Skip to main content

Gene Regulation by Steroid Hormones

  • Chapter
Gene Expression

Part of the book series: Progress in Gene Expression ((PRGE))

Abstract

The ability of cells to specify the fraction of their genetic information that they express in a particular spatiotemporal context is essential for adaptation to the changing conditions of their surroundings. In higher organisms, cells must respond to stimuli from the outer world and to signals from other cells directed to coordinate their state of activity for the proper development and functioning of the whole animal. Many of these signals impinge on receptors located at the cell membrane, where they elicit changes in the intracellular concentration of key molecules, second messengers, that ultimately modulate the expression of genetic programs. The signal transduction mechanism is simpler in the case of molecules acting through nuclear receptors able to recognize the signal and to interact directly with the nuclear genome. To this class belong the steroid hormones that influence the expression of a great variety of genes in many different cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akerblom IW, Slater EP, Beato M, Baxter JD, Mellon PL (1988): Negative regulation by glucocorticoids through interference with a cAMP responsive enhancer. Science 241:350–353.

    Google Scholar 

  • Aimer A, Hörz W (1986): Nuclease hypersensitive regions with adjacent positioned nucleosomes mark the gene boundaries of the PH05/PH03 locus in yeast. EMBO J 5:2681–2687.

    Google Scholar 

  • Aimer A, Rudolph H, Hinnen A, Hörz W (1986): Removal of positioned nucleosomes from the yeast PH05 promoter upon induction releases additional upstream activating DNA elements. EMBO J 5:2689–2696.

    Google Scholar 

  • Archer TK, Cordingley MG, Wolford RG, Hager GL (1991): Transcription factor access is mediated by accurately positioned nucleosomes on the mouse mammary tumor virus promoter. Mol Cell Biol 11:688–698.

    Google Scholar 

  • Archer TK, Hager GL, Omichinski JG (1990): Sequence-specific DNA binding by glucocorticoid receptor “zinc finger peptides.” Proc Natl Acad Sci USA 87:7560–7564.

    Google Scholar 

  • Auricchio F (1989): Phosphorylation of steroid receptors. J Steroid Biochem 32:613–622.

    Google Scholar 

  • Baniahmad C, Muller M, Altschmied J, Renkawitz R (1991): Co-operative binding of the glucocorticoid receptor DNA binding domain is one of at least two mechanisms for synergism. J Mol Biol 222:155–165.

    Google Scholar 

  • Baumann H, Maquat LE (1986): Localization of DNA sequences involved in dexamethasone-dependent expression of the alphai-acid gycoprotein gene. Mol Cell Biol 7:2551–2561.

    Google Scholar 

  • Beato M (1989): Gene regulation by steroid hormones. Cell 56:335–344.

    Google Scholar 

  • Beato M (1991): Transcriptional regulation of mouse mammary tumor virus by steroid hormones. Crit Rev Oncogen 2:195–210.

    Google Scholar 

  • Beato M, Arnemann J, Menne C, MAller H, Suske G, Wenz M (1983): Regulation of the expression of the uteroglobin gene by ovarian hormones. In: Regulation of Gene Expression by Hormones, McKerns KW, ed. pp. 151–175, New York: Plenum.

    Google Scholar 

  • Becker P, Renkawitz R, SchĂĽtz G (1984): Tissue-specific DNasel hypersensitive sites in the 5′-flanking sequences of the tryptophan oxygenase and tyrosine aminotransferase genes. EMBO J 3:2015–2020.

    Google Scholar 

  • Becker PB, Gloss B, Schmid W, Strähle U, SchĂĽtz G (1986): In vivo protein-DNA interactions in a glucocorticoid response element require the presence of the hormone. Nature (Lond) 324:686–688.

    Google Scholar 

  • Bocquel MT, Kumar V, Stricker C, Chambon P, Gronemeyer H (1989): The contribution of the N- and C-terminal regions of steroid receptors to activation of transcription is both receptor and cell-specific. Nucleic Acids Res 17:2581–2595.

    Google Scholar 

  • BrĂĽggemeier U, Kalff M, Franke S, Scheidereit C, Beato M (1991): Ubiquitous transcription factor OTF-1 mediates induction of the mouse mammary tumor virus promoter through synergistic interaction with hormone receptors. Cell 64:565–572.

    Google Scholar 

  • BrĂĽggemeier U, Rogge L, Winnacker EL, Beato M (1990): Nuclear factor I acts as a transcription factor on the MMTV promoter but competes with steroid hormone receptors for DNA binding. EMBO J 9:2233–2239.

    Google Scholar 

  • Carballo M, Beato M (1990): Binding of the glucocorticoid receptor induces a topological changes in plasmids containing the hormone-responsive element of mouse mammary tumor virus. DNA Cell Biol 9:519–521.

    Google Scholar 

  • Carlstedt-Duke J, Strömstedt Persson PEB, Cederlund E, Gustafsson JA, Jörnvall H (1988): Identification of hormone-interacting amino acid residues within the steroid-binding domain of the blucocorticoid receptor in relation to other steroid hormone receptors. J Biol Chem 263:6842–6846.

    Google Scholar 

  • Carr KD, Richard-Foy H (1990): Glucocorticoids locally disrupt an array of positioned nucleosomes on the rat amino transferase promoter in hepatoma cells. Proc Natl Acad Sci USA 87:9300–9304.

    Google Scholar 

  • Chalepakis G, Postma JPM, Beato M (1988a): A model for hormone receptor binding to the mouse mammary tumor virus regulatory element based on hydroxyl radical footprinting. Nucleic Acids Res 16:10237–10247.

    Google Scholar 

  • Chalepakis G, Arnemann J, Slater EP, BrĂĽller HJ, Gross B, Beato M (1988b): Differential gene activation by glucocorticoids and progestins through the hormone regulatory element of mouse mammary tumor virus. Cell 53: 371–382.

    Google Scholar 

  • Chalepakis G, Schauer M, Cao X, Beato M (1990): Efficient binding of glucocorticoid receptor to its responsive element requires a dimer and DNA flanking sequences. DNA Cell Biol 9:355–368.

    Google Scholar 

  • Chambraud B, Berry M, Redeuilh G, Chambon P, Baulieu EE (1990): Several regions of human estrogen receptor are involved in the formation of receptor-heat shock protein 90 complexes. J Biol Chem 265:20686–20691.

    Google Scholar 

  • Chan GCK, Hess P, Meenakshi T, Carlstedtduke J, Gustafsson JA, Payvar F (1991): Delayed secondary glucocorticoid response elements—unusual nucleotide motifs specify glucocorticoid receptor binding to transcribed regions of α-2u-globulin DNA. J Biol Chem 266:22634–22644.

    Google Scholar 

  • Chatterjee VKK, Madison LD, Mayo S, Jameson JL (1991): Repression of the human glycoprotein hormone α-subunit gene by glucocorticoids: Evidence for receptor interaction with limiting transcriptional activators. Mol Endocrinol 5:100–110.

    Google Scholar 

  • Conneely O, Sullivan WP, Toft DO, Birnbaumer M, Cook RG, Maxwell BL, Zarucki-Schulz T, Greene GL, Schrader WT, O’Malley BW (1986): Molecular cloning of the chicken progesterone receptor. Science 233:767–770.

    Google Scholar 

  • Cordingley MG, Hager GL (1988): Binding of multiple factors to the MMTV promoter in crude and fractionated nuclear extracts. Nucleic Acid Res 16:609–630.

    Google Scholar 

  • Cordingley MG, Riegel AT, Hager GL (1987): Steroid-dependent interaction of transcription factors with the inducible promoter of mouse mammary tumor virus in vivo. Cell 48:261–270.

    Google Scholar 

  • Croston GE, Kerrigan LA, Lira LM, Marshak DR, Kadonaga JT (1991): Sequence-specific antirepression of histone Hl-mediated inhibition of basal RNA polymerase II transcription. Science 251:643–649.

    Google Scholar 

  • Dahlman-Wright K, Siltala-Roos H, Carlstedt-Duke J, Gustafsson JA (1990): Protein-protein interactions facilitate DNA binding by the glucocorticoid receptor DNA-binding domain. J Biol Chem 265:14030–14035.

    Google Scholar 

  • Dahlman-Wright K, Wright A, Gustafsson, J-A, Carlstedt-Duke J (1991): Interaction of the glucocorticoid receptor DNA-binding domain with DNA as a dimer is mediated by a short segment of five amino acids. J Biol Chem 266:3107–3112.

    Google Scholar 

  • Dalman FC, Koenig RJ, Perdew GH, Massa E, Pratt WB (1990): In contrast to the glucocorticoid receptor, the thyroid hormone receptor is translated in the DNA binding state and is not associated with hsp90. J Biol Chem 265:2615–2618.

    Google Scholar 

  • Danielsen M, Hinck L, Ringold GM (1989): Two amino acids within the knuckle of the first zinc finger specify DNA response element activation by the glucocorticoid receptor. Cell 57:1131–1138.

    Google Scholar 

  • DeFranco DB, Qi M, Borror KC, Garabedian MJ, Brautigan DL (1991): Protein phosphatase types 1 and/or 2A regulated nucleocytoplasmic shuttling of glucocorticoid receptors. Mol Endocrinol 5:1215–1228.

    Google Scholar 

  • Delegeane AM, Ferland LH, Mellon PL (1987): Tissue-specific enhancer of the human glycoprotein hormone α-subunit gene: Dependence on cyclic AMP-inducible elements. Mol Cell Biol 7:3994–4002.

    Google Scholar 

  • Denner LA, Scharder WT, O’Malley BW, Weigel NL (1990a): Hormonal regulation and identification of chicken progesterone receptor phosphorylation sites. J Biol Chem 265:16548–16555.

    Google Scholar 

  • Denner LA, Weigel NL, Maxwell BL, Schrader WT, O’Malley BW (1990b): Regulation of progesterone receptor-mediated transcription by phosphorylation. Science 250:1740–1743.

    Google Scholar 

  • Deutsch PJ, Jameson JL, Habener JF (1987): Cyclic AMP responsiveness of human gonadotropin-α gene transcription is directed by a repeated 18-base pairs enhancer. J Biol Chem 262:12169–12174.

    Google Scholar 

  • Diamond MI, Miner JN, Yoshinaga SK, Yamamoto KR (1990): Transcription factor interactions: Selectors of positive or negative regulation from a single DNA element. Science 249:1266–1272.

    Google Scholar 

  • Drew HR, Calladine CR (1987): Sequence-specific positioning of core histones on an 860 base-pair DNA. J Mol Biol 195:143–173.

    Google Scholar 

  • Dreyer C, Krey G, Keller H, Givel F, Helftenbein G, Wahli W: Control of the peroxisomal β-oxidation of a novel family of nuclear hormone receptors. Cell 68:879–887.

    Google Scholar 

  • Drouin J, Charron J, Gagner JP, Jeannotte L, Nemer M, Plante RK, Wrange (1987): The pro-opiomelanocortin gene: A model for negative regulation of transcription by glucocorticoids. J Cell Biochem 35:293–304.

    Google Scholar 

  • Durrin LK, Mann RK, Kayne PS, Grunstein M (1991): Yeast histone H4 N-terminal sequence is required for promoter activation in vivo. Cell 65:1023–1031.

    Google Scholar 

  • El-Ashry D, Oñate SA, Nordeen SK, Edwards DP (1989): Human progesterone receptor complexed with antagonist RU486 binds to hormone response elements in a structurally altered form. Mol Endocrinol 3:1545–1558.

    Google Scholar 

  • Elgin SCR (1988): The formation and function of DNasel hypersensitive sites in the process of gene activation. J Biol Chem 263:19259–19262.

    Google Scholar 

  • Evans RM (1988): The steroid and thyroid hormone receptor superfamily. Science 240:889–895.

    Google Scholar 

  • Fawell SE, Lees JA, White R, Parker MG (1990): Characterization and colocalization of steroid binding and dimerization activities in the mouse estrogen receptor. Cell 60:953–962.

    Google Scholar 

  • Forman BM, Samuels HH (1990): Dimerization among nuclear hormone receptors. New Biol 2:587–594.

    Google Scholar 

  • Gill G, Ptashne M (1988): Negative effect of the transcriptional activator GALA Nature (Lond) 334:721–724.

    Google Scholar 

  • Godowski PJ, Picard D (1989): Steroid receptors. How to be both a receptor and a transcription factor. Biochem Pharmacol 38:3135–3143.

    Google Scholar 

  • Green S, Kumar V, Theulaz I, Wahli W, Chambon P (1988): The N-terminal DNA-binding “zinc finger” of the oestrogen and glucocorticoid receptors determines target gene specificity. EMBO J 7:3037–3044.

    Google Scholar 

  • Guiochon-Mantel A, Lescop P, Christinmaitre S, Loosfelt H, Perrotapplanat M, Milgrom E (1991): Nucleocytoplasmic shuttling of the progesterone receptor. EMBO J 10:3851–3859.

    Google Scholar 

  • Guiochon-Mantel A, Loosfelt H, Ragot T, Bailly A, Atger M, Misrahi M, Perricaudet M, Milgrom E (1988): Receptors bound to antiprogestin form abortive complexes with hormone responsive elements. Nature (Lond) 336:695–698.

    Google Scholar 

  • Han K, Grunstein M (1988): Nucleosome loss activates yeast downstream promoters in vivo. Cell 55:1137–1145.

    Google Scholar 

  • Han K, Kim UJ, Kayne P, Grunstein M (1988): Depletion of histone H4 and nucleosomes activates the PH05 gene in Saccharomyces cerevisiae. EMBO J 7:2221–2228.

    Google Scholar 

  • Härd T, Kellenbach E, Boelens R, Maler BA, Dahlman K, Freedman LP, Carlsted-Duke J, Yamamoto KR, Gustafsson J, Kaptein R (1990): Solution structure of the glucocorticoid receptor DNA-binding domain. Science 249:157–160.

    Google Scholar 

  • Hess P, Meenakshi T, Chan GCK, Carlstedt-Duke J, Gustafsson JA, Payvar F (1990): Purified glucocorticoid receptors bind selectively in vitro to a cloned DNA fragment that mediates a delayed secondary response to glucocorticoids in vivo. Proc Natl Acad Sci USA 87:2564–2568.

    Google Scholar 

  • Hollenberg SM, Evans RM (1988): Multiple and cooperative trans-activation domains of the human glucocorticoid receptor. Cell 55:899–906.

    Google Scholar 

  • Housley P, Sanchez E, Danielsen M, Ringold G, Pratt W (1990): Evidence that the conserved region in the steroid binding domain of the glucocorticoid receptor is required for both optimal binding of hsp90 and protection from proteolytic cleavage. J Biol Chem 265:12778–12781.

    Google Scholar 

  • Howard KJ, Holley SJ, Yamamoto KR, Disselhorst CW (1990): Mapping the hsp90 binding region of the glucocorticoid receptor. J Biol Chem 265:11928–11935.

    Google Scholar 

  • Issemann I, Green S (1990): Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature (Lond) 347:645–650.

    Google Scholar 

  • Jameson JL, Deutsch PJ, Gallagher GD, Jaffe RC, Habener JF (1987): Transacting factors interact with a cAMP response element to modulate expression of the human gonadotropin a gene. Mol Cell Biol 7:3032–3040.

    Google Scholar 

  • Jantzen C, Fritton HP, Igo-Kemenes T, Espel E, Janich S, Cato ACB, Mugele K, Beato M (1987): Partial overlapping of binding sequences for steroid hormone receptors and DNasel hypersensitive sites in the rabbit uteroglobin gene region. Nucleic Acid Res 15:4535–4552.

    Google Scholar 

  • Jensen EV, Suzuki T, Kawashima T, Stumpf WE, Jungblut PW, DeSombre ER (1968): A two-step mechanism for the interaction of estradiol with rat uterus. Proc Natl Acad Sci USA 59:632–636.

    Google Scholar 

  • Jonat C, Rahmsdorf H, Park K, Cato A, Gebel S, Ponta H, Herrlich P (1990): Antitumor promotion and antiinflamation: Down-regulation of AP-1 (Fos/Jun) activity by glucocorticoid hormone. Cell 62:1189–1204.

    Google Scholar 

  • Kalff M, Gross B, Beato M (1990): Progesterone receptor stimulates transcription of mouse mammary tumor virus in a cell-free system. Nature (Lond) 344:360–362.

    Google Scholar 

  • Kastner P, Krust A, Turcotte B, Stropp U, Tora L, Gronemeyer H, Chambon P (1990): Two distinct estrogen-regulated promoters generate transcripts encoding the two functionally different human progesterone receptor forms A and B.EMBO J 9:1603–1624.

    Google Scholar 

  • Kayne PS, Kim UJ, Han M, Mullen JR, Yoshizaki F, Grunstein M (1988): Extremely conserved histone H4 N terminus is dispensable for growth but essential for repressing the silent mating loci of yeast. Cell 55:27–39.

    Google Scholar 

  • King RJB (1987): Structure and function of steroid receptors. J Endocrinol 114:341–349.

    Google Scholar 

  • Klein ES, DiLorenzo D, Posseckert G, Beato M, Ringold GM (1988): Sequences downstream of the glucocorticoid regulatory element mediate cycloheximide inhibition of steroid induced expression from the rat α 1-acid glycoprotein promoter: Evidence for a labile transcription fact. Mol Endocrinol 2:1343–1351.

    Google Scholar 

  • Klock G, Strähle U, SchĂĽtz G (1987): Oestrogen and glucocorticoid responsive elements are closely related but distinct. Nature (Lond) 329:734–736.

    Google Scholar 

  • Kornberg RD, Lorch Y (1991): Irresistible force meets immovable object: Transcription and the nucleosome. Cell 67:833–836.

    Google Scholar 

  • Kumar V, Chambon P (1988): The estrogen receptor binds tightly to its responsive element as a ligand-induced homodimer. Cell 55:145–156.

    Google Scholar 

  • Laybourn PJ, Kadonaga JT (1991): Role of nucleosomal cores and histone-H1 in regulation of transcription by RNA polymerase-II. Science 254:238–245.

    Google Scholar 

  • Lees J, Fawell S, White R, Parker M (1990): A 22-amino-acid peptide restores DNA-binding activity to dimerization-defective mutants of the estrogen receptor. Mol Cell Biol 10:5529–5531.

    Google Scholar 

  • Loosfelt H, Atger M, Misrahi M, Guiochon-Mantel A, Meriel C, Logeat F, Benarous R, Milgrom E (1986): Cloning and sequence analysis of rabbit progesterone receptor complementary DNA. Proc Natl Acad Sci USA 83:9045–9049.

    Google Scholar 

  • Lucibello FC, Slater EP, Jooss KU, Beato M, MĂĽller R (1990): Mutual transre-pression of Fos and the glucocorticoid receptor: Involvement of a functional domain in Fos which is absent in FosB. EMBO J 9:2827–2834.

    Google Scholar 

  • Luisi BF, Xu WX, Otwinowski Z, Freedman LR Yamamoto KR, Sigler PB (1991): Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA. Nature (Lond) 352:497–505.

    Google Scholar 

  • Mader S, Kumar V, Verneuil H, Chambon P (1989): Three amino acids of the oestrogen receptor are essential to its ability to distinguish an oestrogen from a glucocorticoid-responsive element. Nature (Lond) 338:271–274.

    Google Scholar 

  • Meersseman G, Pennings S, Bradbury M (1991): Chromatosome positioning on assembled long chromatin. Linker histones affect nucleosome placement on 5 S rDNA. J Mol Biol 220:89–100.

    Google Scholar 

  • Miesfeld R, Godowski PJ, Maler BA, Yamamoto KR (1987): Glucocorticoid receptor mutants that define a small region sufficient for enhancer activation. Science 236:423–427.

    Google Scholar 

  • Migliaccio A, Castoria G, Falco AD, DiDomenica M, Galdiero M, Nola E, Chambon P, Auricchio F (1991): In vitro phosphorylation and hormone binding activation of the synthetic wild type human estradiol receptor. J Steroid Biochem Mol Biol 38:407–413.

    Google Scholar 

  • Migliaccio A, DiDomenico M, Green S, Falco A, Kajtaniak EL, Blasi F, Chambon P, Auricchio F (1989): Phosphorylation on tyrosine of in vitro synthesized human estrogen receptor activates its hormone binding. Mol Endocrinol 3:1061–1069.

    Google Scholar 

  • Miller J, McLachlan AD, Klug A (1985): Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J 4:1609–1614.

    Google Scholar 

  • Miner JN, Yamamoto KR (1991): Regulatory crosstalk at composite response elements. Trends Biochem Sci 16:423–426.

    Google Scholar 

  • Natsoulis G, Dollard C, Winston F, Boeke JD (1991): The products of the SPT10 and SPT21 genes of Saccharomyces cerevisiae increase the amplitude of transcriptional regulation at a large number of unlinked loci. New Biol 3:1249–1259.

    Google Scholar 

  • Nordeen SK, Suh BJ, KĂĽhnel B, Hutchison C (1990): Structural determinants of a glucocorticoid receptor recognition element. Mol Endocrinol 4:1866–1873.

    Google Scholar 

  • Ohara-Nemoto Y, Strömstedt P-E, Dahlman-Wright K, Nemoto T, Gustafsson JA, Carlstedt-Duke J (1990): The steroid-binding properties of recombinant glucocorticoid receptor: A putative role for heat shock protein hsp90. J Steroid Biochem 37:481–490.

    Google Scholar 

  • O’Malley BW (1990): The steroid receptor superfamily: More excitement predicted for the future. Mol Endocrinol 4:363–369.

    Google Scholar 

  • Oro AE, Hollenberg SM, Evans RM (1988): Transcriptional inhibition by a glucocorticoid receptor-β-galactosidase fusion protein. Cell 55:1109–1114.

    Google Scholar 

  • Payvar F, DeFranco D, Firestone GL, Edgar B, Wrage Okret S, Gustafsson JA, Yamamoto KR (1983): Sequence-specific binding of glucocorticoid receptor to MMTV DNA at sites within and upstream of the transcribed region. Cell 35:381–392.

    Google Scholar 

  • Perlmann T, Erikson P, Wrage Ă– (1990): Quantitative analysis of the glucocorticoid receptor-DNA interaction at the mouse mammary tumor virus glucocorticoid response element. J Biol Chem 265:17222–17229.

    Google Scholar 

  • Perlmann T, Wrange Ă– (1988): Specific glucocorticoid receptor binding to DNA reconstituted in a nucleosome. EMBO J 7:3073–3079.

    Google Scholar 

  • Perlmann T, Wrange Ă– (1991): Inhibition of chromatin assembly in Xenopus oocytes correlates with derepression of the mouse mammary tumor virus promoter. Mol Cell Biol 11:5259–5265.

    Google Scholar 

  • Picard D, Khursheed B, Garabedian MJ, Fortin MG, Lindquist S, Yamamoto KR (1990): Reduced levels of hsp90 compromise steroid receptor action in vivo. Nature (Lond) 348:166–168.

    Google Scholar 

  • Picard D, Yamamoto KR (1987): Two signals mediate hormone-dependent nuclear localization of the glucocorticoid receptor. EMBO J 3333–3340.

    Google Scholar 

  • Piña B, Barettino D, Truss M, Beato M (1990a): Structural features of a regulatory nucleosome. J Mol Biol 216:975–990.

    Google Scholar 

  • Piña B, BrĂĽggeimeier U, Beato M (1990b): Nucleosome positioning modulates accessibility of regulatory proteins to the mouse mammary tumor virus promoter. Cell 60:719–731.

    Google Scholar 

  • Piña B, HachĂ© RJG, Arnemann J, Chalepakis G, Slater EP, Beato M (1990c): Hormonal induction of transfected genes depends on DNA topology. Mol Cell Biol 10:625–633.

    Google Scholar 

  • Piña B, Truss M, Ohlenbusch H, Postma J, Beato M (1990d): DNA rotational positioning in a regulatory nucleosome is determined by base sequence. An algorithm to model the preferred superhelix. Nucleic Acids Res 18:6981–6987.

    Google Scholar 

  • Power RF, Lydon JP, Conneely OM, O’Malley BW (1991): Dopamin activation of an orphan of the steroid receptor superfamily. Science 252:1546–1548.

    Google Scholar 

  • Pratt WB, Jolly DJ, Pratt DV, Hollenberg SM, Giguerre V, Cadepond FM, Sch-weizer-Groyer G, Catelli MG, Evans RM, Baulieu EE (1988): A region in the steroid binding domain determines formation of the non-DNA binding, 9S glucocorticoid receptor complex. J Biol Chem 263:267–273.

    Google Scholar 

  • Ptashne M, Gann AAF (1990): Activators and targets. Nature (Lond) 346:329–331.

    Google Scholar 

  • Reik A, SchĂĽtz G, Stewart AF (1991): Glucocorticoids are required for establishment and maintenance of an alteration in chromatin structure: Induction leads to a reversible disruption of nucleosomes over an enhancer. EMBO J 10:2569–2576.

    Google Scholar 

  • Reinke R, Feigelson P (1985): Rat alpha-1-acid glytoprotein. Gene sequence and regulation by glucocorticoids in transfected L-cells. J Biol Chem 260:4397–4403.

    Google Scholar 

  • Richard-Foy H, Hager GL (1987): Sequence-specific positioning of nucleosomes over the steroid-inducible MMTV promoter. EMBO J 6:2321–2328.

    Google Scholar 

  • Rigaud G, Roux J, Pictet R, Grange T (1991): In vivo footprinting of rat TAT gene: Dynamic interplay between the glucocorticoid receptor and a liver-specific factor. Cell 67:977–986.

    Google Scholar 

  • Sakai DD, Helms S, Carlstedt-Duke J, Gustafsson JA, Rottman FM, Yamamoto KR (1988): Hormone-mediated repression of transcription: A negative glucocorticoid response element from the bovine prolactin gene. Genes & Dev 2:1144–1154.

    Google Scholar 

  • Satchwell SC, Drew HR, Travers AA (1986): Sequence periodicities in chicken nucleosome core DNA. J Mol Biol 191:659–675.

    Google Scholar 

  • Schatt MD, Rusconi S, Schaffner W (1990): A single DNA-binding transcription factor is sufficient for activation from a distant enhancer and/or from a promoter position. EMBO J 9:481–487.

    Google Scholar 

  • Schauer M, Chalepakis G, Willmann T, Beato M (1989): Binding of hormone accelerates the kinetics of glucocorticoid and progesterone receptor binding to DNA. Proc Natl Acad Sci USA 86:1123–1127.

    Google Scholar 

  • Scheidereit C, Beato M (1984): Contacts between receptor and DNA double helix within a glucocorticoid regulatory element of mouse mammary tumor. Proc Natl Acad Sci USA 81:3029–3033.

    Google Scholar 

  • Scheidereit C, Geisse S, Westphal HM, Beato M (1983): The glucocorticoid receptor binds to defined nucleotide sequences near the promoter of mouse mammary tumor. Nature (Lond) 304:749–752.

    Google Scholar 

  • Scheidereit C, Westphal HM, Carlson C, Bosshard H, Beato M (1986): Molecular model of the interaction between the glucocorticoid receptor and the regulatory elements of inducible genes. DNA 5:383–391.

    Google Scholar 

  • Schena M, Freedman LP, Yamamoto KR (1989): Mutations in the glucocorticoid receptor zinc finger that distinguish interdigitated DNA binding and transcriptional enhancement activities. Genes & Dev 3:1590–1601.

    Google Scholar 

  • Schmid W, Strähle U, SchĂĽtz G, Schmitt J, Stunnenberg H (1989): Glucocorticoid receptor binds cooperatively to adjacent recognition sites. EMBO J 8:2257–2263.

    Google Scholar 

  • SchĂĽle R, Evans RM (1991): Cross-coupling of signal transduction pathways— zinc finger meets leucine zipper. Trends Genet 7:377–381.

    Google Scholar 

  • SchĂĽle R, Muller M, Otsuka-Murakami H, Renkawitz R (1988): Cooperativity of the glucocorticoid receptor and the CACCC-box binding factor. Nature (Lond) 332:87–90.

    Google Scholar 

  • SchĂĽle R, Rangarajan P, Kliewer S, Ransone LJ, Bolado J, Yang N, Verma IM, Evans RM (1990): Functional antagonism between oncoprotein c-jun and the glucocorticoid receptor. Cell 62:1217–1226.

    Google Scholar 

  • Schwabe J, Neuhaus D, Rhodes D (1990): Solution structure of the DNA-binding domain of the estrogen receptor. Nature (Lond) 348:458–461.

    Google Scholar 

  • Severne Y, Wieland S, Schaffner W, Rusconi S (1988): Metal binding “finger” structures in the glucocorticoid receptor defined by site-directed mutagenesis. EMBO J 7:2503–2508.

    Google Scholar 

  • Shemshedini L, Knauthe R, Sassonecorsi P, Pornon A, Gronemeyer H (1991): Cell-specific inhibitory and stimulatory effects of Fos and Jun on transcription activation by nuclear receptors. EMBO J 10:3839–3849.

    Google Scholar 

  • Shimamura A, Sapp M, Rodriguez-Campos A, Worcel A (1989): Histone H1 represses transcription from minichromosomes assembled in vitro, Mol Cell Biol 9:5573–5584.

    Google Scholar 

  • Silver BJ, Bokar JA, Virgin JB, Vallen EA, Milsted A, Nilson JH (1987): Cyclic AMP regulation of the human glycoprotein hormone α-subunit gene is mediated by an 18-bp element. Proc Natl Acad Sci USA 84:2198–2202.

    Google Scholar 

  • Simons SS, Pumphrey J, Rudikoff S, Eisen HJ (1987): Identification of cyteine 656 as the amino acid of hepatoma tissue culture cell glucocorticoid receptors that is covalently labeled by dexamethasone 21-mesylate. J Biol Chem 262:9676–9680.

    Google Scholar 

  • Slater EP, Redeuilh G, Theis K, Suske G, Beato M (1990): The uteroglobin promoter contains a noncanonical estrogen responsive element. Mol Endocrinol 4:604–610.

    Google Scholar 

  • Strähle U, Schmid W, SchĂĽtz G (1988): Synergistic action of the glucocorticoid receptor with transcription factors. EMBO J 7:3389–3395.

    Google Scholar 

  • Tora L, Gronemeyer H, Turcotte B, Gaub MP, Chambon P (1988): The N-terminal region of the chicken progesterone receptor specifies target gene activation. Nature (Lond) 333:185–188.

    Google Scholar 

  • Tora L, White J, Brou C, Tasser D, Webster N, Scheer E, Chambon P (1989): The human estrogen receptor has two independent nonacidic transcriptional activation functions. Cell 59:477–487.

    Google Scholar 

  • Truss M, Chalepakis G, Beato M (1990): Contacts between steroid hormone receptors and thymines in DNA: An interference method. Proc Natl Acad Sci USA 87:7180–7184.

    Google Scholar 

  • Tsai SY, Carlsted-Duke J, Weigel NL, Dahlman K, Gustafsson JA, Tsai MJ, O’Malley BW (1988): Molecular interactions of steroid hormone receptor with its enhancer element: Evidence for receptor dimer formation. Cell 55:361–369.

    Google Scholar 

  • Tsai SY, Tsai MJ, O’Malley BW (1989): Cooperative binding of steroid hormone receptors contributes to transcriptional synergism at target enhancer elements. Cell 57:443–448.

    Google Scholar 

  • Umesono K, Evans RM (1989): Determinants of target gene specificity for steroid/thyroid hormone receptors. Cell 57:1139–1146.

    Google Scholar 

  • Vannice JL, Taylor JM, Ringold GM (1984): Glucocorticoid-mediated induction of alpha-1-acid glycoprotein: Evidence for hormone-regulated RNA processing. Proc Natl Acad Sci USA 81:4241–4245.

    Google Scholar 

  • Vidal M, Gaber RF (1991): RPD3 encodes a second factor required to achieved maximum positive and negative transcriptional states in Saccharomyces cere-visiae. Mol Cell Biol 11:6317–6327.

    Google Scholar 

  • Vidal M, Strich R, Esposito RE, Gaber RF (1991): RPD1 (SIN3/UME4) is required for maximal activation and repression of diverse yeast genes. Mol Cell Biol 11:6306–6316.

    Google Scholar 

  • Williams PM, Ratajczak T, Lee SC, Ringold GM (1991): AGP/EBP(LAP) expressed in rat hepatoma cells interacts with multiple promoter sites and is necessary for maximal glucocorticoid induction of the rat alpha-1 acid glycoprotein gene. Mol Cell Biol 11:4959–4965.

    Google Scholar 

  • Willmann T, Beato M (1986): Steroid-free glucocorticoid receptor binds specifically to mouse mammary tumour virus DNA. Nature (Lond) 324:688–691.

    Google Scholar 

  • Wolffe AP (1989): Dominant and specific repression of Xenopus oocyte 5S RNA genes and satellite I DNA by histone HI. EMBO J 8:527–537.

    Google Scholar 

  • Wrange Ă–, Carlstedt-Duke J, Gustafsson JA (1986): Stoichiometric analysis of the specific interaction of the glucocorticoid receptor with DNA. J Biol Chem 261:11770–11778.

    Google Scholar 

  • Wright APH, Gustafsson JA (1991): Mechanism of synergistic-transcriptional transactivation by the human glucocorticoid receptor. Proc Natl Acad Sci USA 88:8283–8287.

    Google Scholar 

  • Yang-Yen H-F, Chambard J-C, Sun Y-L, Smeal T, Schmidt TJ, Drouin J, Karin M (1990): Transcriptional intereference between c-Jun and the glutocorticoid receptor: Mutual inhibition of DNA binding due to direct protein-protein interaction. Cell 62:1205–1215.

    Google Scholar 

  • Yoshinaga SK, Yamamoto KR (1991): Signaling and regulation by a mammalian glucocorticoid receptor in Drosophila cells. Mol Endocrinol 5:844–853.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Birkhäuser Boston

About this chapter

Cite this chapter

Beato, M. (1993). Gene Regulation by Steroid Hormones. In: Karin, M. (eds) Gene Expression. Progress in Gene Expression. Birkhäuser Boston. https://doi.org/10.1007/978-1-4684-6811-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6811-3_3

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4684-6813-7

  • Online ISBN: 978-1-4684-6811-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics