Skip to main content

Thermal Conductivity

  • Chapter
  • 342 Accesses

Part of the book series: The International Cryogenics Monograph Series ((ICMS))

Abstract

Thermal conduction comprises essentially that portion of phonon transport in which, different from sound propagation, the frequency, the phase and the polarization of the phonons are not maintained. Thermal conductivity is a process in which an inhomogeneous thermal excitation initiates various thermodynamic relaxation processes and thus gives rise to a more or less slow transport of energy with permanent local thermalization. The resulting temperature gradient drives the flux of energy carriers which in the case of insulators are phonons. The relationship between the flux of heat power Q per area A and the temperature gradientn is given by the coefficient of thermal conductivity k.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kittel, Ch.; Introduction in Solid State Physics, J. Willey Sons, Inc. New York; (1971); p. 268

    Google Scholar 

  2. Ziman, J.M.; Electrons and Phonons, Oxford, Clarendon Press; (1960); p. 228.

    Google Scholar 

  3. Finlayson, D.M. and P. Mason, J. Phys. C.; (Solid State Phys.), 18 (1985); p. 1791.

    Article  CAS  Google Scholar 

  4. Phillips, W.A.; Phys. Rev. 3 (1971); p. 4338.

    Google Scholar 

  5. Zaitlin, M.P. and A.C. Anderson,; Phys. Rev. B, 12 (1975); p. 4475.

    Article  Google Scholar 

  6. Farrell, D.E., J.E. de Oliveira, and H.M. Rosenberg,; Proceedings 4th. Int. Conference, Uni Stuttgart, Springer Press (1984); p. 422.

    Google Scholar 

  7. Tua, P.F., S.J. Putterman, and R. Orbach,; Phys. Lett. 98 A (1983); p. 357.

    Google Scholar 

  8. Reese, W. and J.E.Tucker,; J. Chem. Phys. 43 (1965); p. 105.

    CAS  Google Scholar 

  9. Engeln, J. and M. Meissner; in “Nonmetallic Materials and Composites at Low Temperatures”; Vol. 2; Plenum Press; (1980); p. 14.

    Google Scholar 

  10. Kolough, R.J. and R.G. Brown,: J. Appl. Phys. 39 (1968); p. 3999.

    Article  Google Scholar 

  11. Schmidt, C.; Cryogenics, Jan. 1975; p. 17.

    Google Scholar 

  12. Andersen, A.C. and R.B. Rauch; J. Appl. Phys.; Vol. 11 (1970); p. 3648 and R.E.Peterson, and A.C. Anderson,; J. Low Temp. Phys. II (1973); p. 639.

    Google Scholar 

  13. Choy, C.L. and D. Greig,; J. Phys. C., Solid State Phys. 8 (1975); p. 3121.

    Article  CAS  Google Scholar 

  14. Claudet, G., F. Disdier, and M. Locatelli; in “Nonmetallic Materials and Composites at Low Temperatures”, Vol. 2, p. 131, Plenum Press (1979).

    Google Scholar 

  15. Greig,D. and M.Sahota; in “Nonmetallic Materials and Composites at Low Temperatures” Vol. 3,p.9. Eds.: Hartwig, G., Evans, D.;Plenum Press; New York (1986)

    Google Scholar 

  16. Choy, C.L. and D. Greig,; J. Phys. C., Solid State Phys. 10 (1977); p. 169.

    Article  CAS  Google Scholar 

  17. Reese, W.; J. Appl. Phys. 37 (1966); p. 864.

    Article  CAS  Google Scholar 

  18. Hartwig, G.; Progr. Colloid + Polymer Sci. 64 (1978); p. 56

    Article  CAS  Google Scholar 

  19. Kelham, S. and H.M. Rosenberg,; J. Phys. C., Solid State Phys. 14 (1981); p.1737. 5.20 Berman, B.L., R.P. Madding, and J.R. Dillinger,; Phys. Rev. Lett., 30 A (1969); p. 315

    Google Scholar 

  20. Berman, B.L., R.P. Madding, and J.R. Dillinger,; Phys. Rev. Lett., 30 A (1969); p.315

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hartwig, G. (1994). Thermal Conductivity. In: Polymer Properties at Room and Cryogenic Temperatures. The International Cryogenics Monograph Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6213-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6213-6_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3244-0

  • Online ISBN: 978-1-4757-6213-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics