Skip to main content
  • 735 Accesses

Abstract

A review of spatial power combiners employing tile or tray configurations of active planar arrays is presented. First, reasons for researching space-level combiners of millimeter wave solid-state devices are explained. Then, alternative combining structures are compared as to issues like ease of manufacturing, integration with signal launching/receiving devices, operational bandwidth and heat removal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. J. Russell, “Microwave power combining techniques,” IEEE Trans. Microwave Theory Tech., vol.27, pp.472–478, May 1979.

    Article  Google Scholar 

  2. K. Chang and C. Sun, “Millimetre-wave power-combining techniques,” IEEE Trans. Microwave Theory Tech., vol.31, pp.91–107, Feb. 1983.

    Article  Google Scholar 

  3. M. E. Bialkowski, “Power combiners and dividers,” Wiley Encyclopedia of Electrical and Electronic Engineering, J. G. Webster, ed., vol.16, pp.585–602, 1999.

    Google Scholar 

  4. D. Staiman, M. E. Breese, and W. T. Patton, “New technique for combining solid-state sources,” IEEE J. Solid-State Circuits, vol.3, pp.238–243, Sept. 1968.

    Article  Google Scholar 

  5. J. W. Mink, “Quasi-optical power combining of solid state millimeter wave sources,” IEEE Trans. Microwave Theory Tech., vol.34, pp.273–279, Feb. 1986.

    Article  Google Scholar 

  6. Z. B. Popovic, R. M. Weikle, M. Kim, et al., “Bar-grid oscillators,” IEEE Trans. Microwave Theory Tech., vol.38, pp.225–229, Mar. 1990.

    Article  Google Scholar 

  7. Z. B. Popovic, R. M. Weikle, M. Kim, and D. B. Rutledge, “A 100-MESFET planar grid oscillator,” IEEE Trans. Microwave Theory Tech., vol.39, pp.193–200, Feb. 1991.

    Article  Google Scholar 

  8. R. A. York and R. C. Compton, “Quasi-optical power combining using mutually synchronised oscillator arrays,” IEEE Trans. Microwave Theory Tech., vol.39, pp.1000–1009, June 1991.

    Article  Google Scholar 

  9. J. Birkeland and T. Itoh, “A 16-element quasi-optical FET oscila-tor power combining array with external injection locking,” IEEE Trans. Microwave Theory Tech., vol.40, no.3, pp.475–481, Mar. 1992.

    Article  Google Scholar 

  10. P. Liao and R. A. York, “A new phase-shifterless beam-scanning technique using arrays of coupled oscillators,” IEEE Trans. Microwave Theory Tech., vol.41, no.10, pp.1810–1815, Oct. 1993.

    Article  Google Scholar 

  11. K. D. Stephan, “Inter-injection-locked oscillators for power combining and phased arrays,” IEEE Trans. Microwave Theory Tech., vol.34, no.10, pp.1017–1025, Oct. 1986.

    Article  Google Scholar 

  12. R. J. Pogorzelski, R. P. Scaramastra, J. Huang, R. J. Beckon, S. M. Petree, and C. M. Chavez, “A seven-element S-band coupled-oscillator controlled agile-beam phased array,” IEEE Trans. Microwave Theory Tech., vol.48, no.8, pp.1375–1384, Aug. 2000.

    Article  Google Scholar 

  13. M. Kim, E. A. Sovero, J. B. Hacker, et al., “A 100-element HBT grid amplifier,” IEEE Trans. Microwave Theory Tech., vol.41, no.10, pp.1762–1771, Oct. 1993.

    Article  Google Scholar 

  14. M. Gouker, “Toward standard figures-of-merit for spatial and quasi-optical power-combined arrays,” IEEE Trans. Microwave Theory Tech., vol.43, no.7, pp.1614–1616, July 1995.

    Article  Google Scholar 

  15. H. Hwang et al, “A dielectric slab waveguide with four planar power amplifiers,” IEEE MTT-S Int. Microwave Symp. Dig., pp.921–924, May 1995.

    Google Scholar 

  16. B. Deckman et al., “A 5-Watt, 37-GHz monolithic grid amplifier,” IEEE MTT-S Int. Microwave Symp. Dig., pp.805–808, Boston, MA, June 11–16, 2000.

    Google Scholar 

  17. M. E. Bialkowski, H. J. Song, K. M. Luk, and C. H. Chan, “Theory of an active transmit/reflect array of patch antennas operating as a spatial power combiner,” IEEE AP-S Int. Conf. Dig., pp.764–767, Boston, July 8–13, 2001.

    Google Scholar 

  18. T. Ivanov and A. Mortazawi, “A two-stage spatial amplifier with hard horn feeds,” IEEE Microwave Guided Wave Lett, vol.6, no.2, pp.88–90, Feb. 1996.

    Article  Google Scholar 

  19. D. Sivenpiper et al., “High impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech., vol.47, no.11, pp.2059–2074, Nov. 1999.

    Article  Google Scholar 

  20. F.-R. Yang et al., “A novel TEM waveguide using uniplanar compact photonic-bandgap(UC-PBG) structure,” IEEE Trans. Microwave Theory Tech., vol.47, no.11, pp.2192–2098, Nov. 1999.

    Google Scholar 

  21. M. Ali, S. Ortiz, T. Ivanov, and A. Mortazawi, “Analysis and measurement of hard horn feeds for the excitation of quasi-optical amplifiers,” IEEE MTT-S Int. Microwave Symp. Dig., pp.1469–1472, June 1998.

    Google Scholar 

  22. H. J. Song and M. E. Bialkowski, “Transmit array of transistor amplifiers illuminated by a passive patch array in the near field reactive region,” IEEE Trans. Microwave Theory Tech., vol.49, no.3, pp.470–476, Mar. 2001.

    Article  Google Scholar 

  23. H. J. Song and M. E. Bialkowski, “Spatial power combiner using an active reflectarray of dual-feed aperture coupled microstrip patch antennas,” IEEE APS Int. Conf. Dig., Boston, July 8–13, 2001.

    Google Scholar 

  24. J. A. Navarro and K. Chang, Integrated Active Antennas and Spatial Power Combining, Wiley Inter-Science, 1996.

    Google Scholar 

  25. R. A. York and Z. B. Popovic, Active and Quasi-Optical Arrays for Solid-State Power Combining, Wiley Interscience, 1997.

    Google Scholar 

  26. A. Mortazawi, T. Itoh, and J. Harvey, Active Antennas and Quasi-Optical Arrays, ed., Piscataway, NJ: IEEE Press, 1998.

    Google Scholar 

  27. S. Ortiz, J. Hubert, L. Mirth, E. Schlecht, and A. Mortazawi, “A 25-watt and 50-watt Ka-band quasi-optical amplifier,” IEEE MTT-S Int. Microwave Symp. Dig., pp.797–800, Boston, MA, June 11–16, 2000.

    Google Scholar 

  28. A. W. Robinson et al., “A 137 element active reflect-array with dual-feed microstrip patch elements,” Microwave Opt. Technol. Lett., vol.26, no.3, pp.147–151, Aug. 5, 2000.

    Article  Google Scholar 

  29. M. E. Bialkowski, A. W. Robinson, and H. J. Song, “Design, development and testing of X-band amplifying reflectarrays,” IEEE Trans. Antennas Propagat., vol.50, no.8, pp.1065–1076, Aug. 2002.

    Article  Google Scholar 

  30. J. Hubert, L. Merth, S. Ortiz, and A. Mortazawi, “A 4-watt Ka-band quasi-optical amplifier,” IEEE MTT-S Int. Microwave Symp. Dig., pp.2386–2389, Anaheim, CA, June 13–19, 1999.

    Google Scholar 

  31. J. A. Navarro et al., “Broadband electronically tunable planar active radiating elements and spatial power combiners using notch antennas,” IEEE Trans. Microwave Theory Tech., vol.40, no.2, pp.323–328, Feb. 1992.

    Article  Google Scholar 

  32. N. S. Cheng, T. P. Dao, M. G. Case, D. B. Rensch, and R. A. York, “A 120-W X-band spatially combined solid-state amplifier,” IEEE Trans. Microwave Theory Tech., vol.47, no.12, pp.2557–2561, Dec. 1999.

    Article  Google Scholar 

  33. M. E. Bialkowski and H. J. Song, “Investigations into a power combining structure formed by uniplanar quasi-Yagi microstrip antennas,” Microwave Opt. Technol. Lett., vol.27, no.1, pp.50–53, Oct. 5, 2000.

    Article  Google Scholar 

  34. A. B. Yakovlev, S. Ortiz, M. Ozkar, A. Mortazawi, and M. B. Steer, “A waveguide-based aperture-coupled patch amplifier array, full-wave system analysis and experimental validation,” IEEE Trans. Microwave Theory Tech., vol.48, pp.2692–2699, Dec. 2000.

    Article  Google Scholar 

  35. H. Hwang, G. P. Monahan, M. B. Steer, J. W. Mink, J. Harvey, A. Paollea, and F. K. Schwering, “A dielectric slab waveguide with four planar power amplifiers,” IEEE MTT-S Int. Microwave Symp. Dig., pp.921–924, May 1995.

    Google Scholar 

  36. J. J. Sowers, D. Pritchard, A. White, W. Kong, and O. Tang, “A 36-W V-band, solid-state source,” IEEE MTT-S Int. Microwave Symp. Dig., pp.235–238, Anaheim, CA, June 13–19, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bialkowski, M.E. (2004). Spatial Power Combiners Using Active Planar Arrays. In: Novel Technologies for Microwave and Millimeter — Wave Applications. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4156-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4156-8_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5401-5

  • Online ISBN: 978-1-4757-4156-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics