapman M, Hindmarsh PC, Brook CGD. Growth and growth hormone therapy in hypochondroplasia. Acta Paediatr Scand. 1990;79:796–803.

    PubMed  CAS  Google Scholar 

  88. Bridges NA, Hindmarsh P, Brook CGD. Growth of children with hypochondroplasia treated with growth hormone for up to three years. Horm Res. 1991;36:56–60.

    PubMed  Google Scholar 

  89. Belin V, Cusin VM, Viot G, Girlich D, Toutain A, Monla A, Vekemans M, Le Marrer M, Munnich A, Cormier-Daire V. SHOX mutations in dyschondrosteosis (Leri-Weill syndrome). Nat Genet. 1998;19:67–9.

    PubMed  CAS  Google Scholar 

  90. Ross JL, Sott Jr C, Marttila P, Kowal K, Nass A, Papenhausen P, Abboudi J, Osterman L, Kushner H, Carter P, Ezaki M, Elder F, Wei F, Chen H, Zinn AR. Phenotypes associated with SHOX deficiency. J Clin Endocrinol Metab. 2001;86:5674–80.

    PubMed  CAS  Google Scholar 

  91. Jorge AA, Souza SC, Nishi MY, Billerbeck AE, Liborio DC, Kim CA, Arnhold IJ, Mendonca BB. SHOX mutations in idiopathic short stature and Leri-Weill dyschondrosteosis: frequency and phenotypic variability. Clin Endocrinol (Oxf). 2007;66:130–5.

    CAS  Google Scholar 

  92. Kosho T, Muroya K, Nagai T, Fujimoto M, Yokoya S, Sakamoto H, Hirano T, Terasaki H, Ohashi H, Nishimura G, Sato S, Matsuo N, Ogata T. Skeletal features and growth pattern sin 14 patients with haploinsufficiency of SHOX: implications for the development of Turner syndrome. J Clin Endocrinol Metab. 1999;84:4613–21.

    PubMed  CAS  Google Scholar 

  93. Blum WF, Crowe BJ, Quigley CA, Jung H, Cao D, Ross JL, Braun L, Rappold G. Growth hormone is effective in treatment of short stature associated with short stature homeobox-containing gene deficiency: two-year results of a randomized, controlled, multicenter trial. J Clin Endocrinol Metab. 2007;92:219–28.

    PubMed  CAS  Google Scholar 

  94. Blum WF, Cao D, Hesse V, Fricke-Otto S, Ross JL, Jones C, Quigley CA, Binder G. Height gains in response to GH treatment to final height are similar in patients with SHOX deficiency and Turner syndrome. Horm Res. 2009;71:167–72.

    PubMed  CAS  Google Scholar 

  95. Hertel T. Growth hormone treatment in skeletal dysplasias: the KIGS experience. In: Ranke MB, Price DA, Reiter EO, editors. Growth hormone therapy in pediatrics-20 years of KIGS. Basel: Karger; 2007. p. 356–68.

    Google Scholar 

  96. Rauch F, Glorieux FH. Osteogenesis imperfect. Lancet. 2004;363:1377–85.

    PubMed  CAS  Google Scholar 

  97. Cheung MS, Glorieux FH. Osteogenesis imperfect: update on presentation and management. Rev Endocr Metab Disord. 2008;9:153–60.

    PubMed  Google Scholar 

  98. Sillence DO, Senn A, Dannks DM. Genetic heterogeneity in osteogenesis imperfecta. J Med Genet. 1979;16:101–16.

    PubMed Central  PubMed  CAS  Google Scholar 

  99. Van Dijk FS, Pals G, van Rijn RR, Nikkels PG, Cobbben JM. Classification of osteogenesis imperfect revisited. Eur J Med Genet. 2010;53(1):1–5.

    PubMed  Google Scholar 

  100. Lund AM, Muller J, Skovby F. Anthropometry of patients with osteogenesis imperfect. Arch Dis Child. 1999;80:524–8.

    PubMed Central  PubMed  CAS  Google Scholar 

  101. Monti E, Mottes M, Franschini P, Brunelli PC, Forlino A, Venturi G, Doro F, Perlini S, Cavarzere P, Antoniazzi F. Current and emerging treatments for the management of osteogenesis imperfect. Therapeut Clin Risk Manage. 2010;6:376–81.

    Google Scholar 

  102. Antoniaxxi F, Bertoldo F, Mottes M, Sirpresi S, Zamboni G, Valentini R, Tató L. Growth hormone treatment in osteogenesis imperfect with quantitative defect of type I collagen synthesis. J Pediatr. 1996;129:432–9.

    Google Scholar 

  103. Marini JC, Hopkins E, Glorieux FH, Chrousos GP, Reynorlds JC, Gundberg CM, Reing CM. Positive linear growth and bone responses to growth hormone treatment in children with types III and IV osteogenesis imperfect: high predictive value of the carboxyterminal propeptide of type I procollagen. J Bone Min Metab. 2003;18:237–43.

    CAS  Google Scholar 

  104. Antoniazzi F, Monti E, Venturi F, Franceschi R, Doro F, Gatti D, Zamboni G, Tato L. GH in combination with bisphosphonate treatment in osteogenesis imperfect. Eur J Endocrinol. 2010;163:479–87.

    PubMed  CAS  Google Scholar 

  105. Alon US. Hypophosphatemic vitamin-D resistant rickets. In: Favus MJ, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. Washington, DC: American Society of Bone and Mineral Research; 2006. p. 342–5.

    Google Scholar 

  106. HYP Consortium. A gene (PEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. The HYP Consortium. Nat Genet. 1995;11:130–6.

    Google Scholar 

  107. Fukumoto S. Physiological regulation and disorders of phosphate metabolism—pivotal role of fibroblast growth factor 23. Inter Med. 2008;47:337–43.

    Google Scholar 

  108. Aono Y, Yamazaki Y, Yasutake J, Kawata T, Hasegawa H, Urakawa I, Fujita T, Wada M, Yamashita T, Fukumoto S, Shimada T. Therapeutic effects of anti-FGF23 antibodies in hypophosphatemic rickets/osteomalacia. J Bone Miner Res. 2008;24:1879–88.

    Google Scholar 

  109. de Beur SM J, Levine MA. Molecular pathogenesis of hypophosphatemic rickets. J Clin Endocrinol Metab. 2002;87:2467–73.

    Google Scholar 

  110. Glorieux FH, Scriver CR, Reade TM, Goldman H, Roseborough A. Use of phosphate and vitamin D to prevent dwarfism and rickets in X-linked hypophosphatemia. N Engl J Med. 1972;287:481–7.

    PubMed  CAS  Google Scholar 

  111. Harrell RM, Lyles KW, Harrelson JM, Friedman NE, Drezner MK. Healing of bone disease in X-linked hypophosphatemic rickets/osteomalacia. Induction and maintenance with phosphorus and calcitriol. J Clin Invest. 1985;75:1858–68.

    PubMed Central  PubMed  CAS  Google Scholar 

  112. Verge CF, Lam A, Simpson JM, Cowell CT, Howard NJ, Silind M. Effects of therapy in X-linked hypophosphatemic rickets. N Engl J Med. 1991;325:1843–8.

    PubMed  CAS  Google Scholar 

  113. Chesney RW, Mazess RB, Rose P, Hamstra AJ, DeLuca HF, Breed AL. Long-term influence of calcitriol (1,25-dihydroxyvatamin D) and supplemental phosphorus in X-linked hypophosphatemic rickets. Pediatrics. 1983;83:81–7.

    Google Scholar 

  114. Friedman NE, Lobaugh B, Drezner MK. Effects of calcitriol and phosphorus therapy on the growth of patients with X-linked hypophosphatemia. J Clin Endocrinol Metab. 1993;76:839–44.

    PubMed  CAS  Google Scholar 

  115. Makitie O, Doria A, Kooh SW, Cole WG, Daneman A, Sochett E. Early treatment improves growth and biochemical and radiographic outcome in X-linked hypophosphatemic rickets. J Clin Endocrinol Metab. 2003;88:3591–7.

    PubMed  CAS  Google Scholar 

  116. Baroncelli GI, Bertelloni S, Ceccarelli C, Saggese G. Effect of growth hormone treatment on final height, phosphate metabolism, and bone mineral density in children with X-linked hypophosphatemic rickets. J Pediatr. 2001;138:236–43.

    PubMed  CAS  Google Scholar 

  117. Zoidis E, Zapf J, Schmid C. Phex cDNA cloning from rat bone and studies on phex mRNA expression: tissue specificity, age dependency, and regulation by insulin-like growth factor I in vivo. Mol Cell Endocrinol. 2000;168:41–51.

    PubMed  CAS  Google Scholar 

  118. Bianda T, Glatz Y, Bouillon R, Froesch ER, Schmid C. Effects of short-term insulin-like growth factor-I or Gh treatment on bone metabolism and on production of 1,25-dihydroxycholeaclciferol in GH-deficient adults. J Clin Endocrinol Metab. 1998;83:81–7.

    PubMed  CAS  Google Scholar 

  119. Caverzasio J, Montessuit C, Bonjour JP. Stimulatory effect of insulin-like growth factor-I on renal Pi transport and plasma 1,25-dihydroxyvitamin D3. Endocrinology. 1990;127:453–9.

    PubMed  CAS  Google Scholar 

  120. Saggesse G, Baroncelli GI, Bertelloni S, Perri G. Long-term growth hormone treatment in children with renal hypophosphatemic rickets: effects on growth, mineral metabolism, and bone density. J Pediatr. 1995;127:395–402.

    Google Scholar 

  121. Haffner D, Wuhl E, Blum WF, Schaefer F, Mehls O. Disproportionate growth following long-term growth hormone treatment in short children with X-linked hypophosphatemia. Eur J Pediatr. 1995;154:610–3.

    PubMed  CAS  Google Scholar 

  122. Seikaly MG, Brown R, Baum M. The effect of recombinant human growth hormone in children with X-linked hypophosphatemia. Pediatrics. 1997;100:879–84.

    PubMed  CAS  Google Scholar 

  123. Hertel T. Growth hormone treatment in skeletal dysplasias: the KIGS experience. In: Ranke MB, Price DA, Reiter EO, editors. Growth hormone therapy in pediatrics-20 years of KIGS. Basel: Karger; 2007. p. 477–84.

    Google Scholar 

  124. Kanazawa H, Tanaka H, Inoue M, Yamanaka Y, Namba N, Seino Y. Efficacy of growth hormone therapy for patients with skeletal dysplasia. J Bone Miner Metab. 2003;21:307–10.

    PubMed  CAS  Google Scholar 

  125. McKusick VA, Eldridge R, Hostetler JA, Egeland JA, Ruangwit U. Dwarfism in the Amish. 2. Cartilage-hair hypoplasia. Bull Johns Hopkins Hosp. 1965;116:285–326.

    PubMed  CAS  Google Scholar 

  126. Ridanpaa M, van Eenennaam H, Pelin K, Chadwick R, Johnson C, Yuan B, van Venrooij W, Pruijn G, Salmela R, Rockas R, Makitie O, Kaitila I, de la Chapella A. Mutations in the RNA component of RNase MRP cause a pleotropic human disease, cartilage-hair dysplasia. Cell. 2001;104:195–203.

    PubMed  CAS  Google Scholar 

  127. Makitie O, Perheentupa J, Kaitila I. Growth in cartilage-hair hypoplasia. Pediatr Res. 1992;31:176–80.

    PubMed  CAS  Google Scholar 

  128. Harada D, Yamanaka Y, Ueda K, Shimizu J, Inoue M, Seino Y, Tanaka H. An effective case of growth hormone treatment on cartilage-hair hypoplasia. Bone. 2005;36:317–22.

    PubMed  CAS  Google Scholar 

  129. Bocca G, Weenaes CM, van der Burgt I, Otten BJ. Growth hormone treatment in cartilage-hair hypoplasia: effect on growth and the immune system. J Pediatr Endocrinol Metab. 2004;17:47–54.

    PubMed  CAS  Google Scholar 

  130. Nishimura G, Haga N, Kitoh H, Tanaka Y, Sonoda T, Kitamura M, Shirahama S, Itoh T, Nakashima E, Ohashi H, Ikegawa S. The phenotypic spectrum of COL2A1 mutations. Hum Mutat. 2005;26:36–43.

    PubMed  CAS  Google Scholar 

  131. Briggs MD, Hoffmann SMG, King LM, Olsen AS, Mohrenweser H, Leroy JG, Mortier GR, Rimoin DL, Lachman RS, Gaines ES, Cekleniak JA, Knowlton RG, Cohn DH. Pseudoachondroplasia and multiple epiphyseal dysplasia due to mutations in the cartilage oligomeric matrix protein gene. Nat Genet. 1995;10:330–6.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Harada M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Harada, D., Seino, Y. (2014). Growth Hormone and Bone. In: Klein, G. (eds) Bone Drugs in Pediatrics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7436-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-7436-5_8

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-7435-8

  • Online ISBN: 978-1-4899-7436-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics