Skip to main content

Micromachined Devices for Wireless Communication

  • Chapter
  • 722 Accesses

Abstract

Recently, RF micromachining technology has received more attention because it can improve the quality factor of on-chip devices, enhance RF power distribution circuits, innovate RF circuit design, and reduce system cost and size significantly. An overview of research and development of micromachined devices for wireless communication subsystems is presented in this Chapter. Specific devices described include micro-machined inductors with high Q factor, tunable micromachined capacitors, low-loss micromechanical switches, microscale vibrating mechanical resonators, thin-film bulk acoustic resonators(FBARs), micromachined low-loss microwave and millimeter wave filters, and miniaturized antennas for millimeter wave applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. H. Lee and S. S. Wang, “CMOS RF integrated circuits at 5 GHz and beyond,” Proc. IEEE, vol.88, no.10, pp.1560–1571, Oct. 2000.

    Article  MathSciNet  Google Scholar 

  2. H. W. Chiu and S. S. Lu, “A 2.17 dB NF, 5 GHz band monolithic CMOS LNA with 10mW DC power consumption,” IEEE VLSI Circuits Symp., June 2002.

    Google Scholar 

  3. C. P. Yue and S.S. Wong, “On chip spiral inductors with patterned ground shields for Si-based RF IC’s,” IEEE J. Solid-State Circuits, vol.33, pp.743–752, May 1998.

    Article  Google Scholar 

  4. J. Craninckx and M. S. J. Steyaert, “A 1.8 GHz CMOS low-phase-noise voltage controlled oscillator with prescaler,” IEEE J. Solid-State Circuits, vol.30, pp.1474–1482, Dec. 1995.

    Article  Google Scholar 

  5. S. S. Mohan, “The design, modeling and optimization of on-chip inductor and transformer circuits,” Ph. D. thesis, Stanford Univ., Stanford, CA, 1999.

    Google Scholar 

  6. J. A. von Arx and K. Najafi, “On-chip coils with integrated cores for remote inductive powering of integrated microsystems,” Int. Conf. Solid-State Sensors, Actuator, pp.999–1002, 1997.

    Google Scholar 

  7. C. T. C. Nguyen, L. P. B. Katehi, and G. M. Rebeiz, “Micromachined devices for wireless communications,” Proc. IEEE, vol.86, no.8, pp.1756–1768, Aug. 1998.

    Article  Google Scholar 

  8. L. H. Lu, P. Bhattacharya, G. Ponchak, and L. P. B. Katehi, “X-band and K-band lumped Wilkinson power dividers with a micro-machined technology,” IEEE MTT-S Int. Microwave Syrup. Dig., pp.287–290, 2000.

    Google Scholar 

  9. J. S. Rieh, L. H. Lu, L. P. B. Katehi, P. Bhattacharya, E. T. Croke, G. E. Ponchak, and S. A. Alterovitz, “X- and Ku- band amplifiers based on Si/SiGe HBT’s and micromachined lumped components,” IEEE Trans. Microwave Theory Tech., vol.42, pp.685–694,May 1998.

    Article  Google Scholar 

  10. D. Kother, B. Hopf, T. Sporkman, and I. Wolf, “MMIC Wilkinson couplers for frequencies up to 110 GHz,” IEEE MTT-S Int. Microwave Symp. Dig., pp.663–666, Dec. 1995.

    Google Scholar 

  11. H. Samavati et al., “Fractal capacitors,” IEEE J. Solid-State Circuits, vol.33, pp.256–257, Dec. 1998.

    Article  Google Scholar 

  12. T. C. Weigandt, B. Kim, and P. R. Gray, “Analysis of timing jitter in CMOS ring oscillators,” Proc. ISCAS, pp.27–30, June 1994.

    Google Scholar 

  13. N. M. Nguyen, “A 1.8-GHz monolithic LC voltage-controlled oscillator,” IEEE J. Solid-State Circuits, vol.27, pp.444–450,Mar. 1992.

    Article  Google Scholar 

  14. D. J. Young and B. E. Boser, “A micromachined variable capacitor for monolithic low-noise VCO’s,” Int. Conf. Solid-State Sensor, Actuator, pp.86–89, Hilton Head Island, SC, 1996.

    Google Scholar 

  15. C. Goldsmith, J. Randall, S. Eshelman, and T. H. Lin, “Characteristics of micromachined switches at microwave frequencies,” IEEE MTT-S Int. Microwave Symp. Dig., pp.1141–1144, 1996.

    Google Scholar 

  16. C. Goldsmith, A. Malczewski, Z. J. Yao, S. Chen, J. Ehmke, and D. H. Hinzel, “RF MEMS variable capacitors for tunable filters,” RF Microwave Computer-Aided Eng., vol.9, no.4, pp.362–374, July 1999.

    Article  Google Scholar 

  17. Y. Cai and L. P. B. Katehi, “Wide band series switch fabricated using metal as sacrificial layer,” Eur. Microwave Conf., pp.32–34, Paris, France, 2000.

    Google Scholar 

  18. D. Hyman et al., “Surface-micromachined RF MEMS switches on GaAs substrates,” RF Microwave Computer-Aided Eng., vol.9, no.4, pp.348–361, July 1999.

    Article  Google Scholar 

  19. S. P. Pacheco, L. P. B. Katehi, and C. T.-C. Nguyen, “Design of low actuation voltage RF MEMS switch,” IEEE MTT-S Int. Microwave Symp. Dig., pp.165–168, 2000.

    Google Scholar 

  20. C. T.-C. Nguyen, “Frequency selective MEMS for miniaturized communication devices,” IEEE Aerospace Conf., pp.445–460, 1998.

    Google Scholar 

  21. C. T.-C. Nguyen and R. T. Howe, “Quality factor control for micro-mechanical resonators,” IEEE Int. Electron. Dev. Meeting, pp.505–508, 1992.

    Google Scholar 

  22. A. N. Cleland and M. L. Roukes, “Fabrication of high frequency nanometer scale mechanical resonators from bulk Si crystals,” Appl. Phys. Lett., vol.69, no.18, pp.2653–2655, Oct. 28, 1996.

    Article  Google Scholar 

  23. S. V. Krishnaswamy, J. Rosenbaum, S. Horwitz, C. Yale, and R. A. Moore, “Compact FBAR filters offer low-loss performance,” Microwave RF, pp.127–136, Sept. 1991.

    Google Scholar 

  24. K. M. Lakin, G. R. Kline, and K. T. McCarron, “Development of miniature filters for wireless applications,” IEEE Trans. Microwave Theory Tech., vol.43, pp.2933–2939, Dec. 1995.

    Article  Google Scholar 

  25. F. D. Bannon, III and C. T. C. Nguyen, “High frequency micro-electromechanical IF filters,” IEEE Int. Electron. Dev. Meeting, pp.773–776, 1996.

    Google Scholar 

  26. K. Wang and C. T. C. Nguyen, “High-order micromechanical electronic filters,” IEEE Int. MEMS Workshop, pp.25–30, Nagoya, 1997.

    Google Scholar 

  27. J. Papapolymerou, J. C. Cheng, J. East, and L. Katehi, “A micromachined high-Q X-band resonator,” IEEE Microwave Guided Wave Lett., vol.7, pp.168–170, June 1997.

    Article  Google Scholar 

  28. A. R. Brown, P. Blondy, K. Hong, and G. M. Rebeiz, “Low-loss millimeter-wave filters and high-Q micromachined cavity resonators,” U.S. Army Res. Office Int. Rep., Dec. 18, 1997.

    Google Scholar 

  29. W. Y. Ali-Ahmad and G. M. Rebeiz, “An 86–106 GHz quasi-integrated low-noise receiver,” IEEE Trans. Microwave Theory Tech., vol.41, pp.558–564, Apr. 1993.

    Article  Google Scholar 

  30. J. Papapolymerou, R. F. Drayton, and L. Katehi, “Micromachined patch antennas,” IEEE Trans. Antennas Propagat.a vol.46, pp.275–283, Feb. 1998.

    Article  Google Scholar 

  31. T. J. Ellis and G. M. Rebeiz, “MM-wave tapered slot antennas on micromachined photonic bandgap dielectrics,” IEEE MTT-S Int. Microwave Symp. Dig., pp. 1157–1160, June 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lin, YS., Lu, SS. (2004). Micromachined Devices for Wireless Communication. In: Novel Technologies for Microwave and Millimeter — Wave Applications. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4156-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4156-8_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5401-5

  • Online ISBN: 978-1-4757-4156-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics