Skip to main content

Paediatric Bone Physiology and Monitoring the Safety and Efficacy of Bone Drugs in Children

  • Chapter
  • First Online:
  • 777 Accesses

Abstract

Many childhood diseases and their treatments can have adverse effects on the developing skeleton and the accrual of bone mass essential for normal adult bone health. Treatment with anti-resorptive and bone anabolic drugs can reduce such detrimental effects, but may also adversely affect bone development. Thus, in paediatric patients it is prudent to assess the skeleton carefully prior to commencing treatment, and to perform regular re-evaluation to monitor skeletal responses and to rapidly identify adverse events. The longitudinal follow-up of adult patients is relatively straightforward but similar longitudinal evaluation of the developing skeleton in paediatric patients is significantly more difficult and the data interpretation complex. This chapter highlights the underlying physiological basis for these difficulties and describes the modalities used for monitoring the efficacy and safety of skeletal pharmacology in paediatric patients.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bailey DA, McKay HA, Mirwald RL, Crocker PR, Faulkner RA. A six-year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: the university of Saskatchewan bone mineral accrual study. J Bone Miner Res. 1999;14(10):1672–9. PubMed PMID: 10491214.

    Article  PubMed  CAS  Google Scholar 

  2. Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ. 1996;312(7041):1254–9. PubMed PMID: 8634613. Pubmed Central PMCID: 2351094.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. Buck II DW, Dumanian GA. Bone biology and physiology: part I. The fundamentals. Plast Reconstr Surg. 2012;129(6):1314–20. PubMed PMID: 22634648.

    Article  PubMed  CAS  Google Scholar 

  4. Schnitzler CM, Mesquita JM. Cortical porosity in children is determined by age-dependent osteonal morphology. Bone. 2013;55:476–86. PubMed PMID: 23579288.

    Article  PubMed  Google Scholar 

  5. Crockett JC, Rogers MJ, Coxon FP, Hocking LJ, Helfrich MH. Bone remodelling at a glance. J Cell Sci. 2011;124(Pt 7):991–8. PubMed PMID: 21402872.

    Article  PubMed  CAS  Google Scholar 

  6. Nakashima T, Hayashi M, Fukunaga T, Kurata K, Oh-Hora M, Feng JQ, et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med. 2011;17(10):1231–4. PubMed PMID: 21909105.

    Article  PubMed  CAS  Google Scholar 

  7. Kogianni G, Mann V, Noble BS. Apoptotic bodies convey activity capable of initiating osteoclastogenesis and localized bone destruction. J Bone Miner Res. 2008;23(6):915–27. PubMed PMID: 18435576.

    Article  PubMed  Google Scholar 

  8. Bonewald LF. The amazing osteocyte. J Bone Miner Res. 2011;26(2):229–38. PubMed PMID: 21254230. Pubmed Central PMCID: 3179345.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Bar-Shavit Z. The osteoclast: a multinucleated, hematopoietic-origin, bone-resorbing osteoimmune cell. J Cell Biochem. 2007;102(5):1130–9. PubMed PMID: 17955494.

    Article  PubMed  CAS  Google Scholar 

  10. Teitelbaum SL. Bone resorption by osteoclasts. Science. 2000;289(5484):1504–8. PubMed PMID: 10968780.

    Article  PubMed  CAS  Google Scholar 

  11. Naylor K, Eastell R. Bone turnover markers: use in osteoporosis. Nat Rev Rheumatol. 2012;8(7):379–89. PubMed PMID: 22664836.

    Article  PubMed  CAS  Google Scholar 

  12. Golub EE. Biomineralization and matrix vesicles in biology and pathology. Semin Immunopathol. 2011;33(5):409–17. PubMed PMID: 21140263. Pubmed Central PMCID: 3139768.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Orimo H. The mechanism of mineralization and the role of alkaline phosphatase in health and disease. J Nippon Med Sch. 2010;77(1):4–12.

    Article  PubMed  CAS  Google Scholar 

  14. Rauch F. Bone growth in length and width: the Yin and Yang of bone stability. J Musculoskelet Neuronal Interact. 2005;5(3):194–201. PubMed PMID: 16172510.

    PubMed  CAS  Google Scholar 

  15. Ortega N, Behonick DJ, Werb Z. Matrix remodeling during endochondral ossification. Trends Cell Biol. 2004;14(2):86–93. PubMed PMID: 15102440. Pubmed Central PMCID: 2779708.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Whyte MP, McAlister WH, Novack DV, Clements KL, Schoenecker PL, Wenkert D. Bisphosphonate-induced osteopetrosis: novel bone modeling defects, metaphyseal osteopenia, and osteosclerosis fractures after drug exposure ceases. J Bone Miner Res. 2008;23(10):1698–707. PubMed PMID: 18505375.

    Article  PubMed  Google Scholar 

  17. Schoenau E, Saggese G, Peter F, Baroncelli GI, Shaw NJ, Crabtree NJ, et al. From bone biology to bone analysis. Horm Res. 2004;61(6):257–69. PubMed PMID: 14963367.

    Article  PubMed  CAS  Google Scholar 

  18. Glorieux FH, Bishop NJ, Plotkin H, Chabot G, Lanoue G, Travers R. Cyclic administration of pamidronate in children with severe osteogenesis imperfecta. N Engl J Med. 1998;339(14):947–52. PubMed PMID: 9753709.

    Article  PubMed  CAS  Google Scholar 

  19. Semler O, Netzer C, Hoyer-Kuhn H, Becker J, Eysel P, Schoenau E. First use of the RANKL antibody denosumab in osteogenesis imperfecta type VI. J Musculoskelet Neuronal Interact. 2012;12(3):183–8. PubMed PMID: 22947550.

    PubMed  CAS  Google Scholar 

  20. Rauch F, Travers R, Plotkin H, Glorieux FH. The effects of intravenous pamidronate on the bone tissue of children and adolescents with osteogenesis imperfecta. J Clin Invest. 2002;110(9):1293–9. PubMed PMID: 12417568. Pubmed Central PMCID: 151613.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Chapurlat RD, Gensburger D, Jimenez-Andrade JM, Ghilardi JR, Kelly M, Mantyh P. Pathophysiology and medical treatment of pain in fibrous dysplasia of bone. Orphanet J Rare Dis. 2012;7 Suppl 1:S3. PubMed PMID: 22640953. Pubmed Central PMCID: 3359957.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Smith-Bindman R, Cummings SR, Steiger P, Genant HK. A comparison of morphometric definitions of vertebral fracture. J Bone Miner Res. 1991;6(1):25–34. PubMed PMID: 2048427.

    Article  PubMed  CAS  Google Scholar 

  23. Damilakis J, Adams JE, Guglielmi G, Link TM. Radiation exposure in X-ray-based imaging techniques used in osteoporosis. Eur Radiol. 2010;20(11):2707–14. PubMed PMID: 20559834. Pubmed Central PMCID: 2948153.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Land C, Rauch F, Munns CF, Sahebjam S, Glorieux FH. Vertebral morphometry in children and adolescents with osteogenesis imperfecta: effect of intravenous pamidronate treatment. Bone. 2006;39(4):901–6. PubMed PMID: 16730480.

    Article  PubMed  CAS  Google Scholar 

  25. Simpson DE, Dontu VS, Stephens SE, Archbold LJ, Lowe V, O’Doherty MJ, et al. Large variations occur in bone density measurements of children when using different software. Nucl Med Commun. 2005;26(6):483–7. PubMed PMID: 15891590.

    Article  PubMed  Google Scholar 

  26. Kanis JA. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. WHO Study Group. Osteoporos Int. 1994;4(6):368–81. PubMed PMID: 7696835.

    Article  PubMed  CAS  Google Scholar 

  27. Rauch F, Plotkin H, DiMeglio L, Engelbert RH, Henderson RC, Munns C, et al. Fracture prediction and the definition of osteoporosis in children and adolescents: the ISCD 2007 Pediatric Official Positions. J Clin Densitom. 2008;11(1):22–8. PubMed PMID: 18442750.

    Article  PubMed  Google Scholar 

  28. Carter DR, Bouxsein ML, Marcus R. New approaches for interpreting projected bone densitometry data. J Bone Miner Res. 1992;7(2):137–45. PubMed PMID: 1570758.

    Article  PubMed  CAS  Google Scholar 

  29. Kroger H, Kotaniemi A, Vainio P, Alhava E. Bone densitometry of the spine and femur in children by dual-energy x-ray absorptiometry. Bone Miner. 1992;17(1):75–85. PubMed PMID: 1581707.

    Article  PubMed  CAS  Google Scholar 

  30. Crabtree NJ, Hogler W, Cooper MS, Shaw NJ. Diagnostic evaluation of bone densitometric size adjustment techniques in children with and without low trauma fractures. Osteoporos Int. 2013;24:2015–24. PubMed PMID: 23361874.

    Article  PubMed  CAS  Google Scholar 

  31. Zemel B, Bass S, Binkley T, Ducher G, Macdonald H, McKay H, et al. Peripheral quantitative computed tomography in children and adolescents: the 2007 ISCD Pediatric Official Positions. J Clin Densitom. 2008;11(1):59–74. PubMed PMID: 18442753.

    Article  PubMed  Google Scholar 

  32. Liu D, Burrows M, Egeli D, McKay H. Site specificity of bone architecture between the distal radius and distal tibia in children and adolescents: an HR-pQCT study. Calcif Tissue Int. 2010;87(4):314–23. PubMed PMID: 20725826.

    Article  PubMed  CAS  Google Scholar 

  33. Zemel BS. Quantitative computed tomography and computed tomography in children. Curr Osteoporos Rep. 2011;9(4):284–90. PubMed PMID: 21968815.

    Article  PubMed  Google Scholar 

  34. Engelke K, Adams JE, Armbrecht G, Augat P, Bogado CE, Bouxsein ML, et al. Clinical use of quantitative computed tomography and peripheral quantitative computed tomography in the management of osteoporosis in adults: the 2007 ISCD Official Positions. J Clin Densitom. 2008;11(1):123–62. PubMed PMID: 18442757.

    Article  PubMed  Google Scholar 

  35. Burrows M, Liu D, McKay H. High-resolution peripheral QCT imaging of bone micro-structure in adolescents. Osteoporos Int. 2010;21(3):515–20. PubMed PMID: 19322507.

    Article  PubMed  CAS  Google Scholar 

  36. Rittweger J, Michaelis I, Giehl M, Wusecke P, Felsenberg D. Adjusting for the partial volume effect in cortical bone analyses of pQCT images. J Musculoskelet Neuronal Interact. 2004;4(4):436–41. PubMed PMID: 15758291.

    PubMed  CAS  Google Scholar 

  37. Langton CM, Palmer SB, Porter RW. The measurement of broadband ultrasonic attenuation in cancellous bone. Eng Med. 1984;13(2):89–91. PubMed PMID: 6540216.

    Article  PubMed  CAS  Google Scholar 

  38. Baroncelli GI. Quantitative ultrasound methods to assess bone mineral status in children: technical characteristics, performance, and clinical application. Pediatr Res. 2008;63(3):220–8. PubMed PMID: 18287958.

    Article  PubMed  Google Scholar 

  39. Seibel MJ. Biochemical markers of bone turnover: part I: biochemistry and variability. Clin Biochem Rev. 2005;26(4):97–122. PubMed PMID: 16648882. Pubmed Central PMCID: 1320175.

    PubMed Central  PubMed  Google Scholar 

  40. Jurimae J. Interpretation and application of bone turnover markers in children and adolescents. Curr Opin Pediatr. 2010;22(4):494–500. PubMed PMID: 20508524.

    Article  PubMed  Google Scholar 

  41. Rauchenzauner M, Schmid A, Heinz-Erian P, Kapelari K, Falkensammer G, Griesmacher A, et al. Sex- and age-specific reference curves for serum markers of bone turnover in healthy children from 2 months to 18 years. J Clin Endocrinol Metab. 2007;92(2):443–9. PubMed PMID: 17105843.

    Article  PubMed  CAS  Google Scholar 

  42. Gordon CM, Baim S, Bianchi ML, Bishop NJ, Hans DB, Kalkwarf H, et al. Special report on the 2007 pediatric Position Development Conference of the International Society for Clinical Densitometry. South Med J. 2008;101(7):740–3. PubMed PMID: 18580718.

    Article  PubMed  Google Scholar 

  43. Munns CF, Rauch F, Zeitlin L, Fassier F, Glorieux FH. Delayed osteotomy but not fracture healing in pediatric osteogenesis imperfecta patients receiving pamidronate. J Bone Miner Res. 2004;19(11):1779–86. PubMed PMID: 15476577.

    Article  PubMed  CAS  Google Scholar 

  44. Glastre C, Braillon P, David L, Cochat P, Meunier PJ, Delmas PD. Measurement of bone mineral content of the lumbar spine by dual energy x-ray absorptiometry in normal children: correlations with growth parameters. J Clin Endocrinol Metab. 1990;70(5):1330–3. PubMed PMID: 2335574.

    Article  PubMed  CAS  Google Scholar 

  45. Bonjour JP, Theintz G, Buchs B, Slosman D, Rizzoli R. Critical years and stages of puberty for spinal and femoral bone mass accumulation during adolescence. J Clin Endocrinol Metab. 1991;73(3):555–63. PubMed PMID: 1874933.

    Article  PubMed  CAS  Google Scholar 

  46. Southard RN, Morris JD, Mahan JD, Hayes JR, Torch MA, Sommer A, et al. Bone mass in healthy children: measurement with quantitative DXA. Radiology. 1991;179(3):735–8. PubMed PMID: 2027984.

    PubMed  CAS  Google Scholar 

  47. Salle BL, Braillon P, Glorieux FH, Brunet J, Cavero E, Meunier PJ. Lumbar bone mineral content measured by dual energy X-ray absorptiometry in newborns and infants. Acta Paediatr. 1992;81(12):953–8. PubMed PMID: 1290856.

    Article  PubMed  CAS  Google Scholar 

  48. Rico H, Revilla M, Villa LF, Hernandez ER, Alvarez de Buergo M, Villa M. Body composition in children and Tanner’s stages: a study with dual-energy x-ray absorptiometry. Metabolism. 1993;42(8):967–70. PubMed PMID: 8345820.

    Article  PubMed  CAS  Google Scholar 

  49. Ogle GD, Allen JR, Humphries IR, Lu PW, Briody JN, Morley K, et al. Body-composition assessment by dual-energy x-ray absorptiometry in subjects aged 4–26 y. Am J Clin Nutr. 1995;61(4):746–53. PubMed PMID: 7702015.

    PubMed  CAS  Google Scholar 

  50. Faulkner RA, Bailey DA, Drinkwater DT, McKay HA, Arnold C, Wilkinson AA. Bone densitometry in Canadian children 8–17 years of age. Calcif Tissue Int. 1996;59(5):344–51. PubMed PMID: 8849400.

    Article  PubMed  CAS  Google Scholar 

  51. Koo WW, Walters J, Bush AJ, Chesney RW, Carlson SE. Dual-energy X-ray absorptiometry studies of bone mineral status in newborn infants. J Bone Miner Res. 1996;11(7):997–1002. PubMed PMID: 8797121.

    Article  PubMed  CAS  Google Scholar 

  52. Boot AM, Bouquet J, de Ridder MA, Krenning EP, de Muinck Keizer-Schrama SM. Determinants of body composition measured by dual-energy X-ray absorptiometry in Dutch children and adolescents. Am J Clin Nutr. 1997;66(2):232–8. PubMed PMID: 9250099.

    PubMed  CAS  Google Scholar 

  53. Ellis KJ. Body composition of a young, multiethnic, male population. Am J Clin Nutr. 1997;66(6):1323–31. PubMed PMID: 9394682.

    PubMed  CAS  Google Scholar 

  54. Ellis KJ, Abrams SA, Wong WW. Body composition of a young, multiethnic female population. Am J Clin Nutr. 1997;65(3):724–31. PubMed PMID: 9062521.

    PubMed  CAS  Google Scholar 

  55. Molgaard C, Thomsen BL, Michaelsen KF. Influence of weight, age and puberty on bone size and bone mineral content in healthy children and adolescents. Acta Paediatr. 1998;87(5):494–9. PubMed PMID: 9641728.

    Article  PubMed  CAS  Google Scholar 

  56. Bachrach LK, Hastie T, Wang MC, Narasimhan B, Marcus R. Bone mineral acquisition in healthy Asian, Hispanic, black, and Caucasian youth: a longitudinal study. J Clin Endocrinol Metab. 1999;84(12):4702–12. PubMed PMID: 10599739.

    PubMed  CAS  Google Scholar 

  57. Van Coeverden SC, De Ridder CM, Roos JC, Van’t Hof MA, Netelenbos JC, Delemarre-Van de Waal HA. Pubertal maturation characteristics and the rate of bone mass development longitudinally toward menarche. J Bone Miner Res. 2001;16(4):774–81. PubMed PMID: 11316006.

    Article  PubMed  Google Scholar 

  58. Ellis KJ, Shypailo RJ, Hardin DS, Perez MD, Motil KJ, Wong WW, et al. Z score prediction model for assessment of bone mineral content in pediatric diseases. J Bone Miner Res. 2001;16(9):1658–64. PubMed PMID: 11547835.

    Article  PubMed  CAS  Google Scholar 

  59. van der Sluis IM, de Ridder MA, Boot AM, Krenning EP, de Muinck Keizer-Schrama SM. Reference data for bone density and body composition measured with dual energy x ray absorptiometry in white children and young adults. Arch Dis Child. 2002;87(4):341–7; discussion 341–7. PubMed PMID: 12244017. Pubmed Central PMCID: 1763043.

    Google Scholar 

  60. Henderson RC, Lark RK, Newman JE, Kecskemthy H, Fung EB, Renner JB, et al. Pediatric reference data for dual X-ray absorptiometric measures of normal bone density in the distal femur. AJR Am J Roentgenol. 2002;178(2):439–43. PubMed PMID: 11804914.

    Article  PubMed  Google Scholar 

  61. Binkley TL, Specker BL, Wittig TA. Centile curves for bone densitometry measurements in healthy males and females ages 5–22 yr. J Clin Densitom. 2002;5(4):343–53. PubMed PMID: 12665634.

    Article  PubMed  Google Scholar 

  62. Hogler W, Briody J, Woodhead HJ, Chan A, Cowell CT. Importance of lean mass in the interpretation of total body densitometry in children and adolescents. J Pediatr. 2003;143(1):81–8. PubMed PMID: 12915829.

    Article  PubMed  CAS  Google Scholar 

  63. Cromer BA, Binkovitz L, Ziegler J, Harvey R, Debanne SM. Reference values for bone mineral density in 12- to 18-year-old girls categorized by weight, race, and age. Pediatr Radiol. 2004;34(10):787–92. PubMed PMID: 15378217.

    Article  PubMed  Google Scholar 

  64. Pludowski P, Matusik H, Olszaniecka M, Lebiedowski M, Lorenc RS. Reference values for the indicators of skeletal and muscular status of healthy Polish children. J Clin Densitom. 2005;8(2):164–77. PubMed PMID: 15908703.

    Article  PubMed  Google Scholar 

  65. Kalkwarf HJ, Zemel BS, Gilsanz V, Lappe JM, Horlick M, Oberfield S, et al. The bone mineral density in childhood study: bone mineral content and density according to age, sex, and race. J Clin Endocrinol Metab. 2007;92(6):2087–99. PubMed PMID: 17311856.

    Article  PubMed  CAS  Google Scholar 

  66. Ward KA, Ashby RL, Roberts SA, Adams JE, Mughal MZ. UK reference data for the Hologic QDR Discovery dual-energy x ray absorptiometry scanner in healthy children and young adults aged 6–17 years. Arch Dis Child. 2007;92(1):53–9. PubMed PMID: 16943261. Pubmed Central PMCID: 2083173.

    Article  PubMed Central  PubMed  Google Scholar 

  67. Tamayo J, Diaz R, Lazcano-Ponce E, Munoz M, Huitron G, Halley E, et al. Reference values for areal bone mineral density among a healthy Mexican population. Salud Publica Mex. 2009;51 Suppl 1:S56–83. PubMed PMID: 19287896.

    Article  PubMed  Google Scholar 

  68. Kelly TL, Wilson KE, Heymsfield SB. Dual energy X-Ray absorptiometry body composition reference values from NHANES. PLoS One. 2009;4(9):e7038. PubMed PMID: 19753111. Pubmed Central PMCID: 2737140.

    Article  PubMed Central  PubMed  Google Scholar 

  69. Zemel BS, Kalkwarf HJ, Gilsanz V, Lappe JM, Oberfield S, Shepherd JA, et al. Revised reference curves for bone mineral content and areal bone mineral density according to age and sex for black and non-black children: results of the bone mineral density in childhood study. J Clin Endocrinol Metab. 2011;96(10):3160–9. PubMed PMID: 21917867. Pubmed Central PMCID: 3200252.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  70. Khadilkar AV, Sanwalka NJ, Chiplonkar SA, Khadilkar VV, Mughal MZ. Normative data and percentile curves for dual energy X-ray absorptiometry in healthy Indian girls and boys aged 5–17 years. Bone. 2011;48(4):810–9. PubMed PMID: 21182992.

    Article  PubMed  Google Scholar 

  71. Guo B, Xu Y, Gong J, Tang Y, Xu H. Age trends of bone mineral density and percentile curves in healthy Chinese children and adolescents. J Bone Miner Metab. 2013;31(3):304–14. PubMed PMID: 23361952.

    Article  PubMed  Google Scholar 

  72. Neu CM, Rauch F, Manz F, Schoenau E. Modeling of cross-sectional bone size, mass and geometry at the proximal radius: a study of normal bone development using peripheral quantitative computed tomography. Osteoporos Int. 2001;12(7):538–47. PubMed PMID: 11527050.

    Article  PubMed  CAS  Google Scholar 

  73. Schoenau E, Neu CM, Rauch F, Manz F. The development of bone strength at the proximal radius during childhood and adolescence. J Clin Endocrinol Metab. 2001;86(2):613–8. PubMed PMID: 11158018.

    Article  PubMed  CAS  Google Scholar 

  74. Schoenau E, Neu CM, Rauch F, Manz F. Gender-specific pubertal changes in volumetric cortical bone mineral density at the proximal radius. Bone. 2002;31(1):110–3. PubMed PMID: 12110422.

    Article  PubMed  CAS  Google Scholar 

  75. Rauch F, Schoenau E. Peripheral quantitative computed tomography of the distal radius in young subjects—new reference data and interpretation of results. J Musculoskelet Neuronal Interact. 2005;5(2):119–26. PubMed PMID: 15951627.

    PubMed  CAS  Google Scholar 

  76. Moyer-Mileur LJ, Quick JL, Murray MA. Peripheral quantitative computed tomography of the tibia: pediatric reference values. J Clin Densitom. 2008;11(2):283–94. PubMed PMID: 18164637.

    Article  PubMed  Google Scholar 

  77. Rauch F, Schoenau E. Peripheral quantitative computed tomography of the proximal radius in young subjects–new reference data and interpretation of results. J Musculoskelet Neuronal Interact. 2008;8(3):217–26. PubMed PMID: 18799854.

    PubMed  CAS  Google Scholar 

  78. Ashby RL, Ward KA, Roberts SA, Edwards L, Mughal MZ, Adams JE. A reference database for the Stratec XCT-2000 peripheral quantitative computed tomography (pQCT) scanner in healthy children and young adults aged 6–19 years. Osteoporos Int. 2009;20(8):1337–46. PubMed PMID: 19066709.

    Article  PubMed  CAS  Google Scholar 

  79. Mughal MZ, Ward K, Qayyum N, Langton CM. Assessment of bone status using the contact ultrasound bone analyser. Arch Dis Child. 1997;76(6):535–6. PubMed PMID: 9245855. Pubmed Central PMCID: 1717212.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  80. Lequin MH, van Rijn RR, Robben SG, Hop WC, van Kuijk C. Normal values for tibial quantitative ultrasonometry in caucasian children and adolescents (aged 6 to 19 years). Calcif Tissue Int. 2000;67(2):101–5. PubMed PMID: 10920212.

    Article  PubMed  CAS  Google Scholar 

  81. van den Bergh JP, Noordam C, Ozyilmaz A, Hermus AR, Smals AG, Otten BJ. Calcaneal ultrasound imaging in healthy children and adolescents: relation of the ultrasound parameters BUA and SOS to age, body weight, height, foot dimensions and pubertal stage. Osteoporos Int. 2000;11(11):967–76. PubMed PMID: 11193250.

    Article  PubMed  Google Scholar 

  82. Barkmann R, Rohrschneider W, Vierling M, Troger J, de TF, Cadossi R, et al. German pediatric reference data for quantitative transverse transmission ultrasound of finger phalanges. Osteoporos Int. 2002;13(1):55–61. PubMed PMID: 11878455.

    Article  PubMed  CAS  Google Scholar 

  83. Drozdzowska B, Pluskiewicz W. Skeletal status in males aged 7–80 years assessed by quantitative ultrasound at the hand phalanges. Osteoporos Int. 2003;14(4):295–300. PubMed PMID: 12730791.

    Article  PubMed  CAS  Google Scholar 

  84. Vignolo M, Brignone A, Mascagni A, Ravera G, Biasotti B, Aicardi G. Influence of age, sex, and growth variables on phalangeal quantitative ultrasound measures: a study in healthy children and adolescents. Calcif Tissue Int. 2003;72(6):681–8. PubMed PMID: 14562996.

    Article  PubMed  CAS  Google Scholar 

  85. Tuzun S, Karacan I, Akarirmak U, Kasapcopur O, Arisoy N. Evaluation of bone with quantitative ultrasound in healthy Turkish children. Turk J Pediatr. 2003;45(3):240–4. PubMed PMID: 14696803.

    PubMed  Google Scholar 

  86. Liao XP, Zhang WL, He J, Sun JH, Huang P. Bone measurements of infants in the first 3 months of life by quantitative ultrasound: the influence of gestational age, season, and postnatal age. Pediatr Radiol. 2005;35(9):847–53. PubMed PMID: 15889246.

    Article  PubMed  Google Scholar 

  87. Drozdzowska B, Pluskiewicz W, Halaba Z, Misiolek H, Beck B. Quantitative ultrasound at the hand phalanges in 2850 females aged 7 to 77 yr: a cross-sectional study. J Clin Densitom. 2005;8(2):216–21. PubMed PMID: 15908710.

    Article  PubMed  CAS  Google Scholar 

  88. Baroncelli GI, Federico G, Vignolo M, Valerio G, del Puente A, Maghnie M, et al. Cross-sectional reference data for phalangeal quantitative ultrasound from early childhood to young-adulthood according to gender, age, skeletal growth, and pubertal development. Bone. 2006;39(1):159–73. PubMed PMID: 16473568.

    Article  PubMed  Google Scholar 

  89. Vignolo M, Parodi A, Mascagni A, Torrisi C, De Terlizzi F, Aicardi G. Longitudinal assessment of bone quality by quantitative ultrasonography in children and adolescents. Ultrasound Med Biol. 2006;32(7):1003–10. PubMed PMID: 16829314.

    Article  PubMed  CAS  Google Scholar 

  90. Zhu ZQ, Liu W, Xu CL, Han SM, Zu SY, Zhu GJ. Ultrasound bone densitometry of the calcaneus in healthy Chinese children and adolescents. Osteoporos Int. 2007;18(4):533–41. PubMed PMID: 17262173.

    Article  PubMed  Google Scholar 

  91. Lin YC, Tu SH, Pan WH. Bone mass status of school-aged children in Taiwan assessed by quantitative ultrasound: the Nutrition and Health Survey in Taiwan Elementary School Children (NAHSIT Children 2001–2002). Asia Pac J Clin Nutr. 2007;16 Suppl 2:585–93. PubMed PMID: 17723999.

    PubMed  CAS  Google Scholar 

  92. Koo WW, Bajaj M, Mosely M, Hammami M. Quantitative bone US measurements in neonates and their mothers. Pediatr Radiol. 2008;38(12):1323–9. PubMed PMID: 18936934.

    Article  PubMed  Google Scholar 

  93. Christoforidis A, Papadopoulou E, Dimitriadou M, Stilpnopoulou D, Gkogka C, Katzos G, et al. Reference values for quantitative ultrasonography (QUS) of radius and tibia in healthy greek pediatric population: clinical correlations. J Clin Densitom. 2009;12(3):360–8. PubMed PMID: 19577938.

    Article  PubMed  Google Scholar 

  94. Alwis G, Rosengren B, Nilsson JA, Stenevi-Lundgren S, Sundberg M, Sernbo I, et al. Normative calcaneal quantitative ultrasound data as an estimation of skeletal development in Swedish children and adolescents. Calcif Tissue Int. 2010;87(6):493–506. PubMed PMID: 20960155.

    Article  PubMed  CAS  Google Scholar 

  95. Lee M, Nahhas RW, Choh AC, Demerath EW, Duren DL, Chumlea WC, et al. Longitudinal changes in calcaneal quantitative ultrasound measures during childhood. Osteoporos Int. 2011;22(8):2295–305. PubMed PMID: 20976593.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  96. Baptista F, Fragoso I, Branco J, de Matos AA, Sardinha LB. Reference data for bone speed of sound in Portuguese girls and boys aged 9–13 years. J Clin Densitom. 2011;14(4):484–91. PubMed PMID: 21840232.

    Article  PubMed  Google Scholar 

  97. Goh SY, Aragon JM, Lee YS, Loke KY. Normative data for quantitative calcaneal ultrasound in Asian children. Ann Acad Med Singapore. 2011;40(2):74–9. PubMed PMID: 21468460.

    PubMed  Google Scholar 

Download references

Acknowledgements

Many thanks to Dr. F. Rauch, Dr. J. Allgrove and Dr. C. Wei for reading the manuscript and their helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John G. Logan Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Logan, J.G., Bassett, J.H.D., Cheung, M.S. (2014). Paediatric Bone Physiology and Monitoring the Safety and Efficacy of Bone Drugs in Children. In: Klein, G. (eds) Bone Drugs in Pediatrics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7436-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-7436-5_4

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-7435-8

  • Online ISBN: 978-1-4899-7436-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics