Skip to main content

Application of Stochastic Control Theory to Optimal Design of Dosage Regimens

  • Chapter

Abstract

Designing a dosage regimen for a pharmacokinetic/pharmacodynamic system involves defining: i) a patient-dependent model, which includes structure, parameter, and measurement uncertainties; ii) the choice of controls, which can include dose amounts, dose times and /or sampling times; and iii) an appropriate performance index to evaluate achievement of a clinically chosen therapeutic goal. The control problem then is to choose the dosage regimen that optimizes the expected value of the performance index. This problem fits within the framework of stochastic control theory. Examples are given to illustrate the variety of this class of problems, including: optimal dose regimens for target level and target window cost; and optimal sampling schedules for maximal information. By varying the class of admissible controls, different strategies are generated. Control strategies to be discussed include: open loop, open loop feedback, separation principle, and iteration in policy space. Monte Carlo simulation studies of a terminal cost type problem are presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. H. Jazwinski. Stochastic Processes and Filtering Theory, Academic Press, New York, 1970.

    Google Scholar 

  2. A. Racine-Poon and A. F. M. Smith. Population models. In D. A. Berry and Marcel Dekker (eds.), Statistical Methodology in the Pharmaceutical Sciences, New York, 1990, pp. 139-162.

    Google Scholar 

  3. J. L. Steimer, A. Mallet, and F. Mentré. Estimating interindividual pharmacokinetic variability. In M. Rowland et al. (eds.), Variability in Drug Therapy: Description, Estimation, and Control, Raven Press, New York, 1985, pp. 65–111.

    Google Scholar 

  4. R. W. Jelliffe. A simulation study of factors affecting aminoglycoside therapeutic precision. In C. Cobelli and L. Mariani (eds.), Proc. First Symposium on Modeling and Control in Biomedical Systems, Venice, Italy, 1988, pp. 86-88.

    Google Scholar 

  5. R. W. Jelliffe, A. Schumitzky, and M. Van Guilder. A simulation study of factors affecting aminoglycoside therapeutic precision, Technical Report: 90-3, Laboratory of Applied Pharmacokinetics, USC School of Medicine, Los Angeles, 1990.

    Google Scholar 

  6. D. P. Bertsekas. Dynamic Programming: Deterministic and Stochastic Models, Prentice Hall, Englewood Cliffs, 1987.

    Google Scholar 

  7. R. Bellman. Adaptive Control Processes: A Guided Tour, Princeton University Press, Princeton, 1961.

    Google Scholar 

  8. D. S. Bayard. A forward method for optimal stochastic nonlinear and adaptive control. In Proc. 27th IEEE Conference on Decision and Control, Austin, 1988. To appear: IEEE T. Automat. Contr.

    Google Scholar 

  9. D. S. Bayard. Aspects of stochastic adaptive control synthesis. Doctoral Thesis, Electrical Engineering Department, State University of New York, Stony Brook, 1984.

    Google Scholar 

  10. Y. Bar-Shalom. Stochastic dynamic programming: caution and probing. IEEE T. Automat. Contr. AC-10:1184–1195 (1981).

    Article  Google Scholar 

  11. D. S. Bayard and M. Eslami. Implicit dual control for general stochastic systems. Opt. Cont. Appl. Meth. 6:265–279 (1985).

    Article  Google Scholar 

  12. W. F. Powers, P. H. Abbrecht, and D. G. Covel. Systems and microcomputer approach to anticoagulant therapy. IEEE T. Bio-med. Eng. 27:520–523 (1980).

    Article  CAS  Google Scholar 

  13. S. Amrani, E. Walter, Y. Lecourtier, and R. Gomeni. Robust control of uncertain pharmacokinetic models. Proc. IFAC 9th Triennial World Congress, Budapest, 3079-3083 (1984).

    Google Scholar 

  14. A. Schumitzky, M. Milman, P. Khademi, and R. Jelliffe. Approximate optimal closed loop control of pharmacokinetic systems. In Proc. IFAC Workshop on Decision Support for Patient Management: Measurement, Modeling, and Control, British Medical Informatics Society, London, 1989, pp. 338-347.

    Google Scholar 

  15. J. Gaillot, J-L. Steimer, A. Mallet, J. Thebault, and A. Beider. A prior lithium dosage regimen using population characteristics of pharmacokinetic parameters. J. Pharmacokin. Biopharm. 7:579–628 (1979).

    Article  CAS  Google Scholar 

  16. O. Richter and D. Reinhardt. Methods for evaluating optimal dosage regimens and their application to theophylline. Int. J. Clin. Pharm. Th. 20:564–575 (1982).

    CAS  Google Scholar 

  17. A. Mallet, F. Mentré, J. Giles, A. W. Kelman, A. H. Thomson, S. M. Bryson, and B. Whiting. Handling covariates in population pharmacokinetics with an application to gentamicin. Biomed. Meas. Infor. Contr. 2:138–146 (1988).

    Google Scholar 

  18. D. Katz and D. Z. D’Argenio. Stochastic control of pharmacokinetic systems: Open loop strategies. In C. Cobelli and L. Mariani (eds.), Proc. First Symposium on Modelling and Control in Biomedical Systems, Venice, 1988, pp. 560-566.

    Google Scholar 

  19. D. Z. D’Argenio and D. Katz. Implementation and evaluation of control strategies for individualizing dosage regimens with application to the aminoglycoside antibiotics. J. Pharmacokin. Biopharm. 14:523–37 (1986).

    Article  Google Scholar 

  20. L. B. Sheiner, B. Rosenberg, and K. L. Melmon. Modelling of individual pharmacokinetics for computer-aided drug dosage. Comput. Biomed. Res. 5:441–459 (1972).

    Article  Google Scholar 

  21. R. W. Jelliffe. Clinical applications of pharmacokinetics and control theory: planning, monitoring, and adjusting dosage regimens of aminoglycosides, lidocaine, digitoxin, and digoxin. In R. Maronde (ed.), Selected Topics in Clinical Pharmacology, Springer-Verlag, New York, 1986, pp. 26–82.

    Chapter  Google Scholar 

  22. R. W. Jelliffe, A. Schumitzky, and L. Hu, M. Liu. PC computer programs for Bayesian adaptive control of drug dosage regimens. Technical Report: 90-5, Laboratory of Applied Pharmacokinetics, USC School of Medicine, Los Angeles, 1990.

    Google Scholar 

  23. S. Vozeh and J. L. Steimer. Feedback control methods for drug dosage optimization. Clin. Pharmacokinet. 10:457–476 (1985).

    Article  PubMed  CAS  Google Scholar 

  24. A. Schumitzky. Stochastic control of pharmacokinetic systems. In R. Maronde (ed.), Selected Topics in Clinical Pharmacology and Therapeutics, Springer-Verlag, New York, 1986, pp. 13–25.

    Chapter  Google Scholar 

  25. A. Schumitzky. Adaptive control in drug therapy. In H. Ducrot et al. (eds.) Computer Aid to Drug Therapy and to Drug Monitoring, Berne, Switzerland, March 6–10, 1978, North Holland, Amsterdam, 1978, pp. 357–360.

    Google Scholar 

  26. Y. Bar-Shalom and E. Tse. Concepts and methods in stochastic control. In C. Leondes (ed.), Control and Dynamic Systems, Vol. 12, Academic Press, New York, 1976, pp. 99–172.

    Google Scholar 

  27. D. Z. D’Argenio. Incorporating prior parameter uncertainty in the design of sampling schedules for pharmacokinetic parameter estimation experiments. Math. Biosci. 99:105–118 (1990).

    Article  PubMed  Google Scholar 

  28. E. Walter and L. Pronzato. Robust experimental design via stochastic approximation. Math. Biosci. 75:103–120 (1985).

    Article  Google Scholar 

  29. D. Z. D’Argenio. Optimal sampling times for pharmacokinetic experiments. J. Pharmacokin. Biopharm. 9:739–56 (1981).

    Article  Google Scholar 

  30. L. Pronzato and E. Walter. Qualitative and quantitative experiment design for phenomenological models-A survey. Automatica 26:195–213 (1990).

    Article  Google Scholar 

  31. D. S. Bayard and A. Schumitzky. A stochastic control approach to optimal sampling schedule design. Technical Report: 90-1, Laboratory of Applied Pharmacokinetics, USC School of Medicine, Los Angeles, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schumitzky, A. (1991). Application of Stochastic Control Theory to Optimal Design of Dosage Regimens. In: D’Argenio, D.Z. (eds) Advanced Methods of Pharmacokinetic and Pharmacodynamic Systems Analysis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9021-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9021-4_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9023-8

  • Online ISBN: 978-1-4757-9021-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics