Skip to main content

Time-Domain Lifetime Measurements

  • Chapter
Principles of Fluorescence Spectroscopy

Abstract

Time-resolved measurements are widely used in fluorescence spectroscopy, particularly for studies of biological macromolecules. This is because time-resolved data frequently contain more information than is available from the steady-state data. For instance, consider a protein which contains two tryptophan residues, each with a distinct lifetime. Because of spectral overlap of the absorption and emission, it is not usually possible to resolve the emission from the two residues. However, the time-resolved data may reveal two decay times, which can be used to resolve the emission spectra and relative intensities of the two tryptophan residues. Then one can question how each of the tryptophan residues is affected by the interactions of the protein with its substrate or other macromolecules. Is one of the tryptophan residues close to the binding site? Is a tryptophan residue in a distal domain affected by substrate binding to another domain? Such questions can be answered if one measures the decay times associated with each tryptophan residue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bevington, P. R., 1969, Data Reduction and Error Analysis for the Physical Sciences, McGraw-Hill, New York.

    Google Scholar 

  2. Lakowicz, J. R., 1996, Fluorescence spectroscopy of biomolecules, in Encyclopedia of Molecular Biology and Biotechnology, R. A. Meyers (ed.), VCH Publishers, Weinhein, Germany, pp. 294–306.

    Google Scholar 

  3. Grinvald, A., and Steinberg, I. Z., 1974, On the analysis of fluorescence decay kinetics by the method of least-squares, Anal. Biochem. 59: 583–593.

    Google Scholar 

  4. Demas, J. N., 1983, Excited State Lifetime Measurements, Academic Press, New York.

    Google Scholar 

  5. Johnson, M. L., 1985, The analysis of ligand binding data with experimental uncertainties in the independent variables, Anal. Biochem. 148: 471–478.

    Google Scholar 

  6. Bard, J., 1974, Nonlinear Parameter Estimation, Academic Press, New York.

    Google Scholar 

  7. Johnson, M. L., 1983, Evaluation and propagation of confidence intervals in nonlinear, asymmetrical variance spaces: Analysis of ligand binding data, Biophys. J. 44: 101–106.

    Google Scholar 

  8. O’Connor, D. V., and Phillips, D., 1984, Time-Correlated Single Photon Counting, Academic Press, New York.

    Google Scholar 

  9. Birch, D. J. S., and Imhof, R. E., 1991, Time-domain fluorescence spectroscopy using time-correlated single-photon counting, in Topics in Fluorescence Spectroscopy, Volume I, Techniques, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 1–95.

    Google Scholar 

  10. Ware, W. R., 1971, Transient luminescence measurements, in Creation and Detection of the Excited State, Vol. 1 A, A. A. Lamola (ed.), Marcel Dekker, New York, pp. 213–302.

    Google Scholar 

  11. Malak, H., unpublished observations.

    Google Scholar 

  12. Badea, M. G., and Brand, L., 1971, Time-resolved fluorescence measurements, Methods in Enzymol. 61: 378–425.

    Google Scholar 

  13. Svelto, O., 1998, Principles of Lasers, 4th edition, Translated by David C. Hanna. Plenum Press, New York.

    Google Scholar 

  14. Yariv, A., 1989, Quantum Electronics, 3rd edition, John Wiley Sons, New York.

    Google Scholar 

  15. Iga, K., 1994, Fundamentals of Laser Optics, Plenum Press, New York.

    Google Scholar 

  16. Small, E. W., 1991, Laser sources and microchannel plate detectors for pulse fluorometry, in Topics in Fluorescence Spectroscopy, Volume 1, Techniques, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 97–182.

    Google Scholar 

  17. Wilson, J., and Hawkes, J. F. B., 1983, Optoelectronics—An Introduction, Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  18. Berg, N. J., and Lee, J. N. (eds.), 1983, Acousto-Optic Signal Processing, Marcel Dekker, New York.

    Google Scholar 

  19. Visser, A. J. W. G., and Van Hoek, A., 1979, The measurement of subnanosecond fluorescence decay of flavins using time-correlated photon counting and a mode-locked Ar Ion laser, J. Biochem. Biophys. Methods. 1: 195–208.

    Google Scholar 

  20. Spears, K. G., Cramer, L. E., and Hoffland, L. D., 1978, Subnanosecond time-correlated photon counting with tunable lasers, Rev. Sci. Instrum. 49: 255–262.

    Google Scholar 

  21. Lytle, E., and Kelsey, M. S., 1974, Cavity-dumped argon-ion laser as an excitable source on time-resolved fluorimetry, Anal. Chem. 46: 855–860.

    Google Scholar 

  22. Wild, U. P., Holzwarth, A. R., and Good, H. P., 1977, Measurement and analysis of fluorescence decay curves, Rev. Sci. Instrum. 48: 1621–1627.

    CAS  Google Scholar 

  23. Turko, B. T., Nairn, J. A., and Sauer, K., 1983, Single photon timing system for picosecond fluorescence lifetime measurements, Rev. Sci. Instrum. 54: 118–120.

    CAS  Google Scholar 

  24. Alfano, A. J., Fong, F. K., and Lytle, F. E., 1983, High repetition rate subnanosecond gated photon counting, Rev. Sci. Instrum. 54: 967–972.

    Google Scholar 

  25. Kinoshita, S., Ohta, H., and Kushida, T., 1981, Subnanosecond fluorescence lifetime measuring system using single photon counting method with mode-locked laser excitation, Rev. Sci. Instrum. 52: 572–575.

    Google Scholar 

  26. Koester, V. J., and Dowben, R. M., 1978, Subnanosecond single photon counting fluorescence spectroscopy using synchronously pumped tunable dye laser excitation, Rev. Sci. Instrum. 49: 1186–1191.

    Google Scholar 

  27. Zimmerman, H. E., Penn, J. H., and Carpenter, C. W., 1982, Evaluation of single-photon counting measurements of excited-state lifetimes, Proc. Natl. Acad. Sci. U.S.A. 79: 2128–2132.

    Google Scholar 

  28. van Hoek, A., Vervoort, J., and Visser, A. J. W. G., 1983, A subnanosecond resolving spectrofluorimeter for the analysis of protein fluorescence kinetics, J. Biochem. Biophys. Methods 7: 243–254.

    CAS  Google Scholar 

  29. Small, E. W., Libertini, L. J., and Isenberg, I., 1984, Construction and tuning of a monophoton decay fluorometer with high-resolution capabilities, Rev. Sci. Instrum. 55: 879–885.

    CAS  Google Scholar 

  30. Visser, A. J. W. G., and van Hoek, A., 1981, The fluorescence decay of reduced nicotinamides in aqueous solution after excitation with a UV-mode locked Ar Ion laser, Photochem. Photobiol. 33: 35–40.

    CAS  Google Scholar 

  31. Libertini, L. J., and Small, E. W., 1987, On the choice of laser dyes for use in exciting tyrosine fluorescence decays, Anal. Biochem. 163: 500–505.

    CAS  Google Scholar 

  32. Laws, W. R., and Sutherland, J. C., 1986, The time-resolved photon-counting fluorometer at the national synchrotron light source, Photochem. Photobiol. 44: 343–348.

    Google Scholar 

  33. Munro, I. H., and Martin, M. M., 1991, Time-resolved fluorescence spectroscopy using synchrotron radiation, in Topics in Fluorescence Spectroscopy, Volume I, Techniques, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 261–291.

    Google Scholar 

  34. Munro, I. H., and Schwentner, N., 1983, Time resolved spectroscopy using synchrotron radiation, Nucl. Instrum. Methods 208: 819–834.

    Google Scholar 

  35. Lopez-Delgado, R., 1978, Comments on the application of synchrotron radiation to time-resolved spectrofluorometry, Nucl. Instrum. Methods 152: 247–253.

    Google Scholar 

  36. Rehn, V., 1980, Time-resolved spectroscopy in synchrotron radiation, Nucl. Instrum. Methods 177: 193–205.

    Google Scholar 

  37. van Der Oord, C. J. R., Gerritsen, H. G, Rommerts, F. F. G., Shaw, D. A., Munro, I. H., and Levine, Y. K., 1995, Micro-volume time-resolved fluorescence spectroscopy using a confocal synchrotron radiation microscope, Appl. Spectrosc. 49: 1469–1473.

    Google Scholar 

  38. Malmberg, J. H., 1957, Millimicrosecond duration of light source, Rev. Sci. Instrum. 28: 1027–1029.

    Google Scholar 

  39. Bennett, R. G., 1960, Instrument to measure fluorescence lifetimes in the millimicrosecond region, Rev. Sci. Instrum. 31: 1275–1279.

    Google Scholar 

  40. Yguerabide, J., 1965, Generation and detection of subnanosecond light pulses: Application to luminescence studies, Rev. Sci. Instrum. 36: 1734–1742.

    Google Scholar 

  41. Birch, D. J. S., and Imhof, R. E., 1977, A single photon counting fluorescence decay-time spectrometer, J. Phys. E: Sci. Instrum. 10: 1044–1049.

    Google Scholar 

  42. Lewis, C., Ware, W. R., Doemeny, L. J., and Nemzek, T. L., 1973, The measurement of short lived fluorescence decay using the single photon counting method, Rev. Sci. Instrum. 44: 107–114.

    CAS  Google Scholar 

  43. Leskovar, B., Lo, C. C., Hartig, P. R., and Sauer, K., 1976, Photon counting system for subnanosecond fluorescence lifetime measurements, Rev. Sci. Instrum. 47: 1113–1121.

    Google Scholar 

  44. Bollinger, L. M., and Thomas, G. E., 1961, Measurement of the time dependence of scintillation intensity by a delayed-coincidence method, Rev. Sci. Instrum. 32: 1044–1050.

    CAS  Google Scholar 

  45. Hazan, G., Grinvald, A., Maytal, M., and Steinberg, I. Z., 1974, An improvement of nanosecond fluorimeters to overcome drift problems, Rev. Sci. Instrum. 45: 1602–1604.

    CAS  Google Scholar 

  46. Dreeskamp, H., Salthammer, T., and Laufer, A. G. E., 1989, Time-correlated single-photon counting with alternate recording of excitation and emission, J. Lumin. 44: 161–165.

    CAS  Google Scholar 

  47. Birch, D. J. S., and Imhof, R. E., 1981, Coaxial nanosecond flash-lamp, Rev. Sci. Instrum. 52: 1206–1212.

    CAS  Google Scholar 

  48. Birch, D. J. S., Hungerford, G., and Imhof, R. E., 1991, Near-infrared spark source excitation for fluorescence lifetime measurements, Rev. Sci. Instrum. 62: 2405–2408.

    Google Scholar 

  49. Birch, D. J. S., Hungerford, G., Nadolski, B., Imhof, R. E., and Dutch, A., 1988, Time-correlated single-photon counting fluorescence decay studies at 930 nm using spark source excitation, J. Phys. E: Sci. Instrum. 21: 857–862.

    Google Scholar 

  50. Miller, K. J., and Lytle, F. E., 1993, Capillary zone electrophoresis with time-resolved fluorescence detection using a diode-pumped solid-state laser, J. Chwmatogr. 648: 245–250.

    CAS  Google Scholar 

  51. Picosecond Fluorescence Lifetime Measurement System, Hamamatsu Literature, Catalog No. SSCS1018E02, Nov/91NB.

    Google Scholar 

  52. Thompson, R. B., Frisoli, J. K., and Lakowicz, J. R., 1992, Phase fluorometry using a continuously modulated laser diode, Anal. Chem. 64: 2075–2078.

    CAS  Google Scholar 

  53. Berndt, K. W., Gryczynski, I., and Lakowicz, J. R., 1990, Phase-modulation fluorometry using a frequency-doubled pulsed laser diode light source, Rev. Sci. Instrum. 61: 1816–1820.

    Google Scholar 

  54. Gedcke, D. A., and McDonald, W. J., 1967, A constant fraction of pulse height trigger for optimum time resolution, Nucl. Instrum. Methods 55: 377–380.

    Google Scholar 

  55. Gedcke, D. A., and McDonald, W. J., 1966, Design of the constant fraction of pulse height trigger for optimum time resolution, Nucl. Instrum. Methods 58: 253–260.

    Google Scholar 

  56. Arbel, A., Klein, I., and Yarom, A., 1974, Snap-off constant fraction timing discriminators, IEEE Trans. Nucl. Sci. NS-21: 3–8.

    Google Scholar 

  57. Cova, S., Ghioni, M., Zappa, F., and Lacaita, A., 1993, Constant-fraction circuits for picosecond photon timing with microchannel plate photomultipliers, Rev. Sci. Instrum. 64: 118–124.

    Google Scholar 

  58. Cova, S., Ripamonti, G., and Lacaita, A., 1990, New double constant-fraction trigger circuit for locking on laser pulse trains up to 100 MHz, Rev. Sci. Instrum. 61: 1004–1009.

    Google Scholar 

  59. Cova, S., and Ripamonti, G., 1990, Improving the performance of ultrafast microchannel plate photomultipliers in time-correlated photon counting by pulse pre-shaping, Rev. Sci. Instrum. 61: 1072–1075.

    CAS  Google Scholar 

  60. Haugen, G. R., Wallin, B. W., and Lytle, F. E., 1979, Optimization of data-acquisition rates in time-correlated single-photon fluorimetry, Rev. Sci. Instrum. 50: 64–72.

    Google Scholar 

  61. Bowman, L. E., Berglund, K. A., and Nocera, D. G., 1993, A single photon timing instrument that covers a broad temporal range in the reversed timing configuration, Rev. Sci. Instrum. 64: 338–341.

    CAS  Google Scholar 

  62. Baumier, W., Schmalzl, A. X., G601, G., and Penzkofer, A., 1992, Fluorescence decay studies applying a cw femtosecond dye laser pumped ungated inverse time-correlated single photon counting system, Meas. Sci. Technol. 3: 384–393.

    Google Scholar 

  63. Harris, C. M., and Selinger, B. K., 1979, Single-photon decay spectroscopy. II The pileupproblem, Aust. J. Chem. 32: 2111–2129.

    Google Scholar 

  64. Williamson, J. A., Kendall-Tobias, M. W., Buhl, M., and Seibert, M., 1988, Statistical evaluation of dead time effects and pulse pileup in fast photon counting. Introduction of the sequential model, Anal Chem. 60: 2198–2203.

    CAS  Google Scholar 

  65. Koyama, K., and Fatlowitz, D., 1987, Application of MCP-PMTs to time correlated single photon counting and related procedures, Hamamatsu Technical Information, No. ET-03, pp. 1–18.

    Google Scholar 

  66. Howorth, J. R., Ferguson, I., and Wilcox, D., 1995, Developments in microchannel plate photomultipliers, Proc. SPIE2388: 356–362.

    Google Scholar 

  67. Beechem, J. M., 1992, Multi-emission wavelength picosecond time-resolved fluorescence decay data obtained on the millisecond scale: Application to protein:DNA interactions and protein folding reactions, Proc. SPIE 1640: 676–680.

    Google Scholar 

  68. Birch, D. J. S., Holmes, A. S., Imhof, R. E., Nadolski, B. Z., and Cooper, J. C., 1988, Multiplexed time-correlated single photon counting, Proc. SPIE 909: 8–14.

    CAS  Google Scholar 

  69. Birch, D. J. S., McLoskey, D., Sanderson, A., Suhling, K., and Holmes, A. S., 1994, Multiplexed time-correlated single-photon counting, J. Fluoresc. 4 (1): 91–102.

    CAS  Google Scholar 

  70. McLoskey, D., Birch, D. J. S., Sanderson, A., Suhling, K., Welch, E., and Hicks, P. J., 1996, Multiplexed single-photon counting. I. A time-correlated fluorescence lifetime camera, Rev. Sci. Instrum. 67: 2228–2237.

    Google Scholar 

  71. Suhling, K., McLoskey, D., and Birch, D. J. S., 1996, Multiplexed single-photon counting. II. The statistical theory of time-correlated measurements, Rev. Sci. Instrum. 67: 2238–2246.

    Google Scholar 

  72. Erdmann, R., Becker, W., Ortmann, U., and Enderlein, J., 1995, Simultaneous detection of time-resolved emission spectra using a multianode-PMT and new TCSPC-electronics with 5 MHz count rate, Proc. SPIE 2388: 330–334.

    CAS  Google Scholar 

  73. Candy, B. H., 1985, Photomultiplier characteristics and practice relevant to photon counting, Rev. Sci. Instrum. 56: 183–193.

    Google Scholar 

  74. Hungerford, G., and Birch, D. J. S., 1996, Single-photon timing detectors for fluorescence lifetime spectroscopy, Meas. Sci. Technol. 7: 121–135.

    CAS  Google Scholar 

  75. Leskovar, B., 1977, Microchannel plates, Phys. Today 1977: 42–49.

    Google Scholar 

  76. Boutot, J. P., Delmotte, J. C., Mieh6, J. A., and Sipp, B., 1977, Impulse response of curved microchannel plate photomultipliers, Rev. Sci. Instrum. 48: 1405–1407.

    Google Scholar 

  77. Timothy, J. G., and Bybee, R. L., 1977, Preliminary results with microchannel array plates employing curved microchannels to inhibit ion feedback, Rev. Sci. Instrum. 48: 292–299.

    Google Scholar 

  78. Lo, C. C., and Leskovar, B., 1981, Performance studies of high gain photomultiplier having z-configuration of microchannel plates, IEEE Trans. Nucl. Sci. NS-28: 698–704.

    Google Scholar 

  79. I to, M., Kume, H., and Oba, K., 1984, Computer analysis of the timing properties in micro channel plate photomultiplier tubes, IEEE Trans. Nucl. Sci. NS-31: 408–412.

    Google Scholar 

  80. Bebelaar, D., 1986, Time response of various types of photomultipliers and its wavelength dependence in time-correlated single photon counting with an ultimate resolution of 47 ps FWHM, Rev. Sci. Instrum 57: 1116–1125.

    CAS  Google Scholar 

  81. Yamazaki, I., Tamai, N., Kume, H., Tsuchiya, H., and Oba, K., 1985, MicroChannel plate photomultiplier applicability to the time-correlated photon-counting method, Rev. Sci. Instrum. 56: 1187–1194.

    CAS  Google Scholar 

  82. Uyttenhove, J., Demuynck, J., and Deruytter, A., 1978, Application of a microchannel plate photomultiplier in subnanosecond lifetime measurements, IEEE Trans. Nucl. Sci. NS-25:566–567.

    Google Scholar 

  83. Murao, T., Yamazaki, I., Shindo, Y., and Yoshihara, K., 1982, A subnanosecond time-resolved spectrophotometric system by using synchronously pumped, mode-locked dye laser, J. Spectrosc. Soc. Jpn. 1982: 96–103.

    Google Scholar 

  84. Murao, T., Yamazaki, I., and Yoshihara, K., 1982, Applicability of a microchannel plate photomultiplier to the time-correlated photon counting technique, Appl. Opt. 21: 2297–2298.

    Google Scholar 

  85. Boens, N., Tamai, N., Yamazaki, I., and Yamazaki, T., 1990, Picosecond single photon timing measurements with a proximity type microchannel plate photomultiplier and global analysis with reference convolution, Photochem. Photobiol. 52: 911–917.

    Google Scholar 

  86. Beck, G., 1976, Operation of a 1P28 photomultiplier with subnanosecond response time, Rev. Sci. Instrum. 47: 537–541.

    Google Scholar 

  87. Kinoshita, S., and Kushida, T., 1982, High-performance, time-correlated single photon counting apparatus using a side-on type photomultiplier, Rev. Sci. Instrum. 53: 469–472.

    CAS  Google Scholar 

  88. Canonica, S., Forrer, J., and Wild, U. P., 1985, Improved timing resolution using small side-on photomultipliers in single photon counting, Rev. Sci. Instrum. 56: 1754–1758.

    CAS  Google Scholar 

  89. Ware, W. R., Pratinidhi, M., and Bauer, R. K., 1983, Performance characteristics of a small side-window photomultiplier in laser single-photon fluorescence decay measurements, Rev. Sci. Instrum. 54: 1148–1156.

    Google Scholar 

  90. Cova, S., Longoni, A., Andreoni, A., and Cubeddu, R., 1983, A semiconductor detector for measuring ultraweak fluorescence decays with 70ps FWHM resolution, IEEE J. Quantum Electron. QE-19: 630–634.

    Google Scholar 

  91. Buller, G. S., Massa, J. S., and Walker, A. C., 1992, All solid-state microscope-based system for picosecond time-resolved photolu-minescence measurements on II-VI semiconductors, Rev. Sci. Instrum. 63: 2994–2998.

    CAS  Google Scholar 

  92. Louis, T. A., Ripamonti, G., and Lacaita, A., 1990, Photolumines-cence lifetime microscope spectrometer based on time-correlated single-photon counting with an avalanche diode detector, Rev. Sci. Instrum. 61: 11–22.

    Google Scholar 

  93. Cova, S., Ripamonti, G., and Lacaita, A., 1987, Avalanche semiconductor detector for single optical photons with a time resolution of 60 ps, Nucl. Instrum. Methods Phys. Res. A253: 482–487.

    Google Scholar 

  94. Cova, S., Lacaita, A., Ghioni, M., Ripamonti, G., and Louis, T. A., 1989,20-ps timing resolution with single-photon avalanche diodes, Rev. Sci. Instrum. 60:1104–1110.

    Google Scholar 

  95. Cova, S., Longoni, A., and Andreoni, A., 1981, Towards picosecond resolution with single-photon avalanche diodes, Rev. Sci. Instrum. 52: 408–412.

    Google Scholar 

  96. Louis, T., Schatz, G. H., Klein-Bolting, P., Holzwarth, A. R., Ripamonti, G., and Cova, S., 1988, Performance comparison of a single-photon avalanche diode with a microchannel plate photo-multiplier in time-correlated single-photon counting, Rev. Sci. Instrum. 59: 1148–1152.

    CAS  Google Scholar 

  97. Lacaita, A., Cova, S., and Ghioni, M., 1988, Four-hundred picosecond single-photon timing with commerically available avalanche photodiodes, Rev. Sci. Instrum. 59: 1115–1121.

    CAS  Google Scholar 

  98. Wahl, P., Auchet, J. C., and Donzel, B., 1974, The wavelength dependence of the response of a pulse fluorometer using the single photoelectron counting method, Rev. Sci. Instrum. 45: 28–32.

    Google Scholar 

  99. Sipp, B., Miehe, J. A., and Lopez-Delgado, R., 1976, Wavelength dependence of the time resolution of high-speed photomultipliers used in single-photon timing experiments, Opt. Commun. 16: 202–204.

    Google Scholar 

  100. Rayner, D. M., McKinnon, A. F., and Szabo, A. G., 1978, Confidence in fluorescence lifetime determinations: A ratio correction for the photomultiplier time response variation with wavelength, Can. J. Chem. 54: 3246–3259.

    Google Scholar 

  101. Thompson, R. B., and Gratton, E., 1988, Phase fluorometric method for determination of standard lifetimes, Anal. Chem. 60: 670–674.

    Google Scholar 

  102. Meister, E. C., Wild, U. P., Klein-Bolting, P., and Holzwarth, A. R., 1988, Time response of small side-on photomultiplier tubes in time-correlated single-photon counting measurements, Rev. Sci. Instrum. 59: 499–501.

    CAS  Google Scholar 

  103. Bauer, R. K., and Baiter, A., 1979, A method of avoiding wavelength-dependent errors in decay-time measurements, Opt. Commun. 28: 91–96.

    CAS  Google Scholar 

  104. Kolber, Z. S., and Barkley, M. D., 1986, Comparison of approaches to the instrumental response function in fluorescence decay measurements, Anal. Biochem. 152: 6–21.

    Google Scholar 

  105. Vecer, J., Kowalczyk, A. A., Davenport, L., and Dale, R. E., 1993, Reconvolution analysis in time-resolved fluorescence experiments—an alternative approach: Reference-to-excitation-to-fluo-rescence reconvolution, Rev. Sci. Instrum. 64: 3413–3424.

    Google Scholar 

  106. Kilin, S. F., 1962, The duration of photo-and radioluminescence of organic compounds, Opt. Spectrosc. 12: 414–416.

    Google Scholar 

  107. Mauzerall, D., Ho, P. P., and Alfano, R. F., 1985, The use of short lived fluorescent dyes to correct for artifacts in the measurements of fluorescence lifetimes, Photochem. Photobiol. 42: 183–186.

    CAS  Google Scholar 

  108. Van Den Zegel, M., Boens, N., Daems, D., and De Schryver, F. C., 1986, Possibilities and limitations of the time-correlated single photon counting technique: A comparative study of correction methods for the wavelength dependence of the instrument response function, Chem. Phys. 101: 311–335.

    Google Scholar 

  109. James, D. R., Demmer, D. R. M., Verrall, R. E., and Steer, R. P., 1983, Excitation pulse-shape mimic technique for improving picosecond-laser excited time-correlated single-photon counting de-convolutions, Rev. Sci. Instrum. 54: 1121–1130.

    CAS  Google Scholar 

  110. Zuker, M., Szabo, A. G., Bramall, L., Krajcarski, D. T., and Selin-ger, B., 1985, Delta function convolution method (DFCM) for fluorescence decay experiments, Rev. Sci. Instrum. 56: 14–22.

    CAS  Google Scholar 

  111. Castelli, F., 1985, Determination of correct reference fluorescence lifetimes by self-consitent internal calibration, Rev. Sci. Instrum. 56: 538–542.

    Google Scholar 

  112. Vos, K., van Hoek, A., and Visser, A. J. W. G., 1987, Application of a reference convolution method to tryptophan fluorescence in proteins, Eur. J. Biochem. 165: 55–63.

    Google Scholar 

  113. Martinho, J. M. G., Egan, L. S., and Winnik, M. A., 1987, Analysis of the scattered light component in distorted fluorescence decay profiles using a modified delta function convolution method, Anal. Chem. 59: 861–864.

    CAS  Google Scholar 

  114. Ricka, J., 1981, Evaluation of nanosecond pulse-fluorometry measurements—no need for the excitation function, Rev. Sci. Instrum. 52: 195–199.

    Google Scholar 

  115. Visser, A. J. W. G., Kulinski, T., and van Hoek, A., 1988, Fluorescence lifetime measurements of pseudoazulenes using picosecond-resolved single photon counting, J. Mol. Struct. 175: 111–116.

    CAS  Google Scholar 

  116. Holtom, G. R., 1990, Artifacts and diagnostics in fast fluorescence measurements, Proc. SPIE 1204: 2–12.

    Google Scholar 

  117. Grinvald, A., 1976, The use of standards in the analysis of fluorescence decay data, Anal. Biochem. 75: 260–280.

    CAS  Google Scholar 

  118. Lampert, R. A., Chewter, L. A., Phillips, D., O’Connor, D. V., Roberts, A. J., and Meech, S. R., 1983, Standards for nanosecond fluorescence decay time measurements, Anal. Chem. 55: 68–73.

    CAS  Google Scholar 

  119. Schiller, N. H., and Alfano, R. R., 1980, Picosecond characteristics of a spectrograph measured by a streak camera/video readout system, Opt. Commun. 35 (3): 451–454.

    Google Scholar 

  120. Rubin, B., and Herman, R. M., 1981, Monochromators as light stretchers, Am. J. Phys. 49: 868–871.

    Google Scholar 

  121. Imhof, R.E., and Birch, D.J. S., 1982, Distortion of gaussian pulses by a diffraction grating, Opt. Commun. 42(2): 83–86.

    Google Scholar 

  122. Saari, P., Aaviksoo, J., Freiberg, A., and Timpmann, K., 1981, Elimination of excess pulse broadening at high spectral resolution of picosecond duration light emission, Opt. Commun. 39 (1,2): 94–98.

    Google Scholar 

  123. Bebelaar, D., 1986, Compensator for the time dispersion in a monochromator, Rev. Sci. Instrum. 57: 1686–1687.

    CAS  Google Scholar 

  124. Bhaumik, M. L., Clark, G. L., Snell, J., and Ferder, L., 1965, Stroboscopic time-resolved spectroscopy, Rev. Sci. Instrum. 36: 37–40.

    CAS  Google Scholar 

  125. Barisas, B. G., and Leuther, M. D., 1980, Grid-gated photomulti-plier photometer with subnanosecond time response, Rev. Sci. Instrum. 51: 74–78.

    Google Scholar 

  126. Steingraber, O. J., and Berlman, I. B., 1963, Versatile technique for measuring fluorescence decay times in the nanosecond region, Rev. Sci. Instrum. 34: 524–529.

    CAS  Google Scholar 

  127. Hundley, L., Coburn, T., Garwin, E., and Stryer, L., 1967, Nanosecond fluorimeter, Rev. Sci. Instrum. 38: 488–492.

    Google Scholar 

  128. James, D. R., Siemiarczuk, A., and Ware, W. R., 1992, Stroboscopic optical boxcar technique for the determination of fluorescence lifetimes, Rev. Sci. Instrum. 63: 1710–1716.

    CAS  Google Scholar 

  129. Nordlund, T. M., 1991, Streak camera for time-domain fluorescence, in Topics in Fluorescence Spectroscopy, Volume 1, Techniques, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 183–260.

    Google Scholar 

  130. Schiller, N. H., 1984, Picosecond streak camera photonics, in Semiconductors Probed by Ultrafast Laser Spectroscopy, Vol. II, Academic Press, pp. 441–458.

    Google Scholar 

  131. Campillo, A. J., and Shapiro, S. L., 1983, Picosecond streak camera fluorometry—a review, IEEE J. Quantum Electron. QE-19: 585–603.

    Google Scholar 

  132. Knox, W., and Mourou, G., 1981, A simple jitter-free picosecond streak camera, Opt. Commun. 37 (3): 203–206.

    CAS  Google Scholar 

  133. Ho, P. P., Katz, A., Alfano, R. R., and Schiller, N. H., 1985, Time response of ultrafast streak camera system using femtosecond laser pulses, Opt. Commun. 54(l): 57–62.

    Google Scholar 

  134. Bradley, D. J., Mclnerney, J., Dennis, W. M., and Taylor, J. R., 1983, A new synchroscan streak-camera read-out system for use with CW mode locked lasers, Opt. Commun. 44 (5): 357–360.

    Google Scholar 

  135. Tsuchiya, Y., and Shinoda, Y., 1985, Recent developments of streak cameras, Proc. SPIE 533:110–116.

    Google Scholar 

  136. Kinoshita, K., Ito, M., and Suzuki, Y., 1987, Femtosecond streak tube, Rev. Sci. Instrum. 58: 932–938.

    Google Scholar 

  137. Watanabe, M., Koishi, M., and Roehrenbeck, P. W., 1993, Development and characteristics of a new picosecond fluorescence lifetime system, Proc. SPIE 1885: 155–164.

    Google Scholar 

  138. Wiessner, A., and Staerk, H., 1993, Optical design considerations and performance of a spectro-streak apparatus for time-resolved fluorescence spectroscopy, Rev. Sci. Instrum. 64: 3430–3439.

    CAS  Google Scholar 

  139. Graf, U., Bühler, C., Betz, M., Zuber, H., and Anliker, M., 1994, Optimized streak-camera system: Wide excitation range and extended time scale for fluorescence lifetime measurement, Proc. SPIE 2137: 204–210.

    Google Scholar 

  140. Kume, H., Taguchi, T., Nakatsugawa, K., Ozawa, K., Suzuki, S., Samuel, R., Nishimura, Y., and Yamazaki, I., 1992, Compact ultra-fast microchannel plate photomultiplier tube, Proc. SPIE 1640: 440–447.

    Google Scholar 

  141. Porter, G., Reid, E. S., and Tredwell, C. J., 1974, Time resolved fluorescence in the picosecond region, Chem. Phys. Lett. 29: 469–472.

    Google Scholar 

  142. Beddard, G. S., Doust, T., and Porter, G., 1981, Picosecond fluorescence depolarisation measured by frequency conversion, Chem. Phys. 61: 17–23.

    CAS  Google Scholar 

  143. Kahlow, M. A., Jarzeba, W., DuBruil, T. P., and Barbara, P. F., 1988, Ultrafast emission spectroscopy in the ultraviolet by time-gated upconversion, Rev. Sci. Instrum. 59: 1098–1109.

    Google Scholar 

  144. Ware, W. R., Doemeny, L. J., and Nemzek, T. L., 1973, Deconvo-lution of fluorescence and phosphorescence decay curves. A least-squares method, J. Phys. Chem. 77: 2038–2048.

    CAS  Google Scholar 

  145. Isenberg, I., Dyson, R. D., and Hanson, R., 1973, Studies on the analysis of fluorescence decay data by the method of moments, Biophys.J. 13: 1090–1115.

    CAS  Google Scholar 

  146. Small, E. W., and Isenberg, I., 1977, On moment index displacement, J. Chem. Phys. 66: 3347–3351.

    CAS  Google Scholar 

  147. Small, E. W., 1992, Method of moments and treatment of nonran-dom error, Methods Enzymol. 210:237–279.

    Google Scholar 

  148. Gafni, A., Modlin, R. L., and Brand, L., 1975, Analysis of fluorescence decay curves by means of the Laplace transformation, Bio-phys. J. 15: 263–280.

    CAS  Google Scholar 

  149. Almgren, M., 1973, Analysis of pulse fluorometry data of complex systems, Chem. Scri. 3: 145–148.

    CAS  Google Scholar 

  150. Ameloot, M., 1992, Laplace deconvolution of fluorescence decay surfaces, Methods Enzymol. 210:237–279.

    Google Scholar 

  151. Ameloot, M., and Hendrickx, H., 1983, Extension of the performance of laplace deconvolution in the analysis of fluorescence decay curves, Biophys. J. 44: 27–38.

    Google Scholar 

  152. Livesey, A. K., and Brochón, J. C., 1987, Analyzing the distribution of decay constants in pulse-fluorimetry using the maximum entropy method, Biophys. J. 52: 693–706.

    CAS  Google Scholar 

  153. Brochón, J.-C., 1994, Maximum entropy method of data analysis in time-resolved spectroscopy, Methods Enzymol. 240:262–311.

    Google Scholar 

  154. Zhang, Z., Grattan, K. T. V., Hu, Y., Palmer, A. W., and Meggitt, B. T., 1996, Prony’s method for exponential lifetime estimations in fluorescence based thermometers, Rev. Sci. Instrum. 67: 2590–2594.

    CAS  Google Scholar 

  155. López, R. J., González, F., and Moreno, F., 1992, Application of a sine transform method to experiments of single-photon decay spectroscopy: Single exponential decay signals, Rev. Sci. Instrum. 63: 3268–3273.

    Google Scholar 

  156. Carraway, E. R., Hauenstein, B. L., Demás, J. N., and DeGraff, B. A., 1985, Luminescence lifetime measurements. Elimination of phototube time shifts with the phase plane method, Anal. Chem. 57: 2304–2308.

    CAS  Google Scholar 

  157. Bajzer, Z., Zelic, A., and Prendergast, F. G., 1995, Analytical approach to the recovery of short fluorescence lifetimes from fluorescence decay curves, Biophys. J. 69: 1148–1161.

    CAS  Google Scholar 

  158. O’Connor, D. V. O., Ware, W. R., and Andre, J. C., 1979, Deconvolution of fluorescence decay curves. A critical comparison of techniques, J. Phys. Chem. 83: 1333–1343.

    Google Scholar 

  159. Johnson, M. L., 1994, Use of least-squares techniques in biochemistry, Methods Enzymol . 240:1–22.

    Google Scholar 

  160. Straume, M., Frasier-Cadoret, S. G., and Johnson, M. L., 1991, Least-squares analysis of fluorescence data, in Topics in Fluorescence Spectroscopy, Volume 2, Principles, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 177–239.

    Google Scholar 

  161. Gryczynski, I., unpublished observations.

    Google Scholar 

  162. Johnson, M. L., personal communication.

    Google Scholar 

  163. Johnson, M. L., and Faunt, L. M., 1992, Parameter estimation by least-squares methods, Methods Enzymol. 210:1–37.

    Google Scholar 

  164. Johnson, M. L., and Frasier, S. G., 1985, Nonlinear least-squares analysis, Methods Enzymol. 117:301–342.

    Google Scholar 

  165. Box, G. E. P., 1960, Fitting empirical data, Ann. N. Y. Acad. Sci. 86: 792–816.

    Google Scholar 

  166. Bates, D. M., and Watts, D. G., 1988, Nonlinear Regression Analysis and Its Applications, John Wiley Sons, New York.

    Google Scholar 

  167. Straume, M., and Johnson, M. L., 1992, Monte Carlo method for determining complete confidence probability distributions of estimated model parameters, Methods Enzymol. 210:117–129.

    Google Scholar 

  168. Alcala, J. R., 1994, The effect of harmonic conformational trajectories on protein fluorescence and lifetime distributions, J. Chem. Phys. 101: 4578–4584.

    CAS  Google Scholar 

  169. Alcala, J. R., Gratton, E., and Prendergast, F. G., 1987, Fluorescence lifetime distributions in proteins, Biophys. J. 51: 597–604.

    CAS  Google Scholar 

  170. James, D. R., and Ware, W. R., 1985, A fallacy in the interpretation of fluorescence decay parameters, Chem. Phys. Lett. 120: 455–459.

    Google Scholar 

  171. Vix, A., and Lami, H., 1995, Protein fluorescence decay: Discrete components or distribution of lifetimes? Really no way out of the dilemma?, Biophys. J. 68: 1145–1151.

    CAS  Google Scholar 

  172. Lakowicz, J. R., Cherek, H., Gryczynski, I., Joshi, N., and Johnson, M. L., 1987, Analysis of fluorescence decay kinetics measured in the frequency-domain using distribution of decay times, Biophys. Chem. 28: 35–50.

    CAS  Google Scholar 

  173. Beechem, J. M., Knutson, J. R., Ross, J. B. A., Turner, B. W., and Brand, L., 1983, Global resolution of heterogeneous decay by phase/modulation fluorometry: Mixtures and proteins, Biochemistry 22: 6054–6058.

    CAS  Google Scholar 

  174. Beechem, J. M., Ameloot, M., and Brand, L., 1985, Global analysis of fluorescence decay surfaces: Excited-state reactions, Chem. Phys. Lett. 120: 466–472.

    Google Scholar 

  175. Knutson, J. R., Beechem, J. M., and Brand, L., 1983, Simultaneous analysis of multiple fluorescence decay curves: A global approach, Chem. Phys. Lett. 102: 501–507.

    Google Scholar 

  176. Beechem, J. M., 1989, A second generation global analysis program for the recovery of complex inhomogeneous fluorescence decay kinetics, Chem. Phys. Lipids 50: 237–251.

    Google Scholar 

  177. Beechem, J. M., Gratton, E., Ameloot, M., Knutson, J. R., and Brand, L., 1991, The global analysis of fluorescence intensity and anisotropy decay data: Second-generation theory and programs, in Topics in Fluorescence Spectroscopy, Volume 2, Principles, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 241–305.

    Google Scholar 

  178. Beechem, J. M., 1992, Global analysis of biochemical and biophysical data, Methods Enzymol. 210:37–55.

    Google Scholar 

  179. Chabbert, M., Hillen, W., Hansen, D., Takahashi, M., and Bousquet, J.-A., 1992, Structural analysis of the operator binding domain of TnlO-encoded Tet repressor: A time-resolved fluorescence and anisotropy study, Biochemistry 31: 1951–1960.

    CAS  Google Scholar 

  180. Dattelbaum, J. D., and Castellano, F. N., unpublished observations.

    Google Scholar 

  181. Malak, H., and Gryczynski, I., unpublished observations.

    Google Scholar 

  182. Frackowiak, D., Zelent, B., Malak, H., Planner, A., Cegielski, R., Munger, G., and Leblanc, R. M., 1994, Fluorescence of aggregated forms of CHI a in various media, J. Photochem. Photobiol. A: Chem. 78: 49–55.

    Google Scholar 

  183. Werst, M., Jia, Y., Mets, L., and Fleming, G. R., 1992, Energy transfer and trapping in the photosystem I core antenna, Biophys. J. 61: 868–878.

    CAS  Google Scholar 

  184. Gulotty, R. J., Mets, L., Alberte, R. S., and Fleming, G. R., 1986, Picosecond fluorescence studies of excitation dynamics in photo-synthetic light-harvesting arrays, in Applications of Fluorescence in the Biomedical Sciences, D. L. Taylor, A. S. Waggoner, F. Lanni, R. F. Murphy, and R. R. Birge (eds.), Alan R. Liss, New York, pp. 91–104.

    Google Scholar 

  185. Visser, A. J. W. G., 1984, Kinetics of stacking interactions in flavin adenine dinucleotide from time-resolved flavin fluorescence, Photochem. Photobiol. 40: 703–706.

    CAS  Google Scholar 

  186. Castellano, F. N., Heimer, T. A., Tandhasetti, M. T., and Meyer, G. J., 1994, Photophysical properties of ruthenium polypyridyl photonic Si02 gels, Chem. Mater. 6: 1041–1048.

    CAS  Google Scholar 

  187. Yoshihara, K., Nagasawa, Y., Yartsev, A., Kumazaki, S., Kandori, H., Johnson, A. E., and Tominaga, K., 1994, Femtosecond intermo-lecular electron transfer in condensed systems, J. Photochem. Photobiol. A: Chem. 80: 169–175.

    Google Scholar 

  188. Nagasawa, Y., Yartsev, A. P., Tominaga, K., Johnson, A. E., and Yoshihara, K., 1993, Substituent effects on intermolecular electron transfer: Coumarins in electron-donating solvents, J. Am. Chem. Soc. 115: 7922–7923.

    Google Scholar 

  189. Montgomery, D. C., and Peck, E. A., 1982, Introduction to Linear Regression Analysis, John Wiley Sons, New York, pp. 466–475.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lakowicz, J.R. (1999). Time-Domain Lifetime Measurements. In: Principles of Fluorescence Spectroscopy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3061-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3061-6_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-3063-0

  • Online ISBN: 978-1-4757-3061-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics