Skip to main content

The Arithmetic-Geometric Mean of Gauss

  • Chapter
  • 677 Accesses

Abstract

The arithmetic-geometric mean of two numbers a and b is defined to be the common limit of the two sequences EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaaca % WGHbWaaSbaaSqaaiaad6gaaeqaaaGccaGL7bGaayzFaaWaa0baaSqa % aiaad6gacqGH9aqpcaaIWaaabaGaeyOhIukaaaaa!3E85!]]</EquationSource><EquationSource Format="TEX"><![CDATA[$$\left\{ {{a_n}} \right\}_{n = 0}^\infty $$, and EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaaca % WGIbWaaSbaaSqaaiaad6gaaeqaaaGccaGL7bGaayzFaaWaa0baaSqa % aiaad6gacqGH9aqpcaaIWaaabaGaeyOhIukaaaaa!3E86!]]</EquationSource><EquationSource Format="TEX"><![CDATA[$$\left\{ {{b_n}} \right\}_{n = 0}^\infty $$, determined by the algorithm

EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGHb % WaaSbaaSqaaiaaicdaaeqaaOGaeyypa0JaamyyaiaacYcacaaMc8Ua % amOyamaaBaaaleaacaaIWaaabeaakiabg2da9iaadkgacaGGSaaaba % GaamyyamaaBaaaleaacaWGUbGaey4kaSIaaGymaaqabaGccqGH9aqp % daqadaqaaiaadggadaWgaaWcbaGaamOBaaqabaGccqGHRaWkcaWGIb % WaaSbaaSqaaiaad6gaaeqaaaGccaGLOaGaayzkaaGaai4laiaaikda % caGGSaGaaGPaVlaadkgadaWgaaWcbaGaamOBaiabgUcaRiaaigdaae % qaaOGaeyypa0ZaaeWaaeaacaWGHbWaaSbaaSqaaiaad6gaaeqaaOGa % amOyamaaBaaaleaacaWGUbaabeaaaOGaayjkaiaawMcaamaaCaaale % qabaWaaSGbaeaacaaIXaaabaGaaGOmaaaaaaGccaGGSaGaaGPaVlaa % d6gacqGH9aqpcaaIWaGaaiilaiaaigdacaGGSaGaaGOmaiaacYcacq % WIMaYsaaaa!6508!]]</EquationSource><EquationSource Format="TEX"><![CDATA[$$\begin{gathered} {a_0} = a,\,{b_0} = b, \hfill \\ {a_{n + 1}} = \left( {{a_n} + {b_n}} \right)/2,\,{b_{n + 1}} = {\left( {{a_n}{b_n}} \right)^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}}},\,n = 0,1,2, \ldots \hfill \\ \end{gathered} $$
(0.1)

. Note that a 1 and b 1 are the respective arithmetic and geometric means of a and b, a 2 and b 2 the corresponding means of a 1 and b 1, etc. Thus the limit

EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamytamaabm % aabaGaamyyaiaacYcacaWGIbaacaGLOaGaayzkaaGaeyypa0ZaaCbe % aeaaciGGSbGaaiyAaiaac2gaaSqaaiaad6gacqGHsgIRcqGHEisPae % qaaOGaaGPaVlaadggadaWgaaWcbaGaamOBaaqabaGccqGH9aqpdaWf % qaqaaiGacYgacaGGPbGaaiyBaaWcbaGaamOBaiabgkziUkabg6HiLc % qabaGccaaMc8UaamOyamaaBaaaleaacaWGUbaabeaaaaa!52CB!]]</EquationSource><EquationSource Format="TEX"><![CDATA[$$M\left( {a,b} \right) = \mathop {\lim }\limits_{n \to \infty } \,{a_n} = \mathop {\lim }\limits_{n \to \infty } \,{b_n}$$
(0.2)

really does deserve to be called the arithmetic-geometric mean of a and b. This algorithm first appeared in a paper of Lagrange, but it was Gauss who really discovered the amazing depth of this subject. Unfortunately, Gauss published little on the agM (his abbreviation for the arithmetic-geometric mean) during his lifetime. It was only with the publication of his collected works [12] between 1868 and 1927 that the full extent of his work became apparent. Immediately after the last volume appeared, several papers (see [15] and [35]) were written to bring this material to a wider mathematical audience. Since then, little has been done, and only the more elementary properties of the agM are widely known today.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alling, N. L. Real Elliptic Curves. North-Holland Mathematics Studies, Vol. 54, North-Holland, Amsterdam, 1981.

    Google Scholar 

  2. Bernoulli, Jacob. Opera, Vol. I. Geneva, 1744.

    Google Scholar 

  3. Bernoulli, Johann. Opera omnia, Vol. I. Lausanne, 1742.

    Google Scholar 

  4. Bühler, W. K. Gauss: A Biographical Study. Springer-Verlag, Berlin-HeidelbergNew York, 1981.

    MATH  Google Scholar 

  5. Carlson, B. C. Algorithms involving Arithmetic and Geometric Means. Amer. Math. Monthly 78 (1971), 496–505.

    Article  MathSciNet  MATH  Google Scholar 

  6. Cassels, J. W. S. Rational Quadratic Forms. Academic Press, Ncw York, 1978.

    MATH  Google Scholar 

  7. Copson, E. T. An Introduction to the Theory of Functions r f a Complex Variable. Oxford U. Press, London, 1935.

    Google Scholar 

  8. Enneper, A. Elliptische Functionen: Theorie und Geschichte. Halle, 1876.

    Google Scholar 

  9. Euler, L. Opera Omnia,Series Prima, Vol. XX and XXI. Teubner, Leipzig and Berlin, 1912–1913.

    Google Scholar 

  10. Fuchs, W. Das arithmetisch-geometrische Mittel in den Untersuchungen von Carl Friedrich Gauss. Gauss-Gesellschaft Göttingen, Mittelungen No. 9 (1972), 14–38.

    Google Scholar 

  11. Gauss, C. F. Disquisitiones Arithmeticae. Translated by A. Clark, Yale U. Press, New Haven, 1965 (see also [12, I]).

    Google Scholar 

  12. Werke. Göttingen-Leipzig, 1868–1927.

    Google Scholar 

  13. Geppert, H. Bestimmung der Anziehung eines elliptischen Ringes. Ostwald’s Klassiker, Vol. 225, Akademische Verlag, Leipzig, 1927.

    Google Scholar 

  14. Wie Gauss zur elliptischen Modulfunktion kam. Deutsche Mathematik 5 (1940), 158–175.

    Google Scholar 

  15. Zur Theorie des arithmetisch-geometrischen Mittels. Math. Annalen 99 (1928), 162–180.

    Article  Google Scholar 

  16. Gradshteyn, I. S. and I. M. Ryzhik. Table of Integrals, Series and Products. Academic Press, New York, 1965.

    Google Scholar 

  17. Hancock, H. Lectures on the Theory of Elliptic Functions. Vol. I. Wiley, New York, 1910.

    MATH  Google Scholar 

  18. Hoffman, J. E. Über Jakob Bernoullis Beiträge zur Infinitesimalmathematik. L’Enseignement Math. 2 (1956),61–171.

    Google Scholar 

  19. Houzel, C. Fonctions Elliptiques et Intégrals Abéliennes. In Ahrégé d’histoire des mathématiques 1700–1900, Vol. II. Ed. by J. Dieudonné, Hermann, Paris, 1978, 1–112.

    Google Scholar 

  20. Jacobi, C. C. J. Gesammelte Werke. G. Reimer, Berlin, 1881.

    MATH  Google Scholar 

  21. Kline, M. Mathematical Thought from Ancient to Modern Times. Oxford U. Press, New York, 1972.

    Google Scholar 

  22. Lagrange, J. L. Oeuvres, Vol. I1. Gauthier-Villars, Paris, 1868.

    Google Scholar 

  23. Legendre, A. M. Traité des Fonctions Elliptiques. Paris, 1825–1828.

    Google Scholar 

  24. Lockwood, E. H. A Book of Curves. Cambridge U. Press, Cambridge, 1971.

    Google Scholar 

  25. Markushevitch, A. I. Die Arbeiten von C. F. Gauss über Funktionentheorie. In C. F. Gauss Gedenkband Anlässlich des 100. Todestages am 23. Februar 1955. Ed. by H. Reichart, Teubner, Leipzig, 1957, 151–182.

    Google Scholar 

  26. Miei., G. Of Calculations Past and Present: The Archimedean Algorithm. Amer. Math. Monthly 90 (1983), 17–35.

    Article  MathSciNet  Google Scholar 

  27. Mumford, D. Tata Lectures on Theta I. Progress in Mathematics Vol. 28, Birkhäuser, Boston, 1983.

    Google Scholar 

  28. Rosen, M. Abel’s Theorem on the Lemniscate. Amer. Math. Monthly 88 (1981), 387–395.

    Article  MathSciNet  MATH  Google Scholar 

  29. Serre, J.-P. Cours d’Arithmétique. Presses U. de France, Paris, 1970.

    Google Scholar 

  30. Shimura, G. Introduction to the Arithmetic Theory of Automorphic Functions. Princeton U. Press, Princeton, 1971.

    Google Scholar 

  31. Stirling, J. Methodus Differentialis. London, 1730.

    Google Scholar 

  32. Tannery, J. and J. MOLK. Eléments de la Théorie des Fonctions Elliptiques, Vol. 2. Gauthiers-Villars, Paris, 1893.

    MATH  Google Scholar 

  33. Todd, J. The Lemniscate Constants. Comm. of the ACM 18 (1975), 14–19.

    Article  MathSciNet  MATH  Google Scholar 

  34. Pot, B. Démonstration Elémentaire de la Relation 01 = 0;1 + 01 entre les Différentes Fonctions de Jacobi. L’Enseignement Math. 1 (1955), 258–261.

    Google Scholar 

  35. David, L. Arithmetisch-gcometrisches Mittel und Modulfunktion. J. für die Reine u. Ang. Math. 159 (1928), 154–170.

    MATH  Google Scholar 

  36. Whittaker, E. T. and G. N. Watson. A Course of Modern Analysis, 4th cd. Cambridge U. Press, Cambridge, 1963.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cox, D.A. (1997). The Arithmetic-Geometric Mean of Gauss. In: Pi: A Source Book. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-2736-4_55

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2736-4_55

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-2738-8

  • Online ISBN: 978-1-4757-2736-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics