Skip to main content

Solid-State, Dye, and Semiconductor Lasers

  • Chapter
Book cover Principles of Lasers

Abstract

Chapter 9 considers the most important types of lasers involving high-density active media, namely solid-state, dye, and semiconductor lasers. The chapter concentrates on examples in widest use whose characteristics are representative of a whole class of lasers. The main emphasis is on the laser’s physical behavior and how this relates to general concepts developed in previous chapters. Some engineering details are also given with the aim of providing a better insight into the behavior of particular lasers. To complete the picture, data relating to laser performances (e.g., oscillating wavelength(s), output power or energy, wavelength tunability, etc.) are also included to suggest laser applications. The following items are generally covered for each laser: Relevant energy levels, excitation mechanisms, characteristics of the laser transition, engineering details of the laser’s structure(s), characteristics of the output beam, and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. A. Kaminskii, Crystalline Lasers: Physical Processes and Operating Systems (CRC Press, 1996 ).

    Google Scholar 

  2. T. H. Maiman, Stimulated Optical Radiation in Ruby Masers, Nature 187, 493 (1960).

    Article  ADS  Google Scholar 

  3. T. H. Maiman, Optical Maser Action in Ruby, Brit. Commun. Electron. 7, 674 (1960).

    Google Scholar 

  4. W. Koechner, Solid-State Laser Engineering, 4th ed. (Springer Berlin, 1996), Sects. 2.2, 3. 6. 1.

    Google Scholar 

  5. Ref. 4, Sects. 2.3.1., 3.6.3.

    Google Scholar 

  6. E. Snitzer and G. C. Young, Glass Lasers, in Lasers,vol. 2 (A. K. Levine, ed.) (Marcel Dekker, NY. 1968), Chap. 2.

    Google Scholar 

  7. Ref. 4, Sect. 2.3.4.

    Google Scholar 

  8. T. Y. Fan, Diode-Pumped Solid-State Lasers, in Laser Sources and Applications ( A. Miller and D. M. Finlayson, eds.) ( Institute of Physics, Bristol, 1996 ), pp. 163–93.

    Google Scholar 

  9. P. Lacovara et al.,Room-Temperature Diode-Pumped Yb:YAG Laser, Opt. Letters 16, 1089 (1991).

    Google Scholar 

  10. H. Bruesselbach and D. S. Sumida, 69-W-average-power Yb:YAG Laser, Opt. Letters 21, 480 (1996).

    Article  ADS  Google Scholar 

  11. G. Huber, Solid-State Laser Materials, in Laser Sources and Applications ( A. Miller and D. M. Finlayson, eds.) ( Institute of Physics, Bristol, 1996 ), pp. 141–62.

    Google Scholar 

  12. E. V. Zharikov et al., Soy. J Quantum Electron. 4, 1039 (1975).

    Google Scholar 

  13. S. J. Hamlin, J. D. Myers, and M. J. Myers, High-Repetition Rate Q-Switched Erbium Glass Lasers, in E_vesafe Lasers: Components, Systems, and Applications (A. M. Johnson, ed.) SPIE 1419, 100 (1991).

    Google Scholar 

  14. S. Taccheo, P. Laporta, S. Longhi, O. Svelto, and C. Svelto, Diode-Pumped Bulk Erbium-Ytterbium Lasers, Appl. Phys. B63, 425 (1996).

    Google Scholar 

  15. D. Sliney and M. Wolbarsht, Safety with Lasers and Other Optical Sources ( Plenum. NY, 1980 ).

    Google Scholar 

  16. T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, Spectroscopy and Diode Laser-Pumped Operation of Tm, Ho:YAG, IEEE J Quantum Electron. QE-24, 924 (1988).

    Google Scholar 

  17. D. C. Hanna, Fibre Lasers, in Laser Sources and Applications ( A. Miller and D. M. Finlayson. eds.) ( Institute of Physics, Bristol, 1996 ), pp. 195–208.

    Google Scholar 

  18. E. Snitzer, Optical Maser Action on Nd3} in a Barium Crown Glass, Phys. Rev. Letters 7, 444 (1961).

    Article  ADS  Google Scholar 

  19. J. C. Walling, O. G. Peterson, H. P. Jenssen, R. C. Morris, and E. W. O’Dell, Tunable Alexandrite Lasers. IEEE J Quantum Electron. QE-16, 1302 (1980).

    Google Scholar 

  20. L. F. Mollenauer, Color Center Lasers, in Laser Handbook, vol. 4 ( M. L. Stitch and M. Bass, eds.) (North Holland, Amsterdam, 1985 ), pp. 143–228.

    Google Scholar 

  21. P. F. Moulton, Spectroscopy and Laser Characteristics of Ti:A17O3, J Opt. Soc. Am. B 3, 125 (1986).

    Article  ADS  Google Scholar 

  22. G. Huber, Solid-State Laser Materials: Basic Properties and New Developments, in Solid-State Lasers: New Developments and Applications (M. Inguscio and R. Wallenstein, eds.) (Plenum, NY, I993 ), pp. 67–81.

    Google Scholar 

  23. P. Albers, E. Stark, and G. Huber, Continuous-Wave Laser Operation and Quantum Efficiency of Titanium-Doped Sapphire, J Opt. Soc. Am. B 3, 134 (1986).

    Article  ADS  Google Scholar 

  24. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, Laser Performance of LiSrA1F6:Cr3+ J Appl. Phys. 66, 1051 (1989).

    Article  ADS  Google Scholar 

  25. S. A. Payne L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, LiCaAlF5:Cr3+: A Promising New Solid-State Laser Material, IEEE J Quantum Electron. QE-24, 2243 (1988).

    Google Scholar 

  26. Dye Lasers, 2d ed (F. P. Schäfer, ed.) ( Springer-Verlag, Berlin, 1977 ).

    Google Scholar 

  27. H. D. Försterling and H. Kuhn, Physikalische Chemie in Experimenten. Ein Praktikum (Verlag Chemie. Weinheim, Germany 1971 ).

    Google Scholar 

  28. J. T. Verdeyen, Laser Electronics, 3d ed. (Prentice-Hall, Englewood Cliffs, NJ, 1995), Fig. 10. 19.

    Google Scholar 

  29. P. P. Sorokin and J. R. Lankard, Stimulated Emission Observed from an Organic Dye. Chloro-Aluminum Phtalocyanine, IBM J Res. Dee 10, 162 (1966).

    Article  Google Scholar 

  30. F. P. Schafer, F. P. W. Schmidt, and J. Volze, Organic Dye Solution Laser, Appl. Phys. Letters 9, 306 (1966).

    Article  ADS  Google Scholar 

  31. Semiconductor Lasers: Past, Present, Future (G. P. Agrawal, ed.) (AIP, Woodbury, NY. 1995).

    Google Scholar 

  32. G. P. Agrawal and N. K. Dutta, Long-Wavelength Semiconductor Lasers ( Chapman and Hall, NY, 1986 ).

    Book  Google Scholar 

  33. N. G. Basov, O. N. Krokhin, and Y. M. Popov, Production of Negative Temperature States in p-n Junctions of Degenerate Semiconductors, Journal Exp. Theoret. Physics 40, 1320 (1961).

    Google Scholar 

  34. R. N. Hall, G. E. Fenner. J. D. Kinhsley, F. H. Dills, and G. Lasher, Coherent Light Emission from GaAs Junctions. Phys. Rev. Letters 9, 366 (1962).

    Article  ADS  Google Scholar 

  35. M. I. Nathan. W. P. Dumke, G. Burns, F. H. Dills, and G. Lasher, Stimulated Emission of Radiation from GaAs p-n Junctions, Appl. Phys. Letters 1. 62 (1962).

    Article  ADS  Google Scholar 

  36. N. Holonyak, Jr. and S. F. Bevacqua, Coherent (Visible) Light Emission from Ga(As:_,P,) Junctions, Appl. Phis. Letters 1, 82 (1962).

    Google Scholar 

  37. T. M. Quist, R. J. Keyes, W. E. Krag, B. Lax, A. L. McWhorter, R. H. Rediker, and H. J. Zeiger, Semiconductor Maser of GaAs, Appl. Phys. Letters 1, 91 (1962).

    Article  ADS  Google Scholar 

  38. Z. I. Alferov, V. M. Andreev, V. I. Korolkov, E. L. Portnoi, and D. N. Tretyakov, Coherent Radiation of Epitaxial Heterojunction Structures in the AlAs-GaAs System, Soviet. Phys. Semicond. 2, 1289 (1969).

    Google Scholar 

  39. I. Hayashi, M. B. Panish, and P. W. Foy, A Low-Threshold Room-Temperature Injection Laser, IEEE J Quantum Electron. QE-5, 211 (1969).

    Google Scholar 

  40. H. Kressel and H. Nelson, Close Confinement Gallium Arsenide p-n Junction Laser with Reduced Optical Losses at Room Temperature, RCA Rev. 30, 106 (1969).

    Google Scholar 

  41. N. Chinone, H. Nakashima, I. Ikushima, and R. Ito, Semiconductor Lasers with a Thin Active Layer (0.1 inn) for Optical Communications, Appl. Opt. 17. 311 (1978).

    Article  ADS  Google Scholar 

  42. D. Botez, Analytical Approximation of the Radiation Confinement Factor for the TE0 Mode of a DoubleHeterojunction Laser, IEEE J Quantum Electron. QE-14, 230 (1978).

    Google Scholar 

  43. J. J. Coleman. Quantum-Well Heterostructure Lasers, in Semiconductor Lasers: Past, Present, Future (G. P. Agrawal. ed.) (AIP, Woodbury, NY, 1995), Fig. 1. 6.

    Google Scholar 

  44. Quantum Well Lasers (Peter S. Zory, ed.) (Academic Press, Boston, 1993).

    Google Scholar 

  45. Ref. 32. Figs. 9.8. 9.10.

    Google Scholar 

  46. Ref. 44. Chap. 3.

    Google Scholar 

  47. H. Kogelnik and C. V. Shank, Stimulated Emission in a Periodic Structure, Appl. Phys. Letters 18, 152 (1971).

    Article  ADS  Google Scholar 

  48. Ref. 32. Chap. 7.

    Google Scholar 

  49. N. Chinonc and M. Okai, Distributed Feed-Back Semiconductor Lasers, in Semiconductor Lasers: Past, Present, Future (G. P. Agrawal, ed.) (AIP, Woodbury, NY, 1995), Chap. 2, pp. 28–70.

    Google Scholar 

  50. H. A. Haus and C. V. Shank, Antisymmetric Taper of Distributed Feedback Lasers, IEEE J Quantum Electron. QE-12, 532 (1976).

    Google Scholar 

  51. C. J. Chang-Hasnain, Vertical-Cavity Surface-Emitting Lasers, in Semiconductor Lasers: Past, Present, Future (G. P. Agrawal, ed.) (AIP, Woodbury, NY, 1995), Chap. 4, pp. 110–44.

    Google Scholar 

  52. C. J. Chang-Hasnain, J. P. Harbison, C.-H. Zah, M. W. Maeda, L. T. Florenz, N. G. Stoffel. and T.-P. Lee, Multiple Wavelength Tunable surface-Emitting Laser Array, IEEE.1 Quantum Electron. QE-27, 1368 (1991).

    Google Scholar 

  53. G.-I. Hatakoshi, Visible Semiconductor Lasers, in Semiconductor Lasers: Past, Present, Future (G. P. Agrawal, ed.) (AIP, Woodbury, NY, 1995), Chap. 6, pp. 181–207.

    Google Scholar 

  54. S. Nakamura et al., Japn. J Appl. Phys. 35 L74 (1994).

    Google Scholar 

  55. P. Moulton, New Developments in Solid-State Lasers, Laser Focus 14. 83 (May 1983).

    Google Scholar 

  56. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho. Science 264, 553 (1994).

    Article  ADS  Google Scholar 

  57. M. Bass, T. F. Deutsch, and M. J. Weber. Dye Lasers, in Lasers, Vol. 3 ( A. K. Levine and A. De Maria, eds.) (Marcel Dekker, NY, 1971 ) p. 275.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Svelto, O. (1998). Solid-State, Dye, and Semiconductor Lasers. In: Principles of Lasers. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6266-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6266-2_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3289-1

  • Online ISBN: 978-1-4757-6266-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics