Skip to main content

Aspergillus nidulans

  • Chapter

Abstract

Aspergillus nidulans is a sexually reproducing member of the Aspergillaceae (Raper and Fennell, 1965). The history of genetic investigations of this mold dates from 1945, when Pontecorvo started to look for an organism suitable for a genetic approach to “certain problems of the spacial organisation of the cell” (Pontecorvo et al., 1953). These problems amounted to an attempt to define the gene and its relation to cell me-tabolism. The reasons for the choice of A. nidulans as well as the story of the early development of genetical studies are fully given in Pontecorvo et al. (1953). Briefly, the advantages of this fungus include the fact that it is a haploid eukaryote which rapidly forms colonies on simple media and can therefore be treated as a microorganism. The asexual spores (conidia) are uninucleate and of a striking green color which is modified in a variety of spore-color mutants (see Table 1) to give conspicuous markers which are invaluable in genetic manipulations. The fungus is homothallic, so any strain can be crossed to any other, and, furthermore, stocks such as those built up in Glasgow can be assumed to be relatively isogenic since they are derived from a single wild isolate.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Acha, I. G. and J. R. Villanueva, 1961 A selective medium for the formation of ascospores by Aspergillus nidulans. Nature (Lond.) 189:328.

    Google Scholar 

  • Agnihotri, V. P., 1961 Utilization of sugars in mixtures by some ascosporic members of the Aspergillus nidulans group. Flora Allg. Bot. Zeit. 151:159–161.

    Google Scholar 

  • Agnihotri, V. P., 1962a Studies on Aspergilli. VII. Utilization of oligo-and polysaccharides by some ascosporic members of the Aspergillus nidulans group. Lloydia 25:94–99.

    Google Scholar 

  • Agnihotri, V. P., 1962b Studies on Aspergilli. V. Utilization of monosaccharides by some ascosporic members of the Aspergillus nidulans group. Flora Allg. Bot. Zeit. 152:81–90.

    CAS  Google Scholar 

  • Agnihotri, V. P., 1963a Studies on Aspergilli. XIII. Carbon requirements of some ascosporic members of the Aspergillus nidulans group. Acta Biol. Acad. Sci. Hung. 14:45–50.

    Google Scholar 

  • Agnihotri, V. P., 1963b Studies on Aspergilli. VIII. Sulphur requirements of some ascosporic members of the Aspergillus nidulans group. Pathol. Microbiol. 26:810–816.

    CAS  Google Scholar 

  • Agnihotri, V. P., 1964 Studies on Aspergilli. XVI. Effect of pH, temperature and carbon and nitrogen interaction. Mycopath. Myc. Appl. 24:305–314.

    CAS  Google Scholar 

  • Agnihotri, V. P., 1967 Role of trace elements in the growth and morphology of five ascosporic Aspergillus species. Can. J. Bot. 45:73–79.

    CAS  Google Scholar 

  • Agnihotri, V. P. and B. S. Mehrotra, 1961 The amino acid composition of some ascosporic members of the Aspergillus nidulans group. Lloydia 24:41–44.

    CAS  Google Scholar 

  • Alderson, T., 1969 Spontaneous and induced reversion of ICR-170-induced xanthine dehydrogenase mutants of Aspergillus nidulans. Mutat. Res. 8:521–529.

    PubMed  CAS  Google Scholar 

  • Alderson, T. and A. M. Clark, 1966 Interlocus specificity for chemical mutagens in Aspergillus nidulans. Nature (Lond.) 210:593–595.

    CAS  Google Scholar 

  • Alderson, T. and M. J. Hartley, 1969 Specificity for spontaneous and induced forward mutation at several gene loci in Aspergillus nidulans. Mutat. Res. 8:255–264.

    PubMed  CAS  Google Scholar 

  • Alderson, T. and C. Scazzocchio, 1967 A system for the study of interlocus specificity for both forward and reverse mutation at least eight gene loci in Aspergillus nidulans. Mutat. Res. 4:567–577.

    PubMed  CAS  Google Scholar 

  • Alderson, T. and B. R. Scott, 1970 The photosensitizing effect of 8-methoxypsoralen on the inactivation and mutation of Aspergillus conidia by near ultraviolet light. Mutat. Res. 9:569–578.

    PubMed  CAS  Google Scholar 

  • Alderson, T. and B. R. Scott, 1971 Induction of mutation by gamma-irradiation in the presence of oxygen or nitrogen. Nat. New Biol. 230:45–48.

    PubMed  CAS  Google Scholar 

  • Apirion, D., 1962 A general system for the automatic selection of auxotrophs from prototrophs and vice versa in micro-organisms. Nature (Lond.) 195:959–961.

    Google Scholar 

  • Apirion, D., 1963 Formal and physiological genetics of ascospore colour in Aspergillus nidulans. Genet. Res. 4:276–283.

    Google Scholar 

  • Apirion, D., 1965 The two-way selection of mutants and revenants in respect of acetate utilization and resistance to fluoroacetate in Aspergillus nidulans. Genet. Res. 6:317–329.

    PubMed  CAS  Google Scholar 

  • Apirion, D., 1966 Recessive mutants at unlinked loci which complement in diploids but not in heterokaryons of Aspergillus nidulans. Genetics 53:935–941.

    PubMed  CAS  Google Scholar 

  • Apirion, D., G. L. Dorn and E. Forbes, 1963 The VIII linkage group. Aspergillus Newsl. 4:15–16.

    Google Scholar 

  • Apte, B. N. and O. Siddiqi. 1971 Purification and properties of arylsulphatase of Aspergillus nidulans. Biochim. Biophys. Acta 242:129–140.

    PubMed  CAS  Google Scholar 

  • Argoudelis, A. D., J. H. Coats and R. R. Herr, 1966 Isolation and characterization of a new antibiotic. Antimicrob. Agents Chemotherap. 1965 pp. 801-803.

    Google Scholar 

  • Arlett, C. F., 1957 Induction of cytoplasmic mutants in Aspergillus nidulans. Nature (Lond.) 179:1250–1251.

    CAS  Google Scholar 

  • Arlett, C. F., 1960 A system of cytoplasmic variation in Aspergillus nidulans. Heredity 15:377–388.

    Google Scholar 

  • Arlett, C. F., 1966a The radiation sensitivity of a cytoplasmic mutant of Aspergillus nidulans. Int. J. Radiat. Biol. 10:539–550.

    CAS  Google Scholar 

  • Arlett, C. F., 1966b The influence of the cytoplasm on mutation in Aspergillus nidulans. Mutat. Res. 3:410–419.

    PubMed  CAS  Google Scholar 

  • Arlett, C.F., 1966c The interaction between ultraviolet and gamma irradiation in Aspergillus nidulans. Int. J. Radiat. Biol. 11:313–320.

    CAS  Google Scholar 

  • Arlett, C. F., M. Grindle and J. L. Jinks, 1962 The “red” cytoplasmic variant of Aspergillus nidulans. Heredity 17:197–209.

    PubMed  CAS  Google Scholar 

  • Armitt, S., C. F. Roberts and H. L. Kornberg, 1970 The role of isocitrate lyase in Aspergillus nidulans. FEBS (Fed. Eur. Biochem. Soc.) Lett. 7:231–233.

    CAS  Google Scholar 

  • Armitt, S., C. F. Roberts and H. L. Kornberg, 1971 Mutants of Aspergillus nidulans lacking malate synthase. FEBS (Fed. Eur. Biochem. Soc.) Lett. 12:276–278.

    CAS  Google Scholar 

  • Arst, H. N., 1968 Genetic analysis of the first steps of sulphate metabolism of Aspergillus nidulans. Nature (Lond.) 219:268–270.

    CAS  Google Scholar 

  • Arst, H. N., 1971 Mutants of Aspergillus nidulans unable to use choline-O-sulphate. Genet. Res. 17:273–277.

    CAS  Google Scholar 

  • Arst, H. N. and D. J. Cove, 1969 Methylammonium resistance in Aspergillus. J. Bactenol. 98:1284–1293.

    CAS  Google Scholar 

  • Arst, H. N. and D. J. Cove 1970 Molybdate metabolism in Aspergillus nidulans. II. Mutations affecting phosphatase activity and galactose utilization. Mol. Gen. Genet. 108:146–153.

    PubMed  CAS  Google Scholar 

  • Arst, H. N. and D. J. Cove, 1973 Nitrogen metabolite repression in Aspergillus nidulans. Mol. Gen. Genet. 126:111–141.

    PubMed  CAS  Google Scholar 

  • Arst, H. N. and D. W. MacDonald, 1973 A mutant of Aspergillus nidulans lacking NADP-linked glutamate dehydrogenase. Mol. Gen. Genet. 122:261–265.

    PubMed  CAS  Google Scholar 

  • Arst, H. N. and B. M. Page, 1973 Mutants of Aspergillus nidulans altered in the transport of methylammonium and ammonium. Mol. Gen. Genet. 121:239–245.

    CAS  Google Scholar 

  • Arst, H. N. and C. Scazzocchio, 1971 RNA synthesis in Aspergillus nidulans. Heredity 26:346.

    Google Scholar 

  • Arst, H. N. and C. Scazzocchio, 1972 Control of nucleic acid synthesis in Aspergillus nidulans. Heredity 29:131.

    Google Scholar 

  • Arst, H. N., D. W. MacDonald and D. J. Cove, 1970 Molybdate metabolism in Aspergillus nidulans. I. Mutations affecting nitrate reductase and/or xanthine dehydrogenase. Mol. Qen. Genet. 108:129–145.

    CAS  Google Scholar 

  • Ashwood-Smith, M. J. and B. Home, 1972 Response of Aspergillus and Penicillium spores to ultraviolet radiation at low temperatures. Photochem. Photobiol. 15:89–92.

    PubMed  CAS  Google Scholar 

  • Aspen, A. J. and A. Meister, 1962 Conversion of α-aminoadipic acid to L-pipecolic acid by Aspergillus nidulans. Biochemistry 1:606–612.

    PubMed  CAS  Google Scholar 

  • Axelrod, D. E., 1972 Kinetics of differentiation of conidiophores and conidia by colonies of Aspergillus nidulans. J. Gen. Microbiol 73:181–184.

    PubMed  CAS  Google Scholar 

  • Axelrod, D. E., M. Gealt and M. Pastushok, 1973 Gene control of developmental competence in Aspergillus nidulans. Develop. Biol. 34:9–15.

    PubMed  CAS  Google Scholar 

  • Ayling, P. D., 1969 Methionine suppressors in Aspergillus nidulans: their genetics and behaviour in heterokaryons and diploids. Genet. Res. 14:275–289.

    PubMed  CAS  Google Scholar 

  • Azevedo, J. L., 1965 The centromere of chromosome VII of Aspergillus nidulans. Aspergillus Newsl. 6:7.

    Google Scholar 

  • Azevedo, J. L., 1970 Recessive lethals induced by nitrous acid in Aspergillus nidulans. Mutat. Res. 10:111–117.

    CAS  Google Scholar 

  • Azevedo, J. L. and J. A. Roper, 1967 Lethal mutations and balanced lethal systems in Aspergillus nidulans. J. Gen. Microbiol. 49:149–155.

    PubMed  CAS  Google Scholar 

  • Azevedo, J. L. and J. A. Roper, 1970 Mitotic nonconformity in Aspergillus nidulans: successive and transposable genetic changes. Genet. Res. 16:79–93.

    PubMed  CAS  Google Scholar 

  • Bainbridge, B. W., 1966 Table of located or partially located mutants and revised map of linkage group III. Aspergillus Newsl. 7:19–21.

    Google Scholar 

  • Bainbridge, B. W., 1970 Genetic analysis of an unequal chromosomal translocation in Aspergillus nidulans. Genet. Res. 15:317–326.

    Google Scholar 

  • Bainbridge, B. W., 1971 Macromolecular composition and nuclear division during spore germination in Aspergillus nidulans. J. Gen. Microbiol. 66:319–325.

    PubMed  CAS  Google Scholar 

  • Bainbridge, B. W. and J. A. Roper, 1966 Observations on the effects of a chromosome duplication in Aspergillus nidulans. J. Gen. Microbiol. 42:417–424.

    PubMed  CAS  Google Scholar 

  • Bainbridge, B. W. and A. P. J. Trinci, 1969 Colony and specific growth rates of normal and mutant strains of Aspergillus nidulans. Trans. Br. Mycol. Soc. 53:473–475.

    CAS  Google Scholar 

  • Bainbridge, B. W., H. Dalton and J. H. Walpole, 1966 Identification of the arginosuccinase gene. Aspergillus Newsl. 7:18.

    Google Scholar 

  • Bainbridge, B. W., A. T. Bull, S. J. Pirt, B. I. Rowley and A. P. J. Trinci, 1971 Biochemical and structural changes in non-growing maintained and autolysing cultures of Aspergillus nidulans. Trans. Br. Mycol. Soc. 56:371–385.

    CAS  Google Scholar 

  • Ball, C., 1967 Chromosome instability related to gene suppression in Aspergillus nidulans. Genet. Res. 10:173–183.

    PubMed  CAS  Google Scholar 

  • Ball, C. and J. L. Azevedo, 1964 A “fluffy” mutant in Aspergillus nidulans. Aspergillus Newsl. 5:9.

    Google Scholar 

  • Ball, C. and J. A. Roper, 1966 Studies on the inhibition and mutation of Aspergillus nidulans by acridines. Genet. Res. 7:207–221.

    PubMed  CAS  Google Scholar 

  • Bandiera, M., G. Morpurgo and L. Volterra, 1970 “Barriers” to intragenic mitotic crossing-over, Mutat. Res. 9:213–217.

    PubMed  CAS  Google Scholar 

  • Bandiera, M., D. Armaleo and G. Morpurgo, 1973 Mitotic intragenic recombination as a consequence of heteroduplex formation in Aspergillus nidulans. Mol. Gen. Genet. 122:137–148.

    PubMed  CAS  Google Scholar 

  • Baracho, I. R. and J. L. Azevedo, 1972 A quantitative analysis of cleistothecia production in Aspergillus nidulans. Experientia (Basel) 28:855–856.

    CAS  Google Scholar 

  • Baracho, I. R., R. Vancovsky and J. L. Azevedo, 1970 Correlations between size and hybrid or selfed state of cleistothecia in Aspergillus nidulans. Trans. Br. Mycol. Soc. 54:109–116.

    Google Scholar 

  • Barbata, G., L. Valdes and G. Sermonti, 1973 Complementation among developmental mutants in Aspergillus nidulans. Mol. Gen. Genet. 126:227–232.

    PubMed  CAS  Google Scholar 

  • Barratt, R. W., G. B. Johnson and W. N. Ogata, 1965 Wild type and mutant stocks of Aspergillus nidulans. Genetics 52:233–246.

    PubMed  CAS  Google Scholar 

  • Barron, G. L. and B. H. MacNeill, 1962 A simplified procedure for demonstrating the parasexual cycle in Aspergillus. Can. J. Bot. 40:1321–1327.

    CAS  Google Scholar 

  • Bartnik, E., P. Weglenski and M. Piotrowska, 1973a Ammonium and glucose repression of the arginine catabolic enzymes in Aspergillus nidulans. Mol. Gen. Genet. 126:75–84.

    PubMed  CAS  Google Scholar 

  • Bartnik, E., J. Guzewska and P. Weglenski, 1973b Mutations simultaneously affecting ammonium and glucose repression of the arginine catabolic enzymes in Aspergillus nidulans. Mol. Gen. Genet. 126:85–92.

    PubMed  CAS  Google Scholar 

  • Beccari, E., P. Modigliani and G. Morpurgo, 1967 Induction of inter-and intragenic mitotic recombination by 5-fluorodeoxyuridine and 5-fluorouracil in Aspergillus nidulans. Genetics 56:7–12.

    PubMed  CAS  Google Scholar 

  • Benko, P. V., T. C. Wood and I. H. Segal, 1967 Specificity and regulation of methionine transport in filamentous fungi. Arch. Biochem. Biophys. 122:783–804.

    CAS  Google Scholar 

  • Berlyn, M., 1967 Gene-enzyme relationships in histidine biosynthesis in Aspergillus nidulans. Genetics 57:561–570.

    PubMed  CAS  Google Scholar 

  • Border, D. J. and A. P. J. Trinci, 1970 Fine structure of the germination of Aspergillus nidulans conidia. Trans. Br. Mycol. Soc. 54:143–152.

    Google Scholar 

  • Bradfield, G., D. Somerfield, T. Meyn, M. Holby, D. Babcock, D. Bradley, and I. H. Segal, 1970 Regulation of sulphate transport in filamentous fungi. Plant Physiol. 46:720–727.

    PubMed  CAS  Google Scholar 

  • Brotskaia, S. Z., 1958 The morphology of variants of Aspergillus nidulans produced by ultraviolet irradiation. Mikrobiologiia (Eng. transi.) 27:45–51.

    Google Scholar 

  • Brotskaia, S. Z., 1960 Effect of ultraviolet irradiation in varying dosage on production of Aspergillus nidulans variants with active proteases. Mikrobiologiia (Eng. transi.) 29:264–266.

    Google Scholar 

  • Brown, C. E. and A. H. Romano, 1969 Evidence against necessary phosphorylation during hexose transport in Aspergillus nidulans. J. Bacteriol 100:1198–1203.

    PubMed  CAS  Google Scholar 

  • Bull, A. T., 1970a Chemical composition of wild-type and mutant Aspergillus nidulans cell walls. The nature of polysaccharide and melanin constituents. J. Gen. Microbiol. 63:75–94.

    PubMed  CAS  Google Scholar 

  • Bull, A. T., 1970b Inhibition of polysaccharases by melanin: enzyme inhibition in relation to mycolysis. Arch. Biochem. Biophys. 137:345–356.

    PubMed  CAS  Google Scholar 

  • Bull, A. T. and B. L. A. Carter, 1973 The isolation of tyrosinase from Aspergillus nidulans, its kinetic and molecular properties and some consideration of its activity in vivo. J. Gen. Microbiol. 75:61–73.

    PubMed  CAS  Google Scholar 

  • Bull, A. T. and B. M. Faulkner, 1964 Physiological and genetic effects of 8-azaguanine. Nature (Lond.) 203:506–507.

    CAS  Google Scholar 

  • Burr, K. W., H. M. Palmer and J. A. Roper, 1971 Mitotic non-conformity in Aspergillus nidulans: The effect of reduced DNA repair. Heredity 27:487.

    Google Scholar 

  • Butcher, A. C., 1968 The relationship between sexual outcrossing and heterokaryon incompatibility in Aspergillus nidulans. Heredity 23:443–452.

    PubMed  CAS  Google Scholar 

  • Butcher, A. C., 1969 Non-allelic interactions and genetic isolation in wild populations of Aspergillus nidulans. Heredity 24:621–631.

    PubMed  CAS  Google Scholar 

  • Butcher, A. C., J. Croft and M. Grindle, 1972 Use of genetic-environmental interaction analysis in the study of natural populations of Aspergillus nidulans. Heredity 29:263–283.

    Google Scholar 

  • Calef, E., 1957 Effect on linkage maps of selection of crossovers between closely linked markers. Heredity 11:265–279.

    Google Scholar 

  • Calvori, C. and G. Morpurgo, 1966 Analysis of induced mutations in Aspergillus nidulans. I. UV-and HNO2-induced mutations. Mutat. Res. 3:145–151.

    PubMed  CAS  Google Scholar 

  • Carter, B. L. A. and A. T. Bull, 1969 Studies of fungal growth and intermediary carbon metabolism under steady and non-steady state conditions. Biotechnol. Bioeng. 11:785–804.

    Google Scholar 

  • Carter, B. L. A. and A. T. Bull, 1971 The effect of oxygen tension in the medium on the morphology and growth kinetics of Aspergillus nidulans. J. Gen. Microbiol. 65:265–273.

    Google Scholar 

  • Carter, B. L. A., A. T. Bull, S. J. Pirt and B. I. Rowley, 1971 Relationship between energy, substrate utilization and specific growth rate in Aspergillus nidulans. J. Bacteriol 108:309–313.

    PubMed  CAS  Google Scholar 

  • Cerny, A., A. Capek and M. Semonsky, 1972 Antineoplastisch wirksame stoffe: 48 Mikrobielle katabolite der Aethylester von N-[8-(6-Purinylthio)-valeryl]-glycine,-diglycin und-triglycin sowie der entsprechenden saere. Pharmazie 27:298–299.

    PubMed  CAS  Google Scholar 

  • Chang, L. T., J. E. Lennox and R. W. Tuveson, 1968 Induced mutation in UV-sensitive mutants of Aspergillus nidulans and Neurospora crassa. Mutat. Res. 5:217–224.

    PubMed  CAS  Google Scholar 

  • Chojnacki, T., A. Paszewski and T. Sawicka, 1969 The formation of UDP glucose and UDP galactose in wild-type and mutants of Aspergillus nidulans. Acta Biochim. Pol. 16:185–191.

    PubMed  CAS  Google Scholar 

  • Clutterbuck, A. J., 1965 A fawn conidia mutant in Aspergillus nidulans. Aspergillus Newsl. 6:12.

    Google Scholar 

  • Clutterbuck, A. J., 1968a New conidial colour mutants in Aspergillus nidulans. Aspergillus Newsl. 9:14.

    Google Scholar 

  • Clutterbuck, A. J., 1968b Gene symbols and nomenclature: Proposals and notes on them. Aspergillus Newsl. 9:26–29.

    Google Scholar 

  • Clutterbuck, A. J., 1969a Stock list of Aspergillus nidulans strains held at the Department of Genetics, University of Glasgow. Aspergillus Newsl. 10:30–37.

    Google Scholar 

  • Clutterbuck, A. J., 1969b Cell volume per nucleus in haploid and diploid strains of Aspergillus nidulans. J. Gen. Microbiol. 55:291–299.

    PubMed  CAS  Google Scholar 

  • Clutterbuck, A. J., 1969c A mutational analysis of conidial development in Aspergillus nidulans. Genetics 63:317–327.

    PubMed  CAS  Google Scholar 

  • Clutterbuck, A. J., 1969d Further comments on gene symbols. Aspergillus Newsl. 10:26–28.

    Google Scholar 

  • Clutterbuck, A. J., 1970a Synchronous nuclear division and septation in Aspergillus nidulans. J. Gen. Microbiol 60:133–135.

    PubMed  CAS  Google Scholar 

  • Clutterbuck, A. J., 1970b A variegated position effect in Aspergillus nidulans. Genet. Res. 16:303–316.

    PubMed  CAS  Google Scholar 

  • Clutterbuck, A. J., 1972 Absence of laccase from yellow-spored mutants of Aspergillus nidulans. J. Gen. Microbiol. 70:423–435.

    PubMed  CAS  Google Scholar 

  • Clutterbuck, A. J., 1973a Gene symbols in Aspergillus nidulans. Genet. Res. 21:291–296.

    PubMed  CAS  Google Scholar 

  • Clutterbuck, A. J., 1973b Interrelations between development and pigmentation during conidiation of Aspergillus nidulans. Genetics 74:s50.

    Google Scholar 

  • Clutterbuck, A. J. and D. J. Cove, 1974 The genetic loci of Aspergillus nidulans. In Handbook of Microbiology, edited by H. Lechevalier, Chemical Rubber Co., Cleveland, Ohio.

    Google Scholar 

  • Clutterbuck, A. J., and J. A. Roper, 1966 A direct determination of nuclear distribution in heterokaryons of Aspergillus nidulans. Genet. Res. 7:185–194.

    Google Scholar 

  • Cohen, B. L., 1972 Ammonium repression of extracellular protease in Aspergillus nidulans. J. Gen. Microbiol. 71:293–299.

    CAS  Google Scholar 

  • Cohen, B. L., 1973a Growth of Aspergillus nidulans in a thin liquid layer. J. Gen. Microbiol. 76:277–283.

    PubMed  CAS  Google Scholar 

  • Cohen, B. L., 1973b The neutral and alkaline proteases of Aspergillus nidulans. J. Gen. Microbiol. 77:521–528.

    PubMed  CAS  Google Scholar 

  • Cohen, B. L., 1973c Regulation of intracellular and extracellular neutral and alkaline proteases in Aspergillus nidulans. J. Gen. Microbiol. 79:311–320.

    PubMed  CAS  Google Scholar 

  • Cohen, J., D. Katz and R. F. Rosenberger, 1969 Temperature sensitive mutant of Aspergillus nidulans lacking amino sugars in its cell wall. Nature (Lond.) 244:713–715.

    Google Scholar 

  • Coll, J. and J. A. Leal, 1972 The utilization of L-tryptophan as nitrogen source by Fusarium culmorum, Aspergillus nidulans and Penicillium italicum. Can. J. Microbiol. 18:1353–1356.

    PubMed  CAS  Google Scholar 

  • Cooke, P., J. A. Roper and W. Watmough, 1970 Trypan blue-induced deletion strains of Aspergillus nidulans. Nature (Lond.) 226:276–277.

    CAS  Google Scholar 

  • Cove, D. J., 1966 The induction and repression of nitrate reductase in the fungus Aspergillus nidulans. Biochim. Biophys. Acta 113:51–56.

    PubMed  CAS  Google Scholar 

  • Cove, D. J., 1967 Kinetic studies of the induction of nitrate reductase and cytochrome c reductase in the fungus Aspergillus nidulans. Biochem. J. 104:1033–1039.

    PubMed  CAS  Google Scholar 

  • Cove, D. J., 1969 Evidence for a near limiting intracellular concentration of a regulator substance. Nature (Lond.) 224:272–273.

    CAS  Google Scholar 

  • Cove, D. J., 1970 Control of gene action in Aspergillus nidulans. Proc. R. Soc. Lond. Ser. B Biol. Sci. 176:267–275.

    CAS  Google Scholar 

  • Cove, D. J. and A. Coddington, 1965 Purification of nitrate reductase and cytochrome c reductase from Aspergillus nidulans. Biochim. Biophys. Acta 110:312–318.

    PubMed  CAS  Google Scholar 

  • Cove, D. J. and J. A. Pateman, 1963 Independently segregating genetic loci concerned with nitrate reductase activity in Aspergillus nidulans. Nature (Lond.) 198:262–263.

    CAS  Google Scholar 

  • Cove, D. J. and J. A. Pateman, 1969 Autoregulation of the synthesis of nitrate reductase in Aspergillus nidulans. J. Bacteriol. 97:1374–1378.

    PubMed  CAS  Google Scholar 

  • Crackower, S. H. B., 1972 The effect of griseofulvin on mitosis in Aspergillus nidulans. Can. J. Microbiol 18:683–687.

    PubMed  CAS  Google Scholar 

  • Croft, J. H., 1966 A reciprocal phenotypic instability affecting development in Aspergillus nidulans. Heredity 21:565–579.

    PubMed  CAS  Google Scholar 

  • Cybis, J. and P. Weglenski, 1969 Effects of lysine on arginine uptake and metabolism in Aspergillus nidulans. Mol. Gen. Genet. 104:282–287.

    PubMed  CAS  Google Scholar 

  • Cybis, J. and P. Weglenski, 1973 Arginase induction in Aspergillus nidulans. The appearance and decay of the coding capacity of messenger. Eur. J. Biochem. 30:262–268.

    Google Scholar 

  • Cybis, J., M. Piotrowska and P. Weglenski, 1970 Control of ornithine transcarbamylase formation in Aspergillus nidulans. Bull. Acad. Pol. Sci. Ser. Sci. Biol. 18:669–672.

    CAS  Google Scholar 

  • Cybis, J., M. Piotrowska and P. Weglenski, 1972a Genetic control of the arginine pathways in Aspergillus nidulans. Common regulation of anabolism and catabolism. Mol. Gen. Genet. 118:273–277.

    PubMed  CAS  Google Scholar 

  • Cybis, J., M. Piotrowska and P. Weglenski, 1972b The genetic control of the arginine pathway in Aspergillus nidulans. Mutants blocked in arginine biosynthesis. Acta Microbiol. Pol. Ser. A Microbiol. Gen. 4:163–169.

    CAS  Google Scholar 

  • Da Cunha, P. R. 1970 A study of aspects of heterokaryosis in Aspergillus nidulans. Mem. Inst. Oswaldo Cruz Rio de J. 68:119–167.

    Google Scholar 

  • Darlington, A. J. and C. Scazzocchio, 1967 The use of analogues and the substratesensitivity of mutants in analysis of purine uptake and breakdown in Aspergillus nidulans. J. Bacteriol. 93:937–940.

    PubMed  CAS  Google Scholar 

  • Darlington, A. J., and C. Scazzocchio, 1968 Evidence for an alternative pathway of xanthine oxidation in Aspergillus nidulans. Biochim. Biophys. Acta 166:569–571.

    PubMed  CAS  Google Scholar 

  • Darlington, A. J., C. Scazzocchio and J. A. Pateman, 1965 Biochemical and genetical studies of purine breakdown in Aspergillus. Nature (Lond) 206:599–600.

    CAS  Google Scholar 

  • Davidse, L. C., 1973 Antimitotic activity of methyl benzimidazol-2-YL carbamate (MBC) in Aspergillus nidulans. Pest. Biochem. 3:317.

    CAS  Google Scholar 

  • Devi, C. S. S. and E. R. B. Shanmugasundaram, 1969 Genetics and biochemistry of a riboflavin requiring mutant. Curr. Sci. (Bangalore) 38:193–195.

    CAS  Google Scholar 

  • Dhillon, T. S. and E. D. Garber, 1970 Methionine-sensitive leucine-requiring mutants of Aspergillus nidulans. Z. Biol. 116:349–353.

    PubMed  CAS  Google Scholar 

  • Ditchburn, P. and K. D. Macdonald, 1971 The differential effects of nystatin on growth of auxotrophic and prototrophic strains of Aspergillus nidulans. J. Gen. Microbiol. 67:299–306.

    PubMed  CAS  Google Scholar 

  • Dorn, G. L. 1965a Genetic analysis of the phosphatases in Aspergillus nidulans. Genet. Res. 6:13–26.

    Google Scholar 

  • Dorn, G. L., 1965b Phosphatase mutants in Aspergillus nidulans. Science (Wash., D.C.) 150:1183–1184.

    CAS  Google Scholar 

  • Dorn, G. L. 1967a A revised linkage map of the eight linkage groups of Aspergillus nidulans. Genetics 56:619–631.

    PubMed  CAS  Google Scholar 

  • Dorn, G. L., 1967b Purification of two alkaline phosphatases from Aspergillus nidulans. Biochim. Biophys. Acta 132:190–193.

    PubMed  CAS  Google Scholar 

  • Dorn, G. L., 1968 Purification and characterization of phosphatase I from Aspergillus nidulans. J. Bwl. Chem. 243:3500–3506.

    CAS  Google Scholar 

  • Dorn, G. L. 1970 Genetic and morphological properties of undifferentiated and invasive variants of Aspergillus nidulans. Genetics 66:267–279.

    PubMed  CAS  Google Scholar 

  • Dorn, G. L., 1972 Computerized meiotic mapping of Aspergillus nidulans. Genetics 72:595–605.

    PubMed  CAS  Google Scholar 

  • Dorn, G. L. and W. Rivera, 1965 Supplementary list of located or partially located mutants in Aspergillus nidulans. Aspergillus Newsl. 6:13–15.

    Google Scholar 

  • Dorn, G. L. and W. Rivera, 1966 Kinetics of fungal growth and phosphatase formation in Aspergillus nidulans. J. Bacteriol. 92:1618–1622.

    PubMed  CAS  Google Scholar 

  • Dorn, G. L., G. M. Martin and D. M. Purnell, 1967 Genetic and cytoplasmic control of undifferentiated growth in Aspergillus nidulans. Life Sci. 6:629–633.

    PubMed  CAS  Google Scholar 

  • Downey, R. J., 1971 Characterization of the reduced nicotinamide adenine dinucleotide phosphate-nitrate reductase of Aspergillus nidulans. J. Bacteriol. 105:759–768.

    PubMed  CAS  Google Scholar 

  • Downey, R. J., 1973a The role of molybdenum in formation of the NADPH-nitrate reductase by Aspergillus nidulans. Biochem. Biophys. Res. Commun. 50:920–925.

    PubMed  CAS  Google Scholar 

  • Downey, R. J., 1973b The multimeric nature of NADPH-nitrate reductase from Aspergillus nidulans. Microbios 7:53–60.

    PubMed  CAS  Google Scholar 

  • Downey, R. J. and D. J. Cove, 1971 Attempts to detect an alternative vital role for the reduced nicotinamide adenine dinucleotide phosphate-nitrate reductase structural gene in Aspergillus nidulans. J. Bacteriol. 106:1047–1049.

    PubMed  CAS  Google Scholar 

  • Duarte, F. A. M., 1972 Efeitos mutagenicos de alguns esteres de acidos inorganicos em Aspergillus nidulans (Eidam) Winter. Cienc. Cult. (Sao Paulo) 24:42–52.

    CAS  Google Scholar 

  • Dulaney, E. L., 1947 Some aspects of penicillin production by Aspergillus nidulans. Mycologia 39:570–581.

    PubMed  CAS  Google Scholar 

  • Dunn, E. and J. A. Pateman, 1972 Urea and thiourea uptake in Aspergillus nidulans. Heredity 29:129.

    Google Scholar 

  • Dunsmuir, P. and M. J. Hynes, 1973 Temperature-sensitive mutants affecting the activity and regulation of the acetamidase of Aspergillus nidulans. Mol. Gen. Genet. 123:333–346.

    PubMed  CAS  Google Scholar 

  • Edelman, M., I. M. Verma and U. Z. Littauer, 1970 Mitochondrial ribosomal RNA from Aspergillus nidulans: Characterization of a novel molecular species. J. Mol. Biol. 49:67–83.

    PubMed  CAS  Google Scholar 

  • Edelman, M., I. M. Verma, R. Herzog, E. Galun and U. Littauer, 1971 Physiochemical properties of mitochondrial ribosomal RNA from fungi. Eur. J. Biochem. 19:372–378.

    PubMed  CAS  Google Scholar 

  • Elliott, C. G., 1956 Triploid Aspergillus nidulans. Microb. Genet. Bull. 13:7.

    Google Scholar 

  • Elliott, C. G., 1960a The cytology of Aspergillus nidulans. Genet. Res. 1:462–476.

    Google Scholar 

  • Elliott, C. G., 1960b Non-localized negative interference in Aspergillus nidulans. Heredity 15:247–262.

    Google Scholar 

  • Elorza, M. V., 1969 Toxicidad de los iones metalicos para Aspergillus nidulans. Microbiol. Espan. 22:131–138.

    CAS  Google Scholar 

  • Elorza, M. V. and H. N. Arst, 1971 Sorbose-resistant mutants of Aspergillus nidulans. Mol. Gen. Genet. 111:185–193.

    PubMed  CAS  Google Scholar 

  • Elorza, M. V., H. N. Arst, D. J. Cove and C. Scazzocchio, 1969 Permeability properties of Aspergillus nidulans protoplasts. J. Bacteriol. 99:113–115.

    PubMed  CAS  Google Scholar 

  • Fantes, P. A. and C. F. Roberts, 1973 β-galactosidase activity and lactose utilization in Aspergillus nidulans. J. Gen. Microbiol. 77:471–486.

    CAS  Google Scholar 

  • Faulkner, B. M. and C. F. Arlett, 1964 The “minute” cytoplasmic variant of Aspergillus nidulans. Heredity 19:63–73.

    PubMed  CAS  Google Scholar 

  • Florance, E. R., W. C. Denison and T. C. Allen, 1972 Ultrastructure of dormant and germinating conidia of Aspergillus nidulans. Mycologia 64:115–123.

    PubMed  CAS  Google Scholar 

  • Foley, J. M., N. H. Giles and C. F. Roberts, 1965 Complementation at the adenylosuccinase locus in Aspergillus nidulans. Genetics 52:1247–1263.

    PubMed  CAS  Google Scholar 

  • Forbes, E., 1959a Use of mitotic segregation for assigning genes to linkage groups in Aspergillus nidulans. Heredity 13:67–80.

    Google Scholar 

  • Forbes, E., 1959b Recombination in the pro region in Aspergillus nidulans. Microb. Genet. Bull. 13:9–11.

    Google Scholar 

  • Forbes, E. and U. Sinha, 1966 Location of some temperature-sensitive mutants. Aspergillus Newsl. 7:17.

    Google Scholar 

  • Fortuin, J. J. H., 1971a Another two genes controlling mitotic intragenic recombination and recovery from UV damage in Aspergillus nidulans. I. UV sensitivity, complementation and location of six mutants. Mutat. Res. 11:149–162.

    PubMed  CAS  Google Scholar 

  • Fortuin, J. J. H., 1971b Another two genes controlling mitotic intragenic recombination and recovery from UV damage in Aspergillus nidulans II. Recombination behaviour and X-ray sensitivity of uvsD and uvsE mutants. Mutat. Res. 11:265–277.

    PubMed  CAS  Google Scholar 

  • Fortuin, J. J. H., 1971c Another two genes controlling mitotic intragenic recombination and recovery from UV damage in Aspergillus nidulans. III. Photoreactivation of UV damage in uvsD and uvsE mutants. Mutat. Res. 13:131–136.

    PubMed  CAS  Google Scholar 

  • Fortuin, J. J. H., 1971d Another two genes controlling mitotic intragenic recombination and recovery from UV damage in Aspergillus nidulans. IV. Genetic analysis of mitotic intragenic recombinants from uvs + /uvs + , uvsD/uvsD and uvsE/uvsE diploids. Mutat. Res. 13:137–148.

    PubMed  CAS  Google Scholar 

  • Fratello, B., G. Morpurgo and G. Sermonti, 1960 Induced somatic segregation in Aspergillus nidulans. Genetics 45:785–800.

    PubMed  CAS  Google Scholar 

  • Gajewski, W. and J. Litwinska, 1968 Methionine loci and their suppressors in Aspergillus nidulans. Mol. Gen. Genet. 102:210–220.

    PubMed  CAS  Google Scholar 

  • Gajewski, W., J. Litwinska, A. Paszewski and T. Chojnacki, 1972 Isolation and characterization of lactose non-utilizing mutants of Aspergillus nidulans. Mol. Gen. Genet. 116:99–106.

    PubMed  CAS  Google Scholar 

  • Garber, E. D., G. W. Bryan, B. Capon, L. B. Liddle and N. W. Miller, 1961 Evidence for parthenogenesis in Aspergillus nidulans. Am. Nat. 95:309–313.

    Google Scholar 

  • Georgopoulos, S. G. and E. Georgadis, 1969 Iodoacetate resistance and radiosensitization of conidia of Aspergillus nidulans. Radiat. Bot. 9:69–73.

    CAS  Google Scholar 

  • Gibson, R. K. and J. F. Peberdy, 1972 Fine structure of protoplasts of Aspergillus nidulans. J. Gen. Microbiol. 72:529–538.

    PubMed  CAS  Google Scholar 

  • Gorin, P. A. J. and D. E. Eveleigh, 1970 Extracellular 2-acetamido-2-deoxy-D-galacto-D-galactan from Aspergillus nidulans. Biochemistry 9:5023–5027.

    PubMed  CAS  Google Scholar 

  • Gravel, R. A., E. Käfer, A. Niklewicz-Borkenhagen and P. Zambryski, 1970 Genetic and accumulation studies in sulphite-requiring mutants of Aspergillus nidulans. Can. J. Genet. Cytol. 12:831–840.

    PubMed  CAS  Google Scholar 

  • Grindle, M., 1963a Heterokaryon incompatibility of unrelated strains in the Aspergillus nidulans group. Heredity 18:191–204.

    PubMed  CAS  Google Scholar 

  • Grindle, M., 1963b Heterokaryon incompatibility of closely related wild isolates of Aspergillus nidulans. Heredity 18:397–405.

    PubMed  CAS  Google Scholar 

  • Grindle, M. 1964 Nucleo-cytoplasmic interaction in the “red” cytoplasmic variant of As-pergillus nidulans. Heredity 19:75–95.

    PubMed  CAS  Google Scholar 

  • Grivell, A. R. and J. F. Jackson, 1968 Thymidine kinase: evidence for its absence from Neurospora crassa and some other microorganisms and the relevance of this to the specific labeling of deoxyribonucleic acid. J. Gen. Microbiol. 54:307–317.

    PubMed  CAS  Google Scholar 

  • Hankinson, O. and D. J. Cove, 1972a Genetic regulation of the pentose phosphate pathway of Aspergillus nidulans. Heredity 28:276.

    Google Scholar 

  • Hankinson, O. and D. J. Cove, 1972b The effect of nitrate on the activity of the D-man-nitol-1-phosphate dehydrogenase of Aspergillus nidulans. Heredity 29:121.

    Google Scholar 

  • Harada, T. and B. Spencer, 1962 The effect of sulphate assimilation on the induction of arylsulphatase synthesis in fungi. Biochem. J. 82:148–156.

    PubMed  CAS  Google Scholar 

  • Harsanyi, Z. and G. L. Dorn, 1972 Purification and characterization of acid phosphatase V from Aspergillus nidulans. J. Bacteriol. 110:246–255.

    PubMed  CAS  Google Scholar 

  • Hartley, M. J., 1969 Reversion of non-nitrate utilizing (niaD) mutants of Aspergillus nidulans. Mutat. Res. 7:163–170.

    PubMed  CAS  Google Scholar 

  • Hartley, M. J., 1970a Contrasting complementation patterns in Aspergillus nidulans. Genet. Res. 16:123–125.

    PubMed  CAS  Google Scholar 

  • Hartley, M. J., 1970b The frequency of reverse mutation at the XDH loci of Aspergillus nidulans. Mutat. Res. 10:175–183.

    PubMed  CAS  Google Scholar 

  • Hastie, A. C., 1970 Benlate-induced instability of Aspergillus diploids. Nature (Lond.) 226:771.

    CAS  Google Scholar 

  • Hastie, A. C., and S. G. Georgopoulos, 1971 Mutational resistance to fungitoxic benzimidazole derivatives in Aspergillus nidulans. J. Gen. Microbiol. 67:371–373.

    PubMed  CAS  Google Scholar 

  • Heagy, F. C. and J. A. Roper, 1952 Deoxyribonucleic acid content of haploid and diploid Aspergillus conidia. Nature (Lond.) 170:713–714.

    CAS  Google Scholar 

  • Hess, W. M. and D. L. Stocks, 1969 Surface characteristics of Aspergillus conidia. Mycologia 61:560–571.

    PubMed  CAS  Google Scholar 

  • Hockenhull, D. J. D., 1948 Mustard gas mutation in Aspergillus nidulans. Nature (Lond.) 161:100.

    CAS  Google Scholar 

  • Hockenhull, D. J. D., 1949 The sulfur metabolism of mold fungi: The use of “biochemical mutant” strains of Aspergillus nidulans in elucidating the biosynthesis of cystine. Biochim. Biophys. Acta 3:326–335.

    CAS  Google Scholar 

  • Hockenhull, D. J. D., 1950 Studies in the metabolism of mold fungi. Preliminary study of the metabolism of carbon, nitrogen and sulphur by Aspergillus nidulans. J. Exp. Bot. 1:194–200.

    Google Scholar 

  • Holl, F. B., 1971 Immunochemical analysis of nitrate reductase in Aspergillus nidulans. Heredity 27:311.

    Google Scholar 

  • Holl, F. B. and C. Scazzocchio, 1970 Immunological differences between inducible and constitutive xanthine dehydrogenases in Aspergillus nidulans. FEBS (Fed. Eur. Biochem. Soc.) Lett. 12:51–53.

    CAS  Google Scholar 

  • Holloman, D. W., 1970 Ribonucleic acid synthesis during fungal spore germination. J. Gen. Microbiol. 62:75–87.

    Google Scholar 

  • Holt, G. and K. D. Macdonald, 1968a Isolation of strains with increased penicillin yield after hybridisation in Aspergillus nidulans. Nature (Lond.) 219:636–637.

    CAS  Google Scholar 

  • Holt, G. and K. D. Macdonald, 1968b Penicillin production and its mode of inheritance in Aspergillus nidulans. Antonie Van Leeuwenhoek J. Microbiol. Serol. 34:409–416.

    CAS  Google Scholar 

  • Houghton, J. A., 1970 A new class of slow growing non-perithecial mutants of Aspergillus nidulans. Genet. Res. 16:285–292.

    PubMed  CAS  Google Scholar 

  • Houghton, J. A., 1971 Biochemical investigations of the slow growing non-perithecial (sgp) mutants of Aspergillus nidulans. Genet. Res. 17:237–244.

    CAS  Google Scholar 

  • Hussey, C., B. A. Orsi, J. Scott and B. Spencer, 1965 Mechanism of choline sulphate utilization in fungi. Nature (Lond.) 207:632–634.

    CAS  Google Scholar 

  • Hutter, R. and J. A. DeMoss, 1967 Enzyme analysis of the tryptophan pathway of Aspergillus nidulans. Genetics 55:241–247.

    PubMed  CAS  Google Scholar 

  • Hynes, M. J., 1970 Induction and repression of amidase enzymes in Aspergillus nidulans. J. Bacteriol. 103:482–487.

    PubMed  CAS  Google Scholar 

  • Hynes, M. J., 1972 Mutants with altered glucose repression of amidase enzymes in Aspergillus nidulans. J. Bacteriol. 111:717–722.

    PubMed  CAS  Google Scholar 

  • Hynes, M. J., 1973a Alterations in the control of glutamate uptake in mutants of Aspergillus nidulans. Biochem. Biophys. Res. Commun. 54:685–689.

    PubMed  CAS  Google Scholar 

  • Hynes, M. J., 1973b Pleiotropic mutants affecting the control of nitrogen metabolism in Aspergillus nidulans. Mol. Gen. Genet. 125:99–107.

    PubMed  CAS  Google Scholar 

  • Hynes, M. J., 1973c The effect of lack of a carbon source on nitrate-reductase activity in Aspergillus nidulans. J. Gen. Microbiol. 79:155–157.

    PubMed  CAS  Google Scholar 

  • Hynes, M. J. and J. A. Pateman, 1970a The genetic analysis of regulation of amidase synthesis in Aspergillus nidulans. I. Mutants able to utilize acrylamide. Mol. Gen. Genet. 108:97–106.

    PubMed  CAS  Google Scholar 

  • Hynes, M. J. and J. A. Pateman, 1970b The genetic analysis of regulation of amidase synthesis in Aspergillus nidulans. II. Mutants resistant to fluoroacetamide. Mol. Gen. Genet. 108:107–116.

    PubMed  CAS  Google Scholar 

  • Hynes, M. J. and J. A. Pateman, 1970c The use of amides as nitrogen sources by Aspergillus nidulans. J. Gen. Microbiol. 63:317–324.

    PubMed  CAS  Google Scholar 

  • Jansen, G. J. O., 1964 UV-induced mitotic recombination in the paba1 region of Aspergillus nidulans. Genetica (The Hague) 35:127–131.

    CAS  Google Scholar 

  • Jansen, G. J. O., 1967 Some properties of the uvs1 mutant of Aspergillus nidulans. Aspergillus Newsl. 8:20–21.

    Google Scholar 

  • Jansen, G. J. O., 1970a Survival of uvsB and uvsC mutants of Aspergillus nidulans after UV-irradiation. Mutat. Res. 10:21–32.

    PubMed  CAS  Google Scholar 

  • Jansen, G. J. O., 1970b Abnormal frequencies of spontaneous mitotic recombination in uvsB and uvsC mutants of Aspergillus nidulans. Mutat. Res. 10:33–41.

    PubMed  CAS  Google Scholar 

  • Jansen, G. J. O., 1972 Mutator activity in uvs mutants of Aspergillus nidulans. Mol. Gen. Genet. 116:47–50.

    PubMed  CAS  Google Scholar 

  • Jinks, J. L., 1954 Somatic selection in fungi. Nature (Lond.) 174:409–410.

    CAS  Google Scholar 

  • Jinks, J. L., 1956 Naturally occurring cytoplasmic changes in fungi. C. R. Trav. Lab. Carlsberg 26:183–203.

    Google Scholar 

  • Jinks, J. L., 1958 Cytoplasmic differentiation in fungi. Proc. R. Soc. Lond. Ser. B Biol. Sci. 148:314–321.

    CAS  Google Scholar 

  • Jinks, J. L., 1963 Cytoplasmic inheritance in fungi. In Methodology in Basic Genetics, edited by W. J. Burdette, pp. 325-354, Holden-Day, San Francisco, Calif.

    Google Scholar 

  • Jinks, J. L. and M. Grindle, 1963 The genetical basis of heterokaryon incompatibility in Aspergillus nidulans. Heredity 18:407–411.

    PubMed  CAS  Google Scholar 

  • Jinks, J. L., C. E. Caten, G. Simchen and J. H. Croft, 1966 Heterokaryon incompatibility in Aspergillus nidulans. Heredity 21:227–239.

    PubMed  CAS  Google Scholar 

  • Käfer, E., 1958 An eight-chromosome map of Aspergillus nidulans. Adv. Genet. 9:105–145.

    PubMed  Google Scholar 

  • Käfer, E., 1960 High frequency of spontaneous and induced somatic segregation in Aspergillus nidulans. Nature (Lond.) 186:619–620.

    Google Scholar 

  • Käfer, E., 1961 The processes of spontaneous recombination in vegetative nuclei of Aspergillus nidulans. Genetics 46:1581–1609.

    PubMed  Google Scholar 

  • Käfer, E., 1962 Translocations in stock strains of Aspergillus nidulans. Genetica (The Hague) 33:59–68.

    Google Scholar 

  • Käfer, E., 1963 Radiation effects and mitotic recombination in diploids of Aspergillus nidulans. Genetics 48:27–45.

    PubMed  Google Scholar 

  • Käfer, E., 1965 The origins of translocations in Aspergillus nidulans. Genetics 52:217–232.

    PubMed  Google Scholar 

  • Käfer, E., 1969 Effects of ultraviolet irradiation on heterozygous diploids of Aspergillus nidulans. II. Recovery from UV-induced mutation in mitotic recombinant sectors. Genetics 63:821–841.

    PubMed  Google Scholar 

  • Käfer, E. and T. L. Chen, 1964 Translocations and recessive lethals induced in Aspergillus nidulans by ultraviolet light and gamma rays. Can. J. Genet. Cytol. 6:249–254.

    Google Scholar 

  • Käfer, E. and J. A. DeMoss, 1973 Formation of hybrid anthranilate synthetase in vitro from components of Aspergillus and Neurospora. Biochem. Genet. 9:203–211.

    PubMed  Google Scholar 

  • Käfer, E. and A. Upshall, 1973 The phenotypes of the eight disomics and trisomies of Aspergillus nidulans. J. Hered. 64:35–38.

    PubMed  Google Scholar 

  • Kameneva, S. V. and G. V. Evseeva, 1972 Genetic control of the sensitivity to mutagenic factors in Aspergillus nidulans. II. Sensitivity of uvs mutants to different mutagens. Genetika 8(3):72–78.

    CAS  Google Scholar 

  • Kameneva, S. V. and Y. M. Romanova, 1969 Genetic control of sensitivity to mutagenic factors in Aspergillus nidulans. I. Obtaining of mutants sensitive to UV light. Genetika 5(11):196–198.

    Google Scholar 

  • Katsatkina, I. D., 1959 Biochemical mutants of Aspergillus nidulans produced by irradiation with ultraviolet rays. Mikrobiologiia (Eng. transi.) 28:751–757.

    Google Scholar 

  • Katsatkina, I. D., 1961 The morphology of aminoacid deficient variants of Aspergillus nidulans as a function of the composition of the medium. Mikrobiologiia (Eng. transi.) 29:367–370.

    Google Scholar 

  • Katz, D. and R. F. Rosenberger, 1970a The utilization of galactose by an Aspergillus nidulans mutant lacking galactose phosphate-UDP glucose transferase and its relation to cell wall synthesis. Arch. Mikrobiol. 74:41–51.

    PubMed  CAS  Google Scholar 

  • Katz, D. and R. F. Rosenberger, 1970b A mutation in Aspergillus nidulans producing hyphal walls which lack chitin. Biochim. Biophys. Acta 208:452–460.

    PubMed  CAS  Google Scholar 

  • Katz, D. and R. F. Rosenberger, 1970c The effect of CO2 on the purine requirement of Aspergillus nidulans ad3 mutants. Biochim. Biophys. Acta 224:279–281.

    PubMed  CAS  Google Scholar 

  • Katz, D. and R. F. Rosenberger, 1971a Hyphal wall synthesis in Aspergillus nidulans: Effect of protein synthesis inhibition and osmotic shock on chitin insertion and morphogenesis. J. Bacteriol. 108:184–190.

    PubMed  CAS  Google Scholar 

  • Katz, D. and R. F. Rosenberger, 1971b Lysis of anAspergillus nidulans mutant blocked in chitin synthesis and its relation to wall assembly and wall metabolism. Arch. Mikrobiol. 80:284–292.

    PubMed  CAS  Google Scholar 

  • Katz, D., D. Goldstein and R. F. Rosenberger, 1972 Model for branch initiation in Aspergillus nidulans based on measurements of growth parameters. J. Bacteriol. 109:1097–1100.

    PubMed  CAS  Google Scholar 

  • Kessel, M. and R. F. Rosenberger, 1968 Regulation and timing of deoxyribonucleic acid synthesis in hyphae of Aspergillus nidulans. J. Bacteriol. 95:2275–2281.

    PubMed  CAS  Google Scholar 

  • Kilbey, B. J., 1960 ’sage’: A colour modifier in Aspergillus nidulans. Nature (Lond.) 186:906–907.

    Google Scholar 

  • Kinghorn, J. R. and J. A. Pateman, 1973a NAD-and NADP-glutamate dehydrogenase activity and ammonium regulation in Aspergillus nidulans. J. Gen. Microbiol. 78:39–46.

    PubMed  CAS  Google Scholar 

  • Kinghorn, J. R. and J. A. Pateman, 1973b Nicotinamide-adenine dinucleotide phosphate-linked glutamate dehydrogenase activity and ammonium regulation in Aspergillus nidulans. Biochem. Soc. Trans. 1:672–674.

    CAS  Google Scholar 

  • Kinghorn, J. R. and J. A. Pateman, 1973c The regulation of nicotinamide-adenine dinucleotide-linked glutamate dehydrogenase in Aspergillus nidulans. Biochem. Soc. Trans. 1:675–676.

    CAS  Google Scholar 

  • Kinghorn, J. R. and J. A. Pateman, 1974 The effect of carbon source on ammonium regulation in Aspergillus nidulans. Mol. Gen. Genet. 128:95–98.

    PubMed  CAS  Google Scholar 

  • Klimczuk, J., 1970 Spontaneous and induced reversions of meth1 mutant of Aspergillus nidulans. Genet. Pol. 11:313–319.

    CAS  Google Scholar 

  • Kovalenko, S. P., 1964 Determination of the mutagenic activity of certain alkylating reagents by the method of back mutations with Aspergillus nidulans. Dokl. Akad. Nauk. SSSR (Engl. Trans.) 58:684–685.

    Google Scholar 

  • Kovalenko, S. P., 1972 High mutagenic effect of phenethyl nitrogen mustard and ethyleneiminopyrimidines in Aspergillus nidulans. Mutat. Res. 14:115–118.

    PubMed  CAS  Google Scholar 

  • Kovalenko, S. P. and E. M. Tkachenko, 1973 A comparison of activities of nitrogen mustards in the induction of mitotic crossing-over in a diploid strain of Aspergillus nidulans. Genetika 9:97–101.

    CAS  Google Scholar 

  • Kovalenko, S. P., V. K. Panchenko and L. B. Rapp, 1969a Comparison of the mutagenic action of chemically similar bifunctional nitrogen mustards on Aspergillus nidulans. Doklady Biol. Sci. (Eng. Trans. Dokl. Akad. Nauk. SSSR Ser. Biokhim.) 187:548–550.

    Google Scholar 

  • Kovalenko, S. P., P. E. Vavrish and V. K. Panchenko, 1969b Mutagenic activity of some nitrogen mustards on Aspergillus nidulans. Tsitol. Genet. 3:252–254.

    CAS  Google Scholar 

  • Kovalenko, S. P., V. K. Panchenko and L. B. Rapp, 1970a The dependence of mutagenic activity of N-benzyl-N, N-di2chloroethylamine homologues on their chemical structure. Tsitol. Genet. 4:283.

    CAS  Google Scholar 

  • Kovalenko, S. P., G. V. Shishkin, V. K. Panchenko and L. B. Rapp, 1970b The influence of aromatic cycles and their substituents on the mutagenic activity of nitrogen mustards. Genetika 6:103–109.

    CAS  Google Scholar 

  • Kovalenko, S. P., V. K. Panchenko and L. B. Rapp, 1971 The mutagenic properties of chlorethyl derivatives of phenethylamine. Genetika 7:160–162.

    CAS  Google Scholar 

  • Kurzeja, K. C. and E. D. Garber, 1973 A genetic study of electrophoretically variant extracellular amylolytic enzymes of wild-type strains of Aspergillus nidulans. Can. J. Genet. Cytol. 15:275–287.

    CAS  Google Scholar 

  • Kuzyurina, L. A., 1959a The resistance of Aspergillus nidulans and Aspergillus niger conidia to ultraviolet rays. Mikrobiologiia (Eng. transi.) 28:33–39.

    Google Scholar 

  • Kuzyurina, L. A., 1959b Production of mutants by ultraviolet light. II. Morphological characteristics of Aspergillus nidulans variants obtained through irradiation with different doses of ultraviolet rays. Mikrobiologiia (Eng. transi.) 28:625–631.

    Google Scholar 

  • Kwiatowski, Z. A. 1962 Radiation action on the mitotic crossing-over in Aspergillus nidulans. Acta Microbiol. Pol. 11:3–11.

    Google Scholar 

  • Kwiatowski, Z. A. 1965 Studies on the mechanism of gene recombination in Aspergillus. I. Analysis of the stimulating effect of the removal of some metallic ions on mitotic recombination. Acta Microbiol. Pol. 14:3–13.

    Google Scholar 

  • Kwiatowski, Z. A. and K. Bohdanowicz, 1962 New mycelial mutants in Aspergillus nidulans. Acta Microbiol. Pol 11:17–20.

    Google Scholar 

  • Kwiatowski, Z. and K. Grad, 1965 A comparison of the ultraviolet effect on the mitotic recombination in two cistrons of Aspergillus nidulans. Acta Microbiol. Pol. 14:15–18.

    Google Scholar 

  • Lafont, P., J. Lafont and L. Frayssinet, 1970 La nidulotoxine: toxine d’Aspergillus nidulans Wint. Experientia (Basel) 26:61–62.

    CAS  Google Scholar 

  • Lanier, W. B., 1967 Apparently aberrant segregation of nutritional markers in Aspergillus nidulans. Bot. Gaz. 128:16–31.

    Google Scholar 

  • Lanier, W. B., R. W. Tuveson and J. E. Lennox, 1968 A radiation-sensitive mutant of Aspergillus nidulans. Mutat. Res. 5:23–31.

    PubMed  CAS  Google Scholar 

  • Leal, J. A. and J. R. Villanueva, 1962 An improved selective medium for the formation of ascospores by Aspergillus nidulans. Nature (Lond.) 193:1106.

    CAS  Google Scholar 

  • Lhoas, P. 1961 Mitotic haploidisation by treatment of Aspergillus niger diploids with p-fluorophenylalanine. Nature (Lond.) 190:744.

    CAS  Google Scholar 

  • Lhoas, P. 1968 Growth rate and haploidisation of Aspergillus niger on medium containing p-fluorop he nylalanine. Genet. Res. 12:305–315.

    PubMed  CAS  Google Scholar 

  • Lilly, L. J., 1965 An investigation of the suitability of the suppressors of meth1 in Aspergillus nidulans for the study of induced and spontaneous mutation. Mutat. Res. 2:192–195

    PubMed  CAS  Google Scholar 

  • Loginova, L. G., 1960 On the activity of hydrolytic enzymes in the Aspergillus nidulans variant produced by irradiation with ultraviolet rays. Mikrobiologiia (Eng. transi.) 29:493–498.

    Google Scholar 

  • Loginova, L. G., 1961 The activity of some oxidative enzymes in an Aspergillus nidulans variant obtained by means of ultraviolet irradiation. Mikrobiologiya (Eng. transi.) 29:607–609.

    Google Scholar 

  • Luig, N. H., 1962 Recessive suppressors in Aspergillus nidulans closely linked to an auxotrophic mutant which they suppress. Genet. Res. 3:331–332.

    Google Scholar 

  • Lukaszkiewicz, Z. and N. J. Pieniazek, 1972 Mutations increasing the specificity of the sulphate permease of Aspergillus nidulans. Bull. Acad. Pol. Sci. 20:833–836.

    CAS  Google Scholar 

  • McCully, K. S. and E. Forbes, 1965 The use of p-fluorophenylalanine with “master strains” of Aspergillus nidulans for assigning genes to linkage groups. Genet. Res. 6:352–359.

    PubMed  CAS  Google Scholar 

  • Mackintosh, M. E. and R. H. Pritchard, 1963 The production and replica plating of micro-colonies of Aspergillus nidulans. Genet. Res. 4:320–322.

    Google Scholar 

  • Mahoney, M. and D. Wilkie, 1958 An instance of cytoplasmic inheritance in Aspergillus nidulans. Proc. R. Soc. Lond. Ser. B Biol. Sci. 148:359–361.

    Google Scholar 

  • Mahoney, M. and D. Wilkie, 1962 Nucleo-cytoplasmic control of perithecial formation in Aspergillus nidulans. Proc. R. Soc. Lond. Ser. B Biol. Sci. 156:524–532.

    Google Scholar 

  • Mark, C. G. and A. H. Romano, 1971 Properties of the hexose transport systems of Aspergillus nidulans. Biochim. Biophys. Acta 249:216–226.

    PubMed  CAS  Google Scholar 

  • Martinelli, S. D. and B. W. Bainbridge, 1974 Phenol oxidases in wild type and mutant strains of Aspergillus nidulans. in manuscript.

    Google Scholar 

  • Martinelli, S. D. and A. J. Clutterbuck, 1971 A quantitative survey of conidiation mutants in Aspergillus nidulans. J. Gen. Microbiol. 69:261–268.

    PubMed  CAS  Google Scholar 

  • Mastropietro, M. and M. Princivalle, 1963 Dossaggio microbiologico di alcune vitamine del gruppo B. VIL Un nuovo metodo per la titolazione della riboflavina. Rend. Ist. Super Sanita 26:845–852.

    CAS  Google Scholar 

  • Mehrotra, B. S. and V. P. Agnihotri, 1961 Utilization and synthesis of oligosaccharides by some ascosporic members of the Aspergillus nidulans group. Phyton (Argentina) 16:195–205.

    CAS  Google Scholar 

  • Mehrotra, B. S. and V. P. Agnihotri, 1962 Nitrogen requirements of some ascoporic members of the Aspergillus nidulans group. Sydowia Ann. Mycol. 16:106–114.

    Google Scholar 

  • Millington-Ward, A. M. 1967 A vegetative instability in Aspergillus nidulans. Genetics 38:191–207.

    CAS  Google Scholar 

  • Millington-Ward, A. M. 1970 Recombination and transcription in the hisB and pabaA-1 loci of Aspergillus nidulans. Genetica (The Hague) 41:557–574.

    CAS  Google Scholar 

  • Millington-Ward, A. M., F. B. J. Koops and C. Van der Mark-Iken, 1971 Further data on the polarity of the paba1 locus of Aspergillus nidulans. Genetica (The Hague) 42:13–24.

    CAS  Google Scholar 

  • Morpurgo, G., 1962 A new method for estimating forward mutations in fungi: resistance to 8-azaguanine and p-fluorophenylalanine. Sci. Rep. Super. Sanita 2:9–12.

    CAS  Google Scholar 

  • Morpurgo, G., 1963a Induction of mitotic crossing over in Aspergillus nidulans by bifunctional alkylating agents. Genetics 48:1259–1263.

    PubMed  CAS  Google Scholar 

  • Morpurgo, G., 1963b Somatic segregation induced by p-fluorophenylalanine. Aspergillus Newsl. 4:8.

    Google Scholar 

  • Morpurgo, G. and L. Volterra, 1966 Fine analysis of mitotic intracistron crossing-over in Aspergillus nidulans. Ann. Ist. Super. Sanita 2:426–428.

    PubMed  CAS  Google Scholar 

  • Morpurgo, G. and L. Volterra, 1968 The nature of mitotic intragenic recombination in Aspergillus nidulans. Genetics 58:529–541.

    PubMed  CAS  Google Scholar 

  • Naguib, K., 1959 The growth and metabolism of Aspergillus nidulans Eidam in surface culture. Can. J. Bot. 37:353–364.

    CAS  Google Scholar 

  • Naguib, K. and K. Saddik, 1960 Growth and metabolism of Aspergillus nidulans Eidam on different nitrogen sources in synthetic media conducive to fat formation. Can. J. Bot. 38:613–622.

    CAS  Google Scholar 

  • Naguib, K. and K. Saddik, 1961 The use of ammonium source of nitrogen in the metabolism of Aspergillus nidulans Eidam. Can. J. Bot. 39:955–964.

    CAS  Google Scholar 

  • Nakamura, T., 1962 Biochemical genetical studies on the pathway of sulphate assimilation in Aspergillus nidulans. J. Gen. Microbiol. 27:221–230.

    PubMed  CAS  Google Scholar 

  • Nakamura, T. and R. Sato, 1960 Cysteine-s-sulphonate as an intermediate in microbial synthesis of cysteine. Nature (Lond.) 185:163–164.

    CAS  Google Scholar 

  • Nakamura, T. and R. Sato, 1962 Accumulation of s-sulphocysteine by a mutant strain of Aspergillus nidulans. Nature (Lond.) 193:481–482.

    CAS  Google Scholar 

  • Nakamura, T. and R. Sato, 1963 Synthesis from sulfate and accumulation of S-sulfocysteine by a mutant strain of Aspergillus nidulans. Biochem. J. 86:328–335.

    PubMed  CAS  Google Scholar 

  • Nga, B. H. and J. A. Roper, 1968 Quantitative intrachromosomal changes arising at mitosis in Aspergillus nidulans. Genetics 58:193–209.

    PubMed  CAS  Google Scholar 

  • Nga, B. H. and J. A. Roper, 1969 A system generating spontaneous intrachromosomal changes at mitosis in Aspergillus nidulans. Genet. Res. 14:63–70.

    PubMed  CAS  Google Scholar 

  • Noronha, L. 1970 Genetic investigation of tryptophan-requiring mutants of Aspergillus nidulans. Indian J. Exp. Biol. 8:298–301.

    PubMed  CAS  Google Scholar 

  • Ogata, W. N. 1962 Preservation of Neurospora stock cultures with anhydrous silica gel. Neurospora Newsl. 1:13.

    Google Scholar 

  • Oliver, P. T. P., 1972 Conidiophore and spore development in Aspergillus nidulans. J. Gen. Microbiol. 73:45–54.

    PubMed  CAS  Google Scholar 

  • Oliver, P. T. P., 1973 Influence of cytochalasin B on hyphal morphogenesis of Aspergillus nidulans. Protoplasma 76:279–281.

    PubMed  CAS  Google Scholar 

  • Oliver, P. T. P., 1974 Ultrastructural localization of free sulphydryl groups in developing conidiophores of Aspergillus nidulans. in manuscript.

    Google Scholar 

  • Page, M. M. and D. J. Cove, 1972 Alcohol and amine catabolism in the fungus Aspergillus nidulans. Biochem. J. 127:17P.

    PubMed  CAS  Google Scholar 

  • Panicker, R. H. and E. R. B. Shanmugasundaram, 1962 Temperature-independent riboflavineless mutants of Aspergillus nidulans. Am. J. Bot. 49:555–559.

    CAS  Google Scholar 

  • Paszewski, A. and J. Grabski, 1973 β-cystathionase and O-acetylhomoserine sulphydrylase as the enzymes of alternative methionine biosynthetic pathways in Aspergillus nidulans. Acta Biochim. Pol. 20:159–168.

    PubMed  CAS  Google Scholar 

  • Paszewski, A., T. Chojnacki, J. Litwinska and W. Gajewski, 1970 Regulation of lactose utilization in Aspergillus nidulans. Acta Biochim. Pol. 17:385–391.

    PubMed  CAS  Google Scholar 

  • Patel, K. S., 1973 Occurrence of barrage phenomenon in Aspergillus nidulans. Curr. Sci. 42:144.

    Google Scholar 

  • Pateman, J. A., 1969 Regulation of synthesis of glutamate dehydrogenase and glutamine synthetase in micro-organisms. Biochem. J. 115:769–775.

    PubMed  CAS  Google Scholar 

  • Pateman, J. A. and D. J. Cove, 1967 Regulation of nitrate reduction in Aspergillus nidulans. Nature (Lond.) 215:1234–1237.

    CAS  Google Scholar 

  • Pateman, J. A. and J. R. Kinghorn, 1974 Glutamic and aspartic acid uptake in Aspergillus nidulans. J. Bacteriol. in press.

    Google Scholar 

  • Pateman, J. A., D. J. Cove, B. M. Rever and D. B. Roberts, 1964 A common cofactor for nitrate reductase and xanthine dehydrogenase which also regulates the synthesis of nitrate reductase. Nature (Lond.) 201:58–60.

    CAS  Google Scholar 

  • Pateman, J. A., B. M. Rever and D. J. Cove, 1967 Genetic and biochemical studies of nitrate reduction in Aspergillus nidulans. Biochem. J. 104:103–111.

    PubMed  CAS  Google Scholar 

  • Pateman, J. A., J. R. Kinghorn, E. Dunn and E. Forbes, 1973 Ammonium regulation in Aspergillus nidulans. J. Bacteriol. 114:943–950.

    PubMed  CAS  Google Scholar 

  • Peberdy, J. F. and C. E. Buckley, 1973 Adsorption of fluorescent brighteners by regenerating protoplasts of Aspergillus nidulans. J. Gen. Microbiol. 74:281–288.

    CAS  Google Scholar 

  • Peberdy, J. F. and R. K. Gibson, 1971 Regeneration of Aspergillus nidulans protoplasts. J. Gen. Microbiol. 69:325–330.

    PubMed  CAS  Google Scholar 

  • Pees, E., 1965 Polarized negative interference in the lys-51 region of Aspergillus nidulans. Experientia (Basel) 21:514–515.

    CAS  Google Scholar 

  • Pees, E., 1966 Lysine, histidine and isoleucine mutants. Aspergillus Newsl. 7:11–12.

    Google Scholar 

  • Pees, E. 1967 Genetic fine structure and polarized negative interference of the lys-51 (FL) locus of Aspergillus nidulans. Genetica (The Hague) 38:275–304.

    Google Scholar 

  • Pieniazek, N. J., P. P. Stepien and A. Paszewski, 1973a An Aspergillus nidulans mutant lacking cystathionine β-synthase: Identification of L-serine sulfhydrylase with cystathionine β-synthase and its distinctness from O-acetyl-L-serine sulfhydrylase. Biochim. Biophys. Acta 297:37–47.

    PubMed  CAS  Google Scholar 

  • Pieniazek, N. J., I. M. Kowalska and P. P. Stepien, 1973b Deficiency in methionine adenosyl transferase resulting in limited repressibility of methionine biosynthetic enzymes in Aspergillus nidulans. Mol. Gen. Genet. 126:367–374.

    PubMed  CAS  Google Scholar 

  • Piotrowska, M., M. Sawacki and P. Weglenski, 1969 Mutants of the arginine-proline pathway in Aspergillus nidulans. J. Gen. Microbiol. 55:301–305.

    PubMed  CAS  Google Scholar 

  • Pirt, S. J., 1973 Estimation of substrate affinities (K s values) of filamentous fungi from colony growth rates. J. Gen. Microbiol. 75:245–247.

    CAS  Google Scholar 

  • Pollard, R., E. Käfer and M. Johnston, 1968 Influence of translocations on meiotic and mitotic nondisjunction in Aspergillus nidulans. Genetics 60:743–757.

    PubMed  CAS  Google Scholar 

  • Pontecorvo, G. 1947 Genetic systems based on heterokaryosis. Cold Spring Harbor Symp. Quant. Biol. 11:193–201.

    Google Scholar 

  • Pontecorvo, G., 1949 Auxanographic techniques in biochemical genetics. J. Gen. Microbiol. 3:122–126.

    PubMed  CAS  Google Scholar 

  • Pontecorvo, G., 1950 New fields in the biochemical genetics of micro-organisms. Biochem. Soc. Symp. 4:40–50.

    CAS  Google Scholar 

  • Pontecorvo, G. 1952a Genetic formulation of gene structure and function. Adv. Enzymol. 13:121–149.

    CAS  Google Scholar 

  • Pontecorvo, G., 1952b Genetic analysis of cell organization. Symp. Soc. Exp. Biol. 6:218–229.

    Google Scholar 

  • Pontecorvo, G., 1954 Mitotic recombination in the genetic system of filamentous fungi. Caryologia Suppl. 6:192–200.

    Google Scholar 

  • Pontecorvo, G., 1955 Gene structure and action in relation to heterosis. Proc. R. Soc. Lond. Ser. B Biol. Sci. 144:171–177.

    CAS  Google Scholar 

  • Pontecorvo, G., 1956 The parasexual cycle. Annu. Rev. Microbiol 10:393–400.

    PubMed  CAS  Google Scholar 

  • Pontecorvo, G., 1958 Self reproduction and all that. Symp. Soc. Exp. Biol. 12:1–5.

    PubMed  CAS  Google Scholar 

  • Pontecorvo, G., 1959 Trends in Genetic Analysis, Oxford University Press, London.

    Google Scholar 

  • Pontecorvo, G., 1962 Methods of microbial genetics in an approach to human genetics. Br. Med. Bull. 18:81–84.

    PubMed  CAS  Google Scholar 

  • Pontecorvo, G. 1963 Microbial genetics: retrospect and prospect. Proc. R. Soc. Lond. Ser. B Biol. Sci. 158:1–23.

    Google Scholar 

  • Pontecorvo, G. and E. Käfer, 1956 Mapping the chromosome by means of mitotic recombination. Proc. R. Phys. Soc. Edinb. 25:16–20.

    Google Scholar 

  • Pontecorvo, G. and E. Käfer, 1958 Genetic analysis based on mitotic recombination. Adv. Genet. 9:71–104.

    PubMed  CAS  Google Scholar 

  • Pontecorvo, G. and J. A. Roper, 1956 Resolving power of genetic analysis. Nature (Lond.) 178:83–84.

    CAS  Google Scholar 

  • Pontecorvo, G., J. A. Roper, D. W. Hemmons, K. D. Macdonald and A. W. Bufton, 1953 The genetics of Aspergillus nidulans. Adv. Genet. 5:141–238.

    PubMed  CAS  Google Scholar 

  • Pontecorvo, G., E. Tarr-Gloor and E. Forbes, 1954 Analysis of mitotic recombination in Aspergillus nidulans. J. Genet. 52:226–237.

    Google Scholar 

  • Prasad, I., 1970 Mutagenic effects of the herbicide 3′-4′ dichloropropionanilide and its degradation products. Can. J. Microbiol. 16:369–372.

    PubMed  CAS  Google Scholar 

  • Princivalle, M., 1958 Microbiologic assay of some vitamins of the B group. IV. Titration of p-aminobenzoic acid (PABA). Rend. Ist. Super Sanita 21:928–933.

    CAS  Google Scholar 

  • Princivalle, M. and C. Caradonna, 1962 Dossaggio microbiologico di alcune vitamine del gruppo B. VI. Un nuovo metodo per la titolazione della vitamina PP. Ann. Chim. 52:1248–1253.

    CAS  Google Scholar 

  • Pritchard, R. H., 1954 Ascospores with diploid nuclei in Aspergillus nidulans. Caryologia (Florence) 6, Suppl. 1:1117.

    Google Scholar 

  • Pritchard, R. H., 1955 The linear arrangement of a series of alleles of Aspergillus nidulans. Heredity 9:343–371.

    Google Scholar 

  • Pritchard, R. H., 1960a Localized negative interference and its bearing on models of gene recombination. Genet. Res. 1:1–24.

    Google Scholar 

  • Pritchard, R. H., 1960b The bearing of recombination analysis at high resolution on genetic fine structure in Aspergillus nidulans and the mechanism of recombination in higher organisms. Symp. Soc. Gen. Microbiol. 10:155–180.

    Google Scholar 

  • Pritchard, R. H., 1968 Experiments with Aspergillus nidulans. In Experiments in Microbial Genetics, edited by R. C. Clowes and W. Hayes, Blackwell, Oxford.

    Google Scholar 

  • Purnell, D. M., 1973 The effects of specific auxotrophic mutations on the virulence of Aspergillus nidulans for mice. Mycopath. Mycol. Appl. 50:195–203.

    CAS  Google Scholar 

  • Purnell, D. M. and G. M. Martin, 1971 Aspergillus nidulans: Association of certain alkaline phosphatase mutants with decreased virulence in mice. J. Infect. Dis. 123:305–306.

    PubMed  CAS  Google Scholar 

  • Purnell, D. M. and G. M. Martin, 1973a Heterozygous diploid strains of Aspergillus nidulans: enhanced virulence for mice in comparison to a prototrophic haploid strain. Mycopath. Mycol. Appl. 49:307–319.

    CAS  Google Scholar 

  • Purnell, D. M. and G. M. Martin, 1973b A morphologic mutation in Aspergillus nidulans associated with increased virulence in mice. Mycopath. Mycol. Appl. 51:75–79.

    CAS  Google Scholar 

  • Putrament, A., 1964 Mitotic recombination in the paba1 cistron of Aspergillus nidulans. Genet. Res. 5:316–327.

    Google Scholar 

  • Putrament, A., 1966 Diepoxybutane-induced mitotic recombination in Aspergillus nidulans. Proceedings of the Symposium on Mutational Process, Prague, pp. 107-114, Academia, Prague.

    Google Scholar 

  • Putrament, A., 1967a On the mechanism of mitotic recombination in Aspergillus nidulans. I. Intragenic recombination and DNA replication. Mol. Gen. Genet. 100:307–320.

    PubMed  CAS  Google Scholar 

  • Putrament, A., 1967b On the mechanism of mitotic recombination in Aspergillus nidulans. II. Simultaneous recombination within two very closely linked cistrons. Mol. Gen. Genet. 100:321–336.

    PubMed  CAS  Google Scholar 

  • Putrament, A., J. Guzewska and D. Pieniazek, 1970 Further characteristics of methionine mutants and their suppressors in Aspergillus nidulans. Mol. Gen. Genet. 109:209–218.

    Google Scholar 

  • Putrament, A., T. Rozbicka and K. Wojciecowska, 1971 The highly polarized recombination pattern within the methA gene of Aspergillus nidulans. Genet. Res. 17:125–131.

    PubMed  CAS  Google Scholar 

  • Radha, K. and E. R. B. Shanmugasundaram, 1962 Genetics and biochemistry of riboflavin auxotrophs of Aspergillus nidulans. Nature (Lond.) 193:165–166.

    CAS  Google Scholar 

  • Rao, K. K. and V. V. Modi, 1968 Metabolic changes in biotin-deficient Aspergillus nidulans. Can. J. Microbiol. 14:813–815.

    PubMed  CAS  Google Scholar 

  • Rao, K. K. and V. V. Modi, 1970 Effect of ammonium ions on the growth of Aspergillus nidulans. Experientia (Basel). 26:590–591.

    CAS  Google Scholar 

  • Rao, K. K. and V. V. Modi, 1972 Biochemical changes in biotin deficient Aspergillus nidulans. Ind. J. Exp. Biol. 10:385–388.

    Google Scholar 

  • Raper, K. B. and D. I. Fennell, 1965 The Genus Aspergillus, Williams and Wilkins, Baltimore.

    Google Scholar 

  • Roberts, C. F., 1959 A replica plating technique for the isolation of nutritionally exacting mutants of a filamentous fungus (Aspergillus nidulans). J. Gen. Microbiol. 20:540–548.

    PubMed  CAS  Google Scholar 

  • Roberts, C. F., 1963a The genetic analysis of carbohydrate utilization in Aspergillus nidulans. J. Gen. Microbiol. 31:45–48.

    PubMed  CAS  Google Scholar 

  • Roberts, C. F., 1963b The adaptive metabolism of D-galactose in Aspergillus nidulans. J. Gen. Microbiol. 31:285–295.

    PubMed  CAS  Google Scholar 

  • Roberts, C. F., 1964 Complementation in balanced heterokaryons and heterozygous diploids of Aspergillus nidulans. Genet. Res. 5:211–229.

    CAS  Google Scholar 

  • Roberts, C. F., 1967 Complementation analysis of the tryptophan pathway of Aspergillus nidulans. Genetics 55:233–239.

    PubMed  CAS  Google Scholar 

  • Roberts, C. F., 1968 Further analysis of the group E mutants in Aspergillus nidulans. Heredity 23:467.

    Google Scholar 

  • Roberts, C. F., 1969 Isolation of multiple aromatic mutants in Aspergillus nidulans. Aspergillus Newsl. 10:19–20.

    Google Scholar 

  • Roberts, C. F., 1970 Enzyme lesions in galactose non-utilizing mutants of Aspergillus nidulans. Biochim. Biophys. Acta 201:267–283.

    PubMed  CAS  Google Scholar 

  • Robinow, C. F. and C. E. Caten, 1969 Mitosis in Aspergillus nidulans. J. Cell Sci. 5:403–431.

    PubMed  CAS  Google Scholar 

  • Robinson, J. H., C. Anthony and W. T. Drabble, 1973a The acidic amino-acid permease of Aspergillus nidulans. J. Gen. Microbiol. 79:53–63.

    PubMed  CAS  Google Scholar 

  • Robinson, J. H., C. Anthony and W. T. Drabble, 1973b Regulation of the acidic aminoacid permease of Aspergillus nidulans. J. Gen. Microbiol. 79:65–80.

    PubMed  CAS  Google Scholar 

  • Romano, A. H. and H. L. Kornberg, 1968 Regulation of sugar utilization by Aspergillus nidulans. Biochim. Biophys. Acta. 158:491–493.

    PubMed  CAS  Google Scholar 

  • Romano, A. H. and H. L. Kornberg, 1969 Regulation of sugar uptake by Aspergillus nidulans. Proc. R. Soc. Lond. Ser. B Biol. Sci. 173:475–490.

    CAS  Google Scholar 

  • Roper, J. A., 1950 Search for linkage between genes determining a vitamin requirement. Nature (Lond.) 166:956.

    CAS  Google Scholar 

  • Roper, J. A. 1952 Production of heterozygous diploids in filamentous fungi. Experientia (Basel) 8:14–15.

    CAS  Google Scholar 

  • Roper, J. A., 1958 Nucleo-cytoplasmic interactions in Aspergillus nidulans. Cold Spring Harbor Symp. Quant. Biol. 23:141–154.

    PubMed  CAS  Google Scholar 

  • Roper, J. A., 1961 The steps in the parasexual cycle. In Recent Advances in Botany, pp. 375–379, University of Toronto Press, Toronto.

    Google Scholar 

  • Roper, J. A. 1966a Culture temperature and biotin requirement in Aspergillus. Aspergillus Newsl. 7:22.

    Google Scholar 

  • Roper, J. A., 1966b Mechanisms of inheritance: The parasexual cycle. In The Fungi, Vol. 2, pp. 589–617, edited by G. C. Ainsworth and A. S. Sussman, Academic Press, New York.

    Google Scholar 

  • Roper, J. A., 1971 Aspergillus. In Chemical Mutagens, edited by A. Hollaender, Vol. 2, Ch. 12, pp. 343–363. Plenum Press, New York.

    Google Scholar 

  • Roper, J. A. and J. L. De Azevedo, editors, 1970 Questionaire on gene symbols. Aspergillus Newsl. 11:18–19.

    Google Scholar 

  • Roper, J. A. and E. Käfer, 1957 Acriflavine-resistant mutants of Aspergillus nidulans. J. Gen. Microbiol. 16:660–667.

    PubMed  CAS  Google Scholar 

  • Roper, J. A. and B. H. Nga, 1969 Mitotic non-conformity in Aspergillus nidulans: The production of hypodiploid and hypohaploid nuclei. Genet. Res. 14:127–163.

    PubMed  CAS  Google Scholar 

  • Roper, J. A. and R. H. Pritchard, 1955 The recovery of the complementary products of mitotic crossing over. Nature (Lond.) 175:639.

    Google Scholar 

  • Roper, J. A., H. M. Palmer and W. A. Watmough, 1972 Mitotic non-conformity in Aspergillus nidulans: The effects of caffeine. Mol. Gen. Genet. 118:125–133.

    PubMed  CAS  Google Scholar 

  • Rosenberger, R. F. and M. Kessel, 1967 Synchrony of nuclear replication in individual hyphae of Aspergillus nidulans. J. Bacteriol. 94:1464–1469.

    PubMed  CAS  Google Scholar 

  • Rosenberger, R. F. and M. Kessel, 1968 Non-random sister chromatid segregation and nuclear migration in hyphae of Aspergillus nidulans. J. Bacteriol. 96:1208–1213.

    PubMed  CAS  Google Scholar 

  • Rowlands, R. T. and G. Turner, 1973 Nuclear and extranuclear inheritance of oligomycin resistance in Aspergillus nidulans. Mol. Gen. Genet. 126:201–216.

    PubMed  CAS  Google Scholar 

  • Rowley, B. I. and A. T. Bull, 1973 Chemostat for the cultivation of moulds. Lab. Pract. 22:286–289.

    PubMed  CAS  Google Scholar 

  • Rowley, B. I. and S. J. Pirt 1972 Melanin production by Aspergillus nidulans in batch and chemostat cultures. J. Gen. Microbiol. 72:553–563.

    PubMed  CAS  Google Scholar 

  • Sadasivam, S., R. Shanmugasundaram and E. R. B. Shanmugasundaram, 1969 The pinkish-red pigment produced by an adenineless mutant of Aspergillus nidulans. Indian J. Biochem. 6:237.

    PubMed  CAS  Google Scholar 

  • Sadique, J., R. Shanmugasundaram and E. R. B. Shanmugasundaram, 1966a Formation of 4,5-diaminouracil in a riboflavineless mutant of Aspergillus nidulans. Naturwissenschaften 53:282.

    PubMed  CAS  Google Scholar 

  • Sadique, J., R. Shanmugasundaram and E. R. B. Shanmugasundaram, 1966b Isolation of 6,7-dimethyl-8-ribityl lumazine from a riboflavineless mutant of Aspergillus nidulans. Experientia (Basel) 22:32.

    CAS  Google Scholar 

  • Sadique, J., R. Shanmugasundaram and E. R. B. Shanmugasundaram, 1966c Isolation of 5-amino-4-ribitylaminouracil from a riboflavineless mutant of Aspergillus nidulans. Biochem. J. 101:2C–3C.

    PubMed  CAS  Google Scholar 

  • Sadique, J., R. Shanmugasundaram and E. R. B. Shanmugasundaram, 1966d A pair of pteridine derivatives in a heterokaryon of two mutants of Aspergillus nidulans. Naturwissenschaften 53:179.

    PubMed  CAS  Google Scholar 

  • Saxena, R. K. and U. Sinha, 1973 Conidiation of Aspergillus nidulans in submerged liquid culture. J. Gen. Appl. Microbiol. 19:141–146.

    Google Scholar 

  • Scazzocchio, C., 1970 Nuclear compartmentalisation in the control of gene action in Aspergillus nidulans. Heredity 25:683.

    Google Scholar 

  • Scazzocchio, C., 1973 The genetic control of molybdoflavoproteins in Aspergillus nidulans. II. Use of the NADH dehydrogenase activity associated with xanthine dehydrogenase to investigate substrate and product induction. Mol. Gen. Genet. 125:147–155.

    PubMed  CAS  Google Scholar 

  • Scazzocchio, C. and A. J. Darlington, 1967 The genetic control of xanthine dehydrogenase and urate oxidase synthesis in Aspergillus nidulans. Bull. Soc. Chim. Biol. 49:1503–1508.

    PubMed  CAS  Google Scholar 

  • Scazzocchio, C. and A. J. Darlington, 1968 The induction and repression of the enzymes of purine breakdown in Aspergillus nidulans. Biochim. Biophys. Acta 166:557–568.

    PubMed  CAS  Google Scholar 

  • Scazzocchio, C., F. B. Holl and A. I. Foguelman, 1973 The genetic control of molybdoflavoproteins in Aspergillus nidulans. Allopurinol-resistant mutants constitutive for xanthine-dehydrogenase. Eur. J. Biochem. 36:428–445.

    PubMed  CAS  Google Scholar 

  • Scott, B. R. and T. Alderson, 1971 The random (non-specific) forward mutational response of gene loci in Aspergillus conidia after photosensitisation to near ultraviolet light (365 nm) by 8-methoxypsoralen. Mutat. Res. 12:29–34.

    PubMed  CAS  Google Scholar 

  • Scott, B. R., T. Alderson and D. G. Papworth, 1972 The effect of radiation on the Aspergillus conidium. I. Radiation sensitivity and a “germination inhibitor” Radiat. Bot. 12:45–50.

    Google Scholar 

  • Scott, B. R., T. Alderson and D. G. Papworth, 1973 The effect of plating densities on the retrieval of methionine suppressor mutations after ultraviolet or gamma irradiation of Aspergillus. J. Gen. Microbiol. 75:235–239.

    CAS  Google Scholar 

  • Scott, J. M. and B. Spencer, 1968 Regulation of choline sulphatase synthesis and activity in Aspergillus nidulans. Biochem. J. 106:471–477.

    PubMed  CAS  Google Scholar 

  • Selvam, R. and K. R. Shanmugasundaram, 1972 Absence of creatinine metabolism in the fungus Aspergillus nidulans. Curr. Sci. (Bangalore) 41:144.

    CAS  Google Scholar 

  • Sermonti, G., 1968 List of proposed symbols. Aspergillus Newsl. 9:24–26.

    Google Scholar 

  • Shanfield, B. and E. Käfer, 1969 UV-sensitive mutants increasing mitotic crossing over in Aspergillus nidulans. Mutat. Res. 7:485–487.

    PubMed  CAS  Google Scholar 

  • Shanfield, B. and E. Käfer, 1971 Chemical induction of mitotic recombination in Aspergillus nidulans. Genetics 67:209–219.

    PubMed  CAS  Google Scholar 

  • Shanmugasundaram, R. and E. R. B. Shanmugasundaram, 1965 Studies on the heterokaryotic vigour in the decomposition of riboflavin. Curr. Sci. (Bangalore) 33:747–748.

    Google Scholar 

  • Sharma, R. P., 1970 Combined effect of physical and chemical mutagens on mutation frequency in Aspergillus nidulans. Indian J. Genet. Plant Breed. 30:199–211.

    Google Scholar 

  • Shepherd, C. J., 1956 Pathways of cysteine synthesis in Aspergillus nidulans. J. Gen. Microbiol. 15:29–38.

    PubMed  CAS  Google Scholar 

  • Shepherd, C. J. 1957 Changes occurring in the composition of Aspergillus nidulans conidia during germination. J. Gen. Microbiol. 16: i.

    Google Scholar 

  • Siddiqi, O. H., 1962a Mutagenic action of nitrous acid on Aspergillus nidulans. Genet. Res. 3:303–314.

    CAS  Google Scholar 

  • Siddiqi, O. H., 1962b The fine genetic structure of the paba1 region of Aspergillus nidulans. Genet. Res. 3:69–89.

    Google Scholar 

  • Siddiqi, O. H. and A. Putrament, 1963 Polarized negative interference in the pabal region of Aspergillus nidulans. Genet. Res. 4:12–20.

    Google Scholar 

  • Siddiqi, O. H., B. N. Apte and M. P. Pitale, 1966 Genetic regulation of aryl sulphatases in Aspergillus nidulans. Cold Spring Harbor Symp. Quant. Biol. 31:381–382.

    CAS  Google Scholar 

  • Singh, J. and T. K. Walker, 1955 Influence of pH of the medium on the characteristics and composition of Aspergillus nidulans fat. J. Sci. Ind. Res. Sect. C. 15:222–224.

    Google Scholar 

  • Singh, J. and T. K. Walker, 1956 Changes in the composition of the fat of Aspergillus nidulans with age of the culture. Biochem. J. 62:286–289.

    PubMed  CAS  Google Scholar 

  • Singh, J., T. K. Walker and M. L. Meara, 1955 The component fatty acids of the fat of Aspergillus nidulans. Biochem. J. 61:85–88.

    PubMed  CAS  Google Scholar 

  • Sinha, U., 1967 Aromatic amino acid biosynthesis and para-fluorophenylalanine resistance in Aspergillus nidulans. Genet. Res. 10:261–272.

    PubMed  CAS  Google Scholar 

  • Sinha, U., 1969 Genetic control of the uptake of amino acids in Aspergillus nidulans. Genetics 62:495–505.

    PubMed  CAS  Google Scholar 

  • Sinha, U., 1970 Competition between leucine and phenylalanine and its relation to p-fluorophenylalanine-resistant mutations in Aspergillus nidulans. Arch. Mikrobiol. 72:308–317.

    PubMed  CAS  Google Scholar 

  • Sinha, U., 1972 Studies with p-fluorophenylalanine-resistant mutants of Aspergillus nidulans. Beitr. Biol. Pflanz. 48:171–180.

    Google Scholar 

  • Skinner, V. M. and S. Armitt, 1972 Mutants of Aspergillus nidulans lacking pyruvate carboxylase. FEBS (Fed. Eur. Biochem. Soc.) Lett. 20:16–18.

    CAS  Google Scholar 

  • Sneath, P. H. A., 1955 Putrescine as an essential growth factor for a mutant of Aspergillus nidulans. Nature (Lond.) 175:818.

    CAS  Google Scholar 

  • Sorger, G. J., 1963 TPNH-cytochrome c reductase and nitrate reductase in mutant and wild-type Neurospora and Aspergillus. Biochem. Biophys. Res. Comm. 12:395–401.

    PubMed  CAS  Google Scholar 

  • Spencer, B. and B. G. Moore, 1973 Specific sulphate binding in Aspergillus nidulans during sulphate transport. Biochem. Soc. Trans. 1:304–306.

    CAS  Google Scholar 

  • Spencer, B., E. C. Hussey, B. A. Orsi and J. M. Scott, 1968 Mechanism of choline O-sulphate utilization in fungi. Biochem J. 106:461–469.

    PubMed  CAS  Google Scholar 

  • Sternlight, E., D. Katz and R. F. Rosenberger, 1973 Subapical wall synthesis and wall thickening induced by cycloheximide in hyphae of Aspergillus nidulans. J. Bacteriol. 114:819–823.

    Google Scholar 

  • Stevens, L. and A. Heaton, 1973 Induction, partial purification and properties of ornithine transaminase from Aspergillus nidulans. Biochem. Soc. Trans. 1:749–751.

    CAS  Google Scholar 

  • Strickland, W. N., 1958a Abnormal tetrads in Aspergillus nidulans. Proc. R. Soc. Lond. Ser. B Biol. Sci. 148:533–542.

    CAS  Google Scholar 

  • Strickland, W. N., 1958b An analysis of interference in Aspergillus nidulans. Proc. R. Soc. Lond. Ser. B Biol. Sci. 149:82–101.

    CAS  Google Scholar 

  • Strigini, P. and G. Morpurgo, 1961 Biotin requirement and carbon and sulphur sources in Aspergillus and Neurospora. Nature (Lond.) 190:557.

    CAS  Google Scholar 

  • Strigini, P., C. Rossi and G. Sermonti, 1963 Effects of disintegration of incorporated 32P in Aspergillus nidulans. J. Mol. Biol. 7:683–699.

    PubMed  CAS  Google Scholar 

  • Tector, M. A. and E. Käfer, 1962 Radiation-induced chromosomal aberrations and lethals in Aspergillus nidulans. Science (Wash., D.C.) 136:1056–1057.

    CAS  Google Scholar 

  • Threlfall, R. J., 1968 The genetics and biochemistry of mutants of Aspergillus nidulans resistant to chlorinated nitrobenzenes. J. Gen. Microbiol. 52:35–44.

    CAS  Google Scholar 

  • Threlfall, R. J., 1972 Effect of pentachloronitrobenzene (PCNB) and other chemicals on sensitive and PCNB-resistant strains of Aspergillus nidulans. J. Gen. Microbiol. 71:173–180.

    CAS  Google Scholar 

  • Trinci, A. P. J., 1969 A kinetic study of the growth of Aspergillus nidulans and other fungi. J. Gen. Microbiol. 57:11–24.

    PubMed  CAS  Google Scholar 

  • Trinci, A. P. J., 1970a Kinetics of apical and lateral branching in Aspergillus nidulans and Geotrichum lactis. Trans. Br. Mycol. Soc. 55:17–28.

    Google Scholar 

  • Trinci, A. P. J., 1970b Kinetics of the growth of mycelial pellets of Aspergillus nidulans. Arch. Mikrobiol. 73:353–367.

    Google Scholar 

  • Trinci, A. P. J., 1971 Influence of the width of the peripheral growth zone on the radial growth rate of fungal colonies on solid media. J. Gen. Microbiol. 67:325–344.

    Google Scholar 

  • Trinci, A. P. J. and K. Gull, 1970 Effect of actidione, griseofulvin and triphenyltin acetate on the kinetics of fungal growth. J. Gen. Microbiol. 60:287–292.

    PubMed  CAS  Google Scholar 

  • Trinci, A. P. J. and C. Whittaker, 1968 Self-inhibition of spore germination in Aspergillus nidulans. Trans. Brit. Mycol. Soc. 51:594–596.

    Google Scholar 

  • Upshall, A., 1966 Somatically unstable mutants of Aspergillus nidulans. Nature (Lond.) 209:1113–1115.

    CAS  Google Scholar 

  • Upshall, A., 1971 Phenotypic specificity of aneuploid states in Aspergillus nidulans. Genet. Res. 18:167–171.

    PubMed  CAS  Google Scholar 

  • Van Arkel, G. A., 1962 A new colour mutant “pale.” Aspergillus Newsl. 3:4.

    Google Scholar 

  • Van Arkel, G. A., 1963 Sodium arsenate as an inducer of somatic reduction. Aspergillus Newsl. 4:9.

    Google Scholar 

  • Verbina, N. M., 1958 On some peculiarities of development of Aspergillus nidulans variants produced by ultraviolet irradiation. Mikrobiologiia (Eng. transi.) 27:164–171.

    PubMed  CAS  Google Scholar 

  • Verbina, N. M., 1959 Biomass accumulation in greatly altered variants of Aspergillus nidulans under various conditions of cultivation. Mikrobiologiia (Eng. transi.) 28:355–361.

    Google Scholar 

  • Verbina, N. M., 1960 Respiration of greatly modified Aspergillus nidulans variants obtained by ultraviolet irradiation. Mikrobiologiia Eng. transi.) 29:144–146.

    Google Scholar 

  • Verma, S. and U. Sinha, 1973 Inhibition of growth by amino acid analogues in Aspergillus nidulans. Beitr. Biol. Pflanzen 49:47–58.

    Google Scholar 

  • Verma, I. M., M. Edelman, M. Herzberg and U. Z. Littauer, 1970 Size determination of mitochondrial ribosomal RNA from Aspergillus nidulans by electron microscopy. J. Mol. Biol. 52:138–140.

    Google Scholar 

  • Verma, I. M., M. Edelman and U. Z. Littauer, 1971 A comparison of nucleotide sequences from mitochondrial and cytoplasmic RNA of Aspergillus nidulans. Eur. J. Biochem. 19:124–129.

    PubMed  CAS  Google Scholar 

  • Waldron, C. and C. F. Roberts, 1973 Cytoplasmic inheritance of a cold-sensitive mutant in Aspergillus nidulans. J. Gen. Microbiol. 78:379–381.

    PubMed  CAS  Google Scholar 

  • Warr, J. R. and J. A. Roper, 1965 Resistance to various inhibitors in Aspergillus nidulans. J. Gen. Microbiol. 40:273–281.

    PubMed  CAS  Google Scholar 

  • Weglenski, P., 1966 Genetical analysis of proline mutants and their suppressors in Aspergillus nidulans. Genet. Res. 8:311–321.

    PubMed  CAS  Google Scholar 

  • Weglenski, P., 1967 The mechanism of action of some proline suppressors in Aspergillus nidulans. J. Gen. Microbiol. 47:77–85.

    PubMed  CAS  Google Scholar 

  • Weijer, J. and S. H. Weisberg, 1966 Karyokinesis of the somatic nuclei of Aspergillus nidulans. I. The juvenile chromosome cycle (Feulgen staining). Can. J. Genet. Cytol. 8:361–374.

    Google Scholar 

  • Weisberg, S. H. and G. Turian, 1971 Ultrastructure of Aspergillus nidulans conidia and conidial lomasomes. Protoplasma 72:55–67.

    PubMed  CAS  Google Scholar 

  • Weisberg, S. H. and J. Weijer, 1968 Karyokinesis of the somatic nucleus of Aspergillus nidulans. II. Nuclear events during hyphal differentiation. Can. J. Genet. Cytol. 10:699–722.

    PubMed  CAS  Google Scholar 

  • Wilson, J. D. and E. L. Powers, 1970 X-ray sensitivity and modifying effects of water in conidia of Aspergillus nidulans. Radiat. Res. 43:698–710.

    PubMed  CAS  Google Scholar 

  • Winder, F. G. and G. R. Campbell, 1973 The deoxyribonucleases of Aspergillus nidulans. Heredity 31:423.

    Google Scholar 

  • Wohlrab, G. and R. W. Tuveson, 1969 Effects of liquid holding on the induction of mutations in an ultraviolet-sensitive strain of Aspergillus nidulans. Mutat. Res. 8:265–275.

    PubMed  CAS  Google Scholar 

  • Wood, S. and E. Käfer, 1967 Twin-spots as evidence for mitotic crossing-over in Aspergillus nidulans. Nature (Lond.) 216:63–64.

    CAS  Google Scholar 

  • Wood, S. and E. Käfer, 1969 Effects of ultraviolet irradiation on heterozygous diploids of Aspergillus nidulans. I. UV-induced mitotic crossing over. Genetics 62:507–518.

    PubMed  CAS  Google Scholar 

  • Wright, P. J. and J. A. Pateman, 1970 Ultraviolet-light sensitive mutants of Aspergillus nidulans. Mutat. Res. 9:579–587.

    PubMed  CAS  Google Scholar 

  • Yoshimoto, A., T. Nakamura and R. Sato, 1961 A sulphite reductase from Aspergillus nidulans. J. Biochem. 50:553–554.

    PubMed  CAS  Google Scholar 

  • Yoshimoto, A., T. Nakamura and R. Sato, 1967 Isolation from Aspergillus nidulans of a protein catalyzing the reduction of sulphite by reduced violagen dyes. J. Biochem. 62:756–766.

    PubMed  CAS  Google Scholar 

  • Zaudy, G., 1969 The location of some multiple aromatic mutants in Aspergillus nidulans. Aspergillus Newsl. 10:22.

    Google Scholar 

  • Zonneveld, B. J. M., 1971 Biochemical analysis of the cell wall of Aspergillus nidulans. Biochim. Biophys. Acta 249:506–514.

    PubMed  CAS  Google Scholar 

  • Zonneveld, B. J. M., 1972a A new type of enzyme, an exo-splitting α-1,3-glucanase from non-induced cultures of Aspergillus nidulans. Biochim. Biophys. Acta 258:541–547.

    PubMed  CAS  Google Scholar 

  • Zonneveld, B. J. M., 1972b The significance of α-1:3-glucan of the cell wall and α-1:3-glucanase for cleistothecium development. Biochim. Biophys. Acta 273:174–184.

    PubMed  CAS  Google Scholar 

  • Zonneveld, B. J. M., 1973 Inhibitory effect of 2-deoxyglucose on cell wall α-1, 3-glucan synthesis and cleistothecium development in Aspergillus nidulans. Develop. Biol. 34:1–8.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Springer Science+Business Media New York

About this chapter

Cite this chapter

Clutterbuck, A.J. (1974). Aspergillus nidulans. In: King, R.C. (eds) Bacteria, Bacteriophages, and Fungi. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1710-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1710-2_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1712-6

  • Online ISBN: 978-1-4899-1710-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics