Skip to main content

Advanced Anisotropy Concepts

  • Chapter

Abstract

In the preceding two chapters we described steady-state and time-resolved anisotropy measurements and presented a number of biochemical examples which illustrated the types of information available from these measurements. Throughout these chapters, we stated that anisotropy decay depends on the size and shape of the rotating species. However, the theory which relates the form of the anisotropy decay to the shape of the molecule is complex and was not described in detail. In the present chapter we provide an overview of the rotational properties of nonspherical molecules, as well as representative examples.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Perrin, F., 1929, Mouvement brownien d’un ellipsoide (I). Dispersion diélectrique pour des molécules ellipsoidales, J. Phys. Radium 10: 497–511.

    Google Scholar 

  2. Perrin, F., 1936, Mouvement brownien d’un ellipsoide (II). Rotation libre et dépolarisation des fluorescences. Translation et diffusion de molécules ellipsoidales, J. Phys. Radium 1:1–11.

    Google Scholar 

  3. Perrin, F., 1936, Diminution de la polarisation de la fluorescence des solutions résultant du mouvement brownien de rotation, Acta Phys. Pol. 5: 335–345.

    Google Scholar 

  4. Perrin, F., 1929, La fluorescence des solutions. Induction moléculaire—polarisation et durée d’émission—photochimie, Ann. Phys. 12: 169–275.

    CAS  Google Scholar 

  5. Lombardi, J. R., and Daffom, G. A., 1966, Anisotropic rotational relaxation in rigid media by polarized photoselection, J. Chem. Phys. 44: 3882–3887.

    Article  Google Scholar 

  6. Tao, T., 1969, Time-dependent fluorescence depolarization and Brownian rotational diffusion of macromolecules, Biopolymers 8: 609–632.

    Article  CAS  Google Scholar 

  7. Ehrenberg, M., and Rigler, R., 1972, Polarized fluorescence and rotational Brownian motion, Chem. Phys. Lett. 14: 539–544.

    Article  CAS  Google Scholar 

  8. Chuang, T. J., and Eisenthal, K. B., 1972, Theory of fluorescence depolarization by anisotropie rotational diffusion, J. Chem. Phys. 57: 5094–5097.

    Article  CAS  Google Scholar 

  9. Belford, G. G., Belford, R. L., and Weber, G., 1972, Dynamics of fluorescence polarization in macromolecules, Proc. Natl. Acad. Sci. U.S.A. 69: 1392–1393.

    Article  CAS  Google Scholar 

  10. Small, E. W., and Isenberg, I., 1977, Hydrodynamic properties of a rigid molecule: Rotational and linear diffusion and fluorescence anisotropy, Biopolymers 16: 1907–1928.

    Article  CAS  Google Scholar 

  11. Steiner, R. F., 1991, Fluorescence anisotropy: Theory and applications, in Topics in Fluorescence Spectroscopy, Volume 2, Principles, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 1–52.

    Google Scholar 

  12. Brand, L., Knutson, J. R., Davenport, L., Beechem, J. M., Dale, R. E., Walbridge, D. G., and Kowalczyk, A. A., 1985, Time-resolved fluorescence spectroscopy: Some applications of associative behaviour to studies of proteins and membranes, in Spectroscopy and the Dynamics of Molecular Biological Systems, P. Bayley and R. E. Dale (eds.), Academic Press, London, pp. 259–305.

    Google Scholar 

  13. Barkley, M. D., Kowalczyk, A. A., and Brand, L., 1981, Fluorescence decay studies of anisotropic rotations: Internal motions in DNA, in Biomolecular Stereodynamics, Vol. 1, R. H. Sarma (ed.), Adenine Press, New York, pp. 391–403.

    Google Scholar 

  14. Beechem, J. M., Knutson, J. R., and Brand, L., 1986, Global analysis of multiple dye fluorescence anisotropy experiments on proteins, Biochem. Soc. Trans. 14: 832–835.

    CAS  Google Scholar 

  15. Kawski, A., 1993, Fluorescence anisotropy: Theory and applications of rotational depolarization, Crit. Rev. Anal. Chem. 23 (6): 459–529.

    Article  CAS  Google Scholar 

  16. Hu, C.-M., and Zwanzig, R., 1974, Rotational friction coefficients for spheroids with the slipping boundary condition, J. Chem. Phys. 60: 4354–4357.

    Article  CAS  Google Scholar 

  17. Youngren, G. K., and Acrivos, A., 1975, Rotational friction coefficients for ellipsoids and chemical molecules with the slip boundary condition, J. Chem. Phys. 63: 3846–3848.

    Article  CAS  Google Scholar 

  18. Barkley, M. D., Kowalczyk, A. A., and Brand, L., 1981, Fluorescence decay studies of anisotropic rotations of small molecules, J. Chem. Phys. 75: 3581–3593.

    Article  CAS  Google Scholar 

  19. Brocklehurst, B., and Young, R. N., 1994, Fluorescence anisotropy decays and viscous behaviour of 2-methyltetrahydrofuran, J. Chem. Soc., Faraday Trans. 90: 271–278.

    Article  CAS  Google Scholar 

  20. Brocklehurst, B., and Young, R. N., 1995, Rotation of perylene in alkanes: Nonhydrodynamic behavior, J. Phys. Chem. 99: 40–53.

    Article  CAS  Google Scholar 

  21. Sasaki, T., Hirota, K., Yamamoto, M., and Y. Nishijima, 1987, Anisotropic rotation of 66: 4081–4091.

    Google Scholar 

  22. Mantulin, W. W., and Weber, G., 1977, Rotational anisotropy and solvent–fluorophore bond: An investigation by differential polarized phase fluorometry, J. Chem. Phys. 66: 4092–4099.

    Article  CAS  Google Scholar 

  23. Weber, G., 1977, Theory of differential phase fluorometry: Detection of anisotropic molecular rotations, J. Chem. Phys. 66: 4081–4091.

    Article  CAS  Google Scholar 

  24. Mantulin, W. W., and Weber, G., 1977, Rotational anisotropy and solvent–fluorophore bond: An investigation by differential polarized phase fluorometry, J. Chem. Phys. 66: 4092–4099.

    Article  CAS  Google Scholar 

  25. Weber, G., and Mitchell, G. W., 1976, Demonstration of anisotropic molecular rotations by differential polarized phase fluorometry, in Excited States of Biological Molecules, J. B. Birks (ed.), John Wiley amp; Sons, New York, pp. 72–76.

    Google Scholar 

  26. Lakowicz, J. R., Prendergast, F. G., and Hogen, D., 1979, Differential polarized phase fluorometric investigations of diphenylhexatriene in lipid bilayers: Quantitation of hindered depolarizing rotations, Biochemistry 18: 508–519.

    Article  CAS  Google Scholar 

  27. Klein, U. K. A., and Haas, H. P., 1979, Picosecond rotational diffusion of perylene, Chem. Phys. Lett. 63: 40–42.

    Article  CAS  Google Scholar 

  28. Lakowicz, J. R., and Gryczynski, I., 1991, Frequency-domain fluorescence spectroscopy, in Topics in Fluorescence Spectroscopy, Volume 1, Techniques, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 293–355.

    Google Scholar 

  29. Lakowicz, J. R., Cherek, H., and Maliwal, B. P., 1985, Time-resolved fluorescence anisotropies of diphenylhexatriene and perylene in solvents and lipid bilayers obtained from multifrequency phase-modulation fluorometry, Biochemistry 24: 376–383.

    Article  CAS  Google Scholar 

  30. Lakowicz, J. R., and Maliwal, B. P., 1985, Construction and performance of a variable-frequency phase-modulation fluorometer, Biophys. Chem. 21: 61–78.

    Article  CAS  Google Scholar 

  31. Lakowicz, J. R., Gryczynski, I., Cherek, H., and Laczko, G., 1991, Anisotropy decays of indole, melittin monomer and melittin tetra-mer by frequency-domain fluorometry and multi-wavelength global analysis, Biophys. Chem. 39: 241–251.

    Article  CAS  Google Scholar 

  32. Gryczynski, I., Cherek, H., Laczko, G, and Lakowicz, J. R., 1987, Enhanced resolution of anisotropic rotational diffusion by multi-wavelength frequency-domain fluorometry and global analysis, Chem. Phys. Lett. 135: 193–199.

    Article  CAS  Google Scholar 

  33. Gryczynski, I., Cherek, H., and Lakowicz, J. R., 1988, Detection of three rotational correlation times for a rigid asymmetric molecule using frequency-domain fluorometry, Proc. SPIE 909: 285–292.

    Article  CAS  Google Scholar 

  34. Gryczynski, I., Danielson, E., and Lakowicz, J. R., unpublished observations.

    Google Scholar 

  35. Lakowicz, J. R., Gryczynski, I., and Wiczk, W. M., 1988, Anisotropic rotational diffusion of indole in cyclohexane studied by 2 GHz frequency-domain fluorometry, Chem. Phys. Lett. 149: 134–139.

    Article  CAS  Google Scholar 

  36. Gryczynski, I., Cherek, H., and Lakowicz, J. R., 1988, Detection of three rotational correlation times for a rigid asymmetric molecule using frequency-domain fluorometry, Biophys. Chem. 30: 271–277.

    Article  CAS  Google Scholar 

  37. Gryczynski, I., Wiczk, W., Johnson, M. L., and Lakowicz, J. R., 1988, Lifetime distributions and anisotropy decays of indole fluorescence in cyclohexane/ethanol mixtures by frequency-domain fluorometry, Biophys. Chem. 32: 173–185.

    Article  CAS  Google Scholar 

  38. Lakowicz, J. R., Gryczynski, I., Szmacinski, H., Cherek, H., and Joshi, N., 1991, Anisotropy decays of single tryptophan proteins measured by GHz frequency-domain fluorometry with collisional quenching, Eur. Biophys. J. 19: 125–140.

    Article  CAS  Google Scholar 

  39. Lakowicz, J. R., Cherek, H., Gryczynski, I., Joshi, N., and Johnson, M. L., 1987, Enhanced resolution of fluorescence anisotropy decays by simultaneous analysis of progressively quenched samples, Biophys. J. 51: 755–768.

    Article  CAS  Google Scholar 

  40. Barkley, M. D., and Zimm, B. H., 1979, Theory of twisting and bending of chain macromolecules; analysis of the fluorescence depolarization of DNA, J. Chem. Phys. 70: 2991–3007.

    Article  CAS  Google Scholar 

  41. Thomas, J. C., Allison, S. A., Appellof, C. J., and Schurr, J. M., 1980, Torsion dynamics and depolarization of fluorescence of linear macromolecules II. Fluorescence polarization anisotropy measurements on a clean viral 29 DNA, Biophys. Chem. 12: 177–188.

    Article  CAS  Google Scholar 

  42. Schurr, J. M., Fujimoto, B. S., Wu, P., and Song, L., 1992, Fluorescence studies of nucleic acids: Dynamics, rigidities, and structures, in Topics in Fluorescence Spectroscopy, Volume 3, Biochemical Applications, J. R. Lakowicz (ed.), Plenum Press, New York, pp. 137–229.

    Google Scholar 

  43. Millar, D. P., Robbins, R. J., and Zewail, A. H., 1981, Time-resolved spectroscopy of macromolecules: Effect of helical structure on the torsional dynamics of DNA and RNA, J. Chem. Phys. 74: 42004201.

    Google Scholar 

  44. Ashikawa, I., Furuno, T., Kinosita, K., Ikegami, A., Takahashi, H., and Akutsu, H., 1983, Internal motion of DNA in bacteriophages, J. Biol. Chem. 259: 8338–8344.

    Google Scholar 

  45. Ashikawa, I., Kinosita, K., and Ikegami, A., 1984, Dynamics of z-form DNA, Biochim. Biophys. Acta 782: 87–93.

    Article  CAS  Google Scholar 

  46. Genest, D., Wahl, P., Erard, M., Champagne, M., and Daune, M., 1982, Fluorescence anisotropy decay of ethidium bromide bound to nucleosomal core particles, Biochimie 64: 419–427.

    Article  CAS  Google Scholar 

  47. Ashikawa, I., Kinosita, K., Ikegami, A., Nishimura, Y., Tsuboi, M., Watanabe, K., Iso, K., and Nakano, T., 1983, Internal motion of deoxyribonucleic acid in chromatin. Nanosecond fluorescence studies of intercalated ethidium, Biochemistry 22: 6018–6026.

    Article  CAS  Google Scholar 

  48. Fisz, J. J., 1996, Polarized fluorescence decay surface for a mixture of non-interacting species in solution, Chem. Phys. Lett. 259: 579587.

    Google Scholar 

  49. Fisz, J. J., 1996, Polarized fluorescence spectroscopy of two-ground and two-excited state systems in solutions, Chem. Phys. Lett. 262: 495–506.

    Google Scholar 

  50. Fisz, J. J., 1996, Polarized fluorescence decay surface for many-ground-and many-excited-state species in solution, Chem. Phys. Len. 262: 507–518.

    Article  CAS  Google Scholar 

  51. Bialik, C. N., Wolf, B., Rachofsky, E. L., Ross, J. B. A., and Laws, W. R., 1998, Fluorescence anisotropy decay: Finding the correct physical model, Proc. SPIE 3526: 60–67.

    Article  Google Scholar 

  52. Wolber, P. K., and Hudson, B. S., 1981, Fluorescence lifetime and time-resolved polarization anisotropy studies of aryl chain order and dynamics in lipid bilayers, Biochemistry 20: 2800–2816.

    Article  CAS  Google Scholar 

  53. Wolber, R K., and Hudson, B. S., 1982, Bilayer acyl chain dynamics and lipid—protein interaction, Biophys. J. 37: 253–262.

    Article  CAS  Google Scholar 

  54. Ruggiero, A., and Hudson, B., 1989, Analysis of the anisotropy decay of trans-parinaric acid in lipid bilayers, Biophys. J. 55: 1125–1135.

    Article  CAS  Google Scholar 

  55. van Paridon, R A., Shute, J. K., Wirtz, K. W. A., and Visser, A. J. W. G., 1988, A fluorescence decay study of parinaroyl-phosphatidylinositol incorporated into artificial and natural membranes, Eur. Biophys. J. 16: 53–63.

    Article  Google Scholar 

  56. Visser, A. J. W. G., van Hoek, A., and van Paridon, R. A., 1987, Time-resolved fluorescence depolarization studies of parinaroyl phosphatidylcholine in Triton X-100 micelles and rat skeletal muscle membranes, in Membrane Receptors, Dynamics, and Energetics, K. W. A. Wirtz (ed.), Plenum Press, New York, pp. 353–361.

    Chapter  Google Scholar 

  57. Millar, D. R, Allen, D. J., and Benkovic, S. J., 1990, Structure and dynamics of a DNA:polymerase complex by time-resolved fluorescence spectroscopy, Proc. SPIE 1204: 392–403.

    Article  CAS  Google Scholar 

  58. Guest, C. R., Hochstrasser, R. A., Dupuy, C. G., Allen, D. J., Benkovic, S. J., and Millar, D. M., 1991, Interaction of DNA with the Klenow fragment of DNA polymerase I studied by time-resolved fluorescence spectroscopy, Biochemistry 30: 8759–8770.

    Article  CAS  Google Scholar 

  59. Peng, K., Visser, A. J. W. G., van Hoek, A., Wolfs, C. J. A. M., Sanders, J. C., and Hemminga, M. A., 1990, Analysis of time-resolved fluorescence anisotropy in lipid—protein systems, I. Application to the lipid probe octadecyl rhodamine B in interaction with bacteriophage M 13 coat protein incorporated in phospholipid bilayers, Eur. Biopsy. J. 18: 277–283.

    Article  CAS  Google Scholar 

  60. Peg, K., Visa, A. J. W. G., van Hoe, A., Wolfs, C. J. A. M., and Hemming, M. A., 1990, Analysis of time-resolved fluorescence an isotropy in lipid—protein systems, II. Application to tryptophan fluorescence of bacteriophage M13 coat protein incorporated in phospholipid bilayers, Eur. Biophys. J. 18: 285–293.

    Article  Google Scholar 

  61. Szmacinski, H., Jayaweera, R., Cherek, H., and Lakowicz, J. R., 1987, Demonstration of an associated anisotropy decay by frequency-domain fluorometry, Biophys. Chem. 27: 233–241.

    Article  CAS  Google Scholar 

  62. Wang, R., and Bright, E V., 1993, Rotational reorientation kinetics of dansylated bovine serum albumin, J. Phys. Chem. 97: 4231–4238.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lakowicz, J.R. (1999). Advanced Anisotropy Concepts. In: Principles of Fluorescence Spectroscopy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3061-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3061-6_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-3063-0

  • Online ISBN: 978-1-4757-3061-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics