Skip to main content

The Upper Ocean

  • Chapter

Part of the book series: NATO ASI Series

Abstract

Since the drift of the Fram nearly ninety years ago, it has been recognized that turbulent exchange in the upper ocean is a major factor in the dynamic and thermodynamic regime of high-latitude, ice-covered seas. Ekman (1905) credited the inspiration for his theory of wind drift currents, which was to become a cornerstone of physical oceanography and meteorology, to Nansen’s qualitative description of the effect of the earth’s rotation on the upper layers of the ocean, which he deduced from his observations that Fram drifted consistently 20–40 degrees right of the surface wind. They were among the first to appreciate the unique observational platform provided by pack ice.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Blackadar, A. K., and H. Tennekes (1968) Asymptotic similarity in neutral planetary boundary layers. J. Atmos. Sci., 25: 1015–1019.

    Article  Google Scholar 

  • Buckley, J. R., T. Gammelsrod, J. A. Johannessen, O. M. Johannessen and L. P. Red (1979) Upwelling: Oceanic structure at the edge of the arctic icepack in winter. Science, 203: 165–167.

    Article  Google Scholar 

  • Businger, J. A. and S. P. S. Arya (1974) The height of the mixed layer in the stably stratified planetary boundary layer. In Advances in Geophysics, 18A, Academic Press, New York, p. 73–91.

    Google Scholar 

  • Clarke, A. J. (1977) On wind-driven quasi-geostrophic water movements near fast-ice edges. Unpublished manuscript. Ocean Modelling, 8: 9–11.

    Google Scholar 

  • Clark, R. H. and G. D. Hess (1974) Geostrophic departure and the functions A and B of Rossby-number similarity theory. Bound.-Layer Met., 7: 267–287.

    Article  Google Scholar 

  • Deardorff, J. W. (1972) Numerical investigation of neutral and unstable planetary boundary layers. J. Atmos. Sci., 29: 91–115.

    Article  Google Scholar 

  • Ekman, V. W. (1905) On the influence of the earth’s rotation on ocean currents. Ark. Mat. Astron. Fys., 2: 1–52.

    Google Scholar 

  • Gammelsrod, R., M. Mork and L. P. Red (1975) Upwelling possibilities at an ice edge: Homogeneous model. Mar. Sci. Comm., 1: 115–145.

    Google Scholar 

  • Hibler, W. D., Ill (1979) A dynamic thermodynamic sea ice model. J. Phys. Oceanogr., 9 (4): 815–846.

    Google Scholar 

  • Hinze, J. O. (1975) Turbulence. McGraw-Hill, New York, Second Edition, 790 p.

    Google Scholar 

  • Holton, J. R. (1972) An Introduction to Dynamic Meteorology. Academic Press, New York, 319 p.

    Google Scholar 

  • Hunkins, K. (1967) Inertial oscillations of Fletcher’s Ice Island (T-3). J. Geophys. Res., 72: 1165–1174.

    Google Scholar 

  • Kheisin, D. Ye. and V. O. Ivchenko (1975) Water stress determination in the purely wind-induced drift. Arkt. Antarkt. Nauch. Issled. Inst., 332.

    Google Scholar 

  • Kraus, E. (Ed.) (1977) Modelling and Prediction of the Upper Layers of the Ocean. Pergamon Press, Oxford, 325 p.

    Google Scholar 

  • Kraus, E. G. and J. S. Turner (1967) A one-dimensional model of the seasonal thermocline. II: The general theory and its consequences. Tellus, 19: 98–106.

    Article  Google Scholar 

  • Manley, S. and G. Lewis (Eds.) (1968) Polar Secrets: A Treasury of the Arctic and Antarctic. Doubleday, New York, 222 p.

    Google Scholar 

  • McPhee, M. G. (1978) A simulation of inertial oscillation in drifting pack ice. Dyn. Atmos. Oceans, 2: 107–122.

    Article  Google Scholar 

  • McPhee, M. G. (1979) The effect of the oceanic boundary layer on the mean drift of pack ice: Application of a simple model. J. Phys. Oceanogr., 9: 388–400.

    Article  Google Scholar 

  • McPhee, M. G. (1980a) A study of oceanic boundary-layer characteristics including inertial oscillation at three drifting stations in the Arctic Ocean. J. Phys. Oceanogr., 10: 870–884.

    Article  Google Scholar 

  • McPhee, M. G. (1980b) An analysis of pack ice drift in summer. In Sea Ice Processes and Models ( R. S. Pritchard, Ed.), University of Washington Press, Seattle, Washington, p 62–75.

    Google Scholar 

  • McPhee, M. G. (1980c) Physical oceanography of the seasonal sea ice zone. Cold Reg. Sci. Tech., 2: 93–118.

    Google Scholar 

  • McPhee, M. G. (1980d) Heat transfer across the salinity-stabilized pycnocline of the Arctic Ocean. In Second International Symposium on Stratified Flows ( T. Carstens and T. McClimans, Eds.), Tapir Press, Trondheim, Norway, p. 527–537.

    Google Scholar 

  • McPhee, M. G. (1981) An analytic similarity theory for the planetary boundary layer stabilized by surface buoyancy. Bound.- Layer Met., 21: 325–339.

    Article  Google Scholar 

  • McPhee, M. G. (1982) Sea ice drag laws and simple boundary layer concepts including application to rapid melting. USA Cold Regions Research and Engineering Laboratory, CRREL Report 82–4.

    Google Scholar 

  • McPhee, M. G. and J. D. Smith (1976) Measurements of the turbulent boundary layer under pack ice. J. Phys. Oceanogr., 6: 696–711.

    Article  Google Scholar 

  • Mellor, G. L. and T. Yamada (1974) A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci., 31: 1791–1806.

    Article  Google Scholar 

  • Mellor, G. L. and P. A. Durbin (1975) The structure and dynamics of the ocean surface mixed layer. J. Phys. Oceanogr., 5: 718–728.

    Article  Google Scholar 

  • Neshyba, S., V. T. Neal and W. Denner (1971) Temperature and conductivity measurements under Ice Island T-3. J. Geophys. Res., 76: 8107–8120.

    Article  Google Scholar 

  • Neumann, G. and W. J. Pierson, Jr. (1966) Principles and Physical Oceanography. Prentice-Hall, Englewood Cliffs, N.J., 545 p.

    Google Scholar 

  • Newton, J. L. (1973) The Canada Basin: Mean circulation and intermediate scale flow features. University of Washington, Ph.D. thesis, 158 p.

    Google Scholar 

  • Niiler, P. P. (1975) Deepening of the wind-mixed layer. J. Mar. Res., 33: 405–433.

    Google Scholar 

  • Paquette, R. G. and R. H. Bourke (1979) Finestructure in the vicinity of the arctic sea-ice margin. J. Geophys. Res., 84: 1155–1164.

    Article  Google Scholar 

  • Perkins, H. (1970) Inertial oscillations in the Mediterranean. Massachusetts Institute of Technology - Woods Hole Océanographie Institute, Ph.D. thesis, 155 p.

    Book  Google Scholar 

  • Pollard, R. T. and R. C. Millard, Jr. (1970) Comparison between observed and simulated wind-generated inertial oscillations. Deep-Sea Res., 17: 813–821.

    Google Scholar 

  • Pollard, R. T., P. B. Rhines, and R. O. R. Y. Thompson (1973) The deepening of the wind mixed layer. Geophys. Fluid Dyn., 3: 381–404.

    Google Scholar 

  • Reed, R. J. and W. J. Campbell (1962) The equilibrium drift of the Ice Station Alpha. J. Geophys. Res., 67: 281–297.

    Article  Google Scholar 

  • Rossby, C.-G. (1932) A generalization of the theory of the mixing length with application to atmospheric and oceanic turbulence, Mass. Inst. Tech. Met. Pap. (4).

    Google Scholar 

  • Rossby, C. G. (1938) On the mutual adjustment of pressure and velocity distribution in certain simple current systems, II. J. Mar. Res., Is 239–263.

    Google Scholar 

  • Rossby, C. G. and R. B. Montgomery (1935) The layer of frictional influence in wind and water current. Pap. Phys. Oceanogr. Met. Mass. Inst. Tech. Woods Hole Oceanogr. Inst., 3: 1–100.

    Google Scholar 

  • Rothrock, D. A. (1975) The steady drift of an incompressible arctic ice cover. J. Geophys. Res., 80: 387–397.

    Article  Google Scholar 

  • Shuleikin, V. V. (1938) The drift of ice fields. Compt. Rend. (Doklady) Acad. Sci., URS, 19: 589–594.

    Google Scholar 

  • Stern, M. E. (1975) Ocean Circulation Physics. Academic Press, New York, 246 p.

    Google Scholar 

  • Tennekes, H. and J. L. Lumley (1972) A First Course in Turbulence. MIT Press, Cambridge, Mass., 300 p.

    Google Scholar 

  • Wyngaard, J. C., O. R. Coté and K. S. Rao (1974) Modeling the atmospheric boundary layer. In Advances in Geophysics, 18A, Academic Press, New York, p. 193–212.

    Google Scholar 

  • Zilitinkevich, S. S. (1975) Resistance laws and prediction equations for the depth of the planetary boundary layer. J. Atmos. Sci., 32: 741–752.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

McPhee, M.G. (1986). The Upper Ocean. In: Untersteiner, N. (eds) The Geophysics of Sea Ice. NATO ASI Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-5352-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-5352-0_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-5354-4

  • Online ISBN: 978-1-4899-5352-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics