Skip to main content

Part of the book series: NATO ASI Series

Abstract

The basic ideas involved in the construction of string theories are discussed, with emphasis on their geometrical and topological properties. Both the supersymmetric and non-supersymmetric theories are considered. String theories are similar to general relativity in many respects, and these connections are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Mandelstam, Phys. Rep. 13 (1974) 259;

    Article  ADS  Google Scholar 

  2. J. Scherk, Rev. Mod. Phys. 47 (1975) 123;

    Article  MathSciNet  ADS  Google Scholar 

  3. J. Schwarz, Phys. Rep. 89 (1982) 223.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. A. Sugamoto, Nucl. Phys. B215 (1983) 381;

    Article  MathSciNet  ADS  Google Scholar 

  5. P. Freund and F. Mansouri, Z. Phys. C14 (1982) 279;

    Article  ADS  Google Scholar 

  6. M’. Henneaux, Phys. Lett. 120B (1983) 179.

    Article  MathSciNet  Google Scholar 

  7. For a more detailed discussion of the ideas in this section see the first half of J. Scherk in Ref. 1.

    Google Scholar 

  8. Y. Nambu, Lectures at the Copenhagen Symposium, 1970.

    Google Scholar 

  9. H. Omori, Proc. Sym. Pure Math. 15, Global An. ed. Chern and Smale, Amer. Math. Soc. (1970) 167. An analogous effect has been considered in the context of general relativity by B. DeWitt, private communication.

    Google Scholar 

  10. L. Brink, P. DiVecchia, and P. Howe, Phys. Lett. 65B (1976) 471;

    Article  Google Scholar 

  11. S. Deser and B. Zumino, Phys. Lett. 65B (1976) 369.

    Article  MathSciNet  Google Scholar 

  12. For example, see J. Friedman and R. Sorkin, Phys. Rev. Lett. 44 (1980) 1100, and R. Sorkin’s lectures in this proceedings.

    Article  ADS  Google Scholar 

  13. For a discussion of some of the issues involved in applying the operator constraint approach without first fixing part of the gauge see C. Teitelboim, in Quantum Theory of Gravity: Essays in Honor of Bryce S. De Witt, S. Christensen, ed. (Adam Hilger Ltd., Bristol, 1984).

    Google Scholar 

  14. P. Goddard, J. Goldstone, C. Rebbi, and C. Thorn, Nucl. Phys. B56 (1973) 109.

    Article  ADS  Google Scholar 

  15. For two different approaches to calculating string interactions see S. Mandelstam and J. Schwarz in Ref. 1.

    Google Scholar 

  16. The 3 point graviton interaction is described in J. Scherk and J. Schwarz, Nucl. Phys. B81 (1974) 118. The 4 point graviton interaction is in Section 4.4 of J. Schwarz in Ref. 1.

    Article  ADS  Google Scholar 

  17. R. Feynman, Chapel Hill Conference (1956);

    Google Scholar 

  18. S. Weinberg Phys. Rev. 138 (1965) B988,

    Article  MathSciNet  ADS  Google Scholar 

  19. S. Deser, Gen. Rel. and Grav. 1 (1970) 9.

    Article  MathSciNet  ADS  Google Scholar 

  20. A. Polyakov, Phys. Lett. 103B (1981) 207.

    Article  MathSciNet  Google Scholar 

  21. O. Alvarez, Nucl. Phys. B216 (1983) 125;

    Article  ADS  Google Scholar 

  22. A. Cohen, G. Moore, P. Nelson, and J. Polchinski, Harvard Univ. preprint (1985).

    Google Scholar 

  23. For a standard reference on complex manifolds and algebraic geometry see P. Griffiths and J. Harris, Principles of Algebraic Geometry (Wiley-Interscience, 1978).

    MATH  Google Scholar 

  24. M. Kaku and K. Kikkawa, Phys. Rev. D10 (1974) 1110.

    ADS  Google Scholar 

  25. W. Siegel and B. Zwiebach, Berkeley preprint (1985); T. Banks and M. Peskin, Slac preprint (1985); D. Friedan, U. of Chicago preprint (1985).

    Google Scholar 

  26. For more details, see J. Schwarz in Ref. 1.

    Google Scholar 

  27. P. Freund, Phys. Lett. 151B (1985) 387; A. Casher, F. Englert, H. Nicolai, and A. Taormina, CERN preprint (1985).

    Article  Google Scholar 

  28. For a discussion of supermanifolds, see A. Roger’s lectures in this proceedings.

    Google Scholar 

  29. P. Candelas, G. Horowitz, A. Strominger, and E. Witten, Nucl. Phys. B258 (1985) 46; to appear in the proceedings of the Symposium on Anomalies, Geometry, and Topology, Argonne, IL. March (1985).

    Article  MathSciNet  ADS  Google Scholar 

  30. M. Green and J. Schwarz, Phys. Lett. 136B (1984) 367.

    Article  Google Scholar 

  31. M. Henneaux and L. Mezincescu, Univ. of Texas preprint (1984).

    Google Scholar 

  32. F. Gliozzi, J. Scherk, and D. Olive, Nucl. Phys. B122 (1977) 253;

    Article  ADS  Google Scholar 

  33. D. Friedan, E. Martinec, and S. Shenker, U. of Chicago preprint (1985).

    Google Scholar 

  34. S. Mandelstarn, talks presented at the Workshop on Unified String Theories, Santa Barbara, August (1985).

    Google Scholar 

  35. M. Green and J. Schwarz, Nucl. Phys. B243 (1984) 475.

    Article  MathSciNet  ADS  Google Scholar 

  36. E. Witten, to appear in the Proceedings of the 1983 Shelter Island Ii Conference, Mit Press (1985).

    Google Scholar 

  37. H. Chan and J. Paton, Nucl. Phys. B10 (1969) 519.

    Google Scholar 

  38. L. Alvarez-Gaumé and E. Witten, Nucl. Phys. B234 (1983) 269.

    Article  ADS  Google Scholar 

  39. M. Green and J. Schwarz, Phys. Lett. 149B (1984) 117.

    Article  MathSciNet  Google Scholar 

  40. D. Gross, J. Harvey, E. Martinec, and R. Rohm, Nucl. Phys. B256 (1985) 253; and Princeton preprint.

    Article  MathSciNet  ADS  Google Scholar 

  41. E. Witten, to appear in the proceedings of the Symposium on Anomalies, Geometry, and Topology, Argonne, IL. March (1985).

    Google Scholar 

  42. E. Witten, talk at the Workshop on Unified String Theories, Santa Barbara, August (1985).

    Google Scholar 

  43. B. Zwiebach, Phys. Lett. 156B (1985) 315; L. Romans and N.Warner, ITP preprint (1985).

    Article  Google Scholar 

  44. L. Alvarez-Gaume, S. Coleman, and P. Ginsparg, Harvard preprint (1985).

    Google Scholar 

  45. E. Calabi, in Algebraic Geometry and Topology: A Symposium in Honor of S. Lefschetz (Princeton University Press, 1957).

    Google Scholar 

  46. S.-T. Yau, Proc. Natl. Acad. Sei. 74 (1977) 1798; to appear in the proceedings of the Symposium on Anomalies, Geometry and Topology, Argonne, IL. March (1985).

    Article  ADS  MATH  Google Scholar 

  47. E. Witten, Nucl. Phys. B258 (1985) 75;

    Article  MathSciNet  ADS  Google Scholar 

  48. J. Breit, B. Ovrut, and G. Segré, Phys. Lett. 158B (1985) 33;

    Article  Google Scholar 

  49. A. Sen, Phys. Rev. Lett. 55 (1985) 33.

    Article  ADS  Google Scholar 

  50. E. Witten and A. Strominger, Comm. Math. Phys. to appear; A. Strominger ITP preprint.

    Google Scholar 

  51. M. Bowick and L. Wijewardhana, Phys. Rev. Lett. 54 (1985) 2485.

    Article  ADS  Google Scholar 

  52. S. Weinberg, Phys. Lett. 156B (1985) 309; H. Aoyama, A. Dhar, and M. Namazie, SLAC preprint (1985).

    Article  Google Scholar 

  53. For reviews see R. Penrose and M. MacCallum, Phys. Rep. 6. (1972) 241; Advances in Twistor Theory, L. Hughston and R. Ward, Eds., (Pitman Publishing Ltd., London 1979);

    Article  MathSciNet  ADS  Google Scholar 

  54. N. Woodhouse, Class. Quantum Grav. 2 (1985) 257.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  55. W. Shaw, DAMTP preprint (1985).

    Google Scholar 

  56. G. Horowitz, A. Strominger, X.-G. Wen, and E. Witten, in progress.

    Google Scholar 

  57. R. Penrose, Gen. Rel. and Grav. 7 (1976) 31.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  58. C. Le Brun, Trans. Am. Math. Soc. 278 (1983) 209;

    Article  Google Scholar 

  59. C. Le Brun, Class. Quantum Grav. 2, (1985) 555.

    Article  ADS  Google Scholar 

  60. E. Witten, “Twistor-like transform in ten dimensions,” Princeton Univ. preprint (1985).

    Google Scholar 

  61. G. Horowitz and M. Srednicki in progress.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Horowitz, G.T. (1986). Introduction to String Theories. In: Bergmann, P.G., De Sabbata, V. (eds) Topological Properties and Global Structure of Space-Time. NATO ASI Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3626-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3626-4_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-3628-8

  • Online ISBN: 978-1-4899-3626-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics