Skip to main content

Ca2+-Calmodulin-Dependent Protein Kinases and Protein Kinase C: Functional Similarities

  • Chapter
  • 48 Accesses

Part of the book series: NATO ASI Series ((volume 169))

Abstract

Protein serine and threonine kinases can be classified into individual groups or subclasses on the basis of the type of regulation of their activities (Krebs, 1986). Two of the most intensively studied groups are Ca2+-regulated, i.e. the Ca2+/calmodulin (CaM)-dependent and the Ca2+-phospholipid (diacylglycerol)-dependent protein kinases. Of the enzymes belonging in the category of Ca2+/CaM-dependent kinases, myosin light chain kinases (MLCK) are distinguished by their high degree of substrate specificity and CaM dependency (Edelman et al, 1987). Phosphorylase kinase (PhK) another member of the same group is characterized by a broader substrate specificity. Its primary substrate is phosphorylase b but the enzyme may catalyze the phosphorylation of other proteins (Chan & Graves, 1984). In addition, a number of Ca2+/CaM-dependent multifunctional protein kinases (Ca2+/CaM PrK) identified in a variety of tissues shows a broad substrate specificity suggesting that such a group of CaM-dependent protein kinases may play important roles in the control of different cellular processes (Shenolikar et al, 1986). On the other hand, protein kinase C (PKC) is a multifunctional protein kinase identified by Nishizuka and co-workers as a Ca2+- and phospholipid-dependent protein kinase that plays a crucial role in the signal transduction for a variety of biologically active substances involved in cellular function and proliferation (Nishizuka, 1984). In the presence of limiting amounts of Ca2+ and phospholipids its activity is stimulated by sn-1,2-diacylglecerols or by phorbol esters (Nishizuka, 1984) and the kinase phosphorylates a broad range of cellular proteins (Kikkawa and Nishizuka, 1986).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albert, K.A., Wu, W.C-S., Nairn, A.C. and Greengard, P., 1984, Inhibition of calcium/phospholipid-dependent protein phosphorylation, Proc. Natl. Acad. Sci. USA 81:3622.

    Article  PubMed  CAS  Google Scholar 

  • Baltas, L.G., Zevgolis, V.G., Kyriakidis, S.M., Sotiroudis, T.G. and Evangelopoulos, A.E. in preparation

    Google Scholar 

  • Baudier, J. and Cole, R.D., 1987, Phosphorylation of tau proteins to a state like that in Alzheimer’s brain is catalyzed by a calcium/calmodulin-dependent kinase and modulated by phospholipids, J. Biol. Chem., 262:17577.

    PubMed  CAS  Google Scholar 

  • Bazzi, M.D. and Nelsestuen, G.L., 1988, Constitutive activity of membrane-inserted protein kinase C., Biochem. Biophys. Res. Commun., 152:336.

    Article  PubMed  CAS  Google Scholar 

  • Burn, P., 1988, Amphitropic proteins: A new class of membrane proteins, Treds Biochem. Sci. 13:79.

    Article  CAS  Google Scholar 

  • Castagna, M., Pavone, C., Bazgar, S., Couturier, A., Chevalier, M. and Fiszman, M., 1985, Phospholipid/Ca2+-dependent protein kinase, cell differentiation and tumor promotion, in: “Hormones and Cell Regulation” J.E. Dumont et al, eds, Elsevier Science Publishers BV

    Google Scholar 

  • Chan, K.-F.J. & Graves, D.J., 1984, Molecular properties of phosphorylase kinase, in: “Calcium & Cell Function” W.Y. Cheung, ed., Academic Press, New York

    Google Scholar 

  • Chauhan, V.P.S. and Brockerhoff, H., 1988, Phosphatidylinositoi,-4-5 biphosphate antecede diacylglycerol as activator for protein kinase C., FASEB J. 2:A349

    Google Scholar 

  • Cox, J.A., 1988, Interactive properties of calmodulin, Biochem. J., 249:621

    PubMed  CAS  Google Scholar 

  • Dombradi, V.K., Silberman, S.R., Lee, E.Y.C., Caswell, A.H. & Brandt, N.R., 1984, The association of phosphorylase kinase with rabbit muscle T-tubules, Arch. Biochem. Biophys., 230:615

    Article  PubMed  CAS  Google Scholar 

  • Edelman, A.M., Blumenthal, D.K. and Krebs, E.G., 1987, Protein serine-threonine kinases, Ann. Rev. Biochem., 56:567

    Article  PubMed  CAS  Google Scholar 

  • Famulski, K.S. and Carafoli, E., 1984, Calmodulin-dependent protein phosphorylation and calcium uptake in rat liver microsames, Eur. J. Biochem., 141:15

    Article  PubMed  CAS  Google Scholar 

  • Fujiki, H., Yamashita, K., Suganuma, M., Horiuchi, T., Taniguchi, N. and Makita, A., 1986, Involvement of sulfatide in activation of protein kinase C by tumor promoters, Biochem. Biophys. Res. Commun., 138:153

    Article  PubMed  CAS  Google Scholar 

  • Gietzen, K., Sadorf, I. and Bader, H., 1981, A model for the regulation of the calmodulin-dependent enzymes erythrocyte Ca2+-transport ATPase and brain phosphodiesterase by activators and inhibitors, Biochem. J., 207:541

    Google Scholar 

  • Gschwendt, M., Horn, F., Kittstein, W. and Marks, F., 1983, Inhibition of the calcium-and phospholipid-dependent protein kinase activity from mouse brain cytosol by quercetin, Biochem. Biophys. Res. Commun., 117:444

    Article  PubMed  CAS  Google Scholar 

  • Hanley, R.M., Means, A.R., Kemp, B.E. and Shenolikar, S., 1988, Mapping of calmodulin-binding domain of Ca2+/calmodulin-dependent protein kinase II from rat brain, Biochem. Biophys. Res. Commun., 152:122

    Article  PubMed  CAS  Google Scholar 

  • Hannun, Y.A., Loomis, C.R., Merill, A.H. Jr and Bell, R.M., 1986, Sphingosine inhibition of protein kinase C activity and of phorbol dibutyrate binding in vitro and in human platelets, J. Biol. Chem., 261:12604

    PubMed  CAS  Google Scholar 

  • Hannun, Y.A. and Bell, R.M., 1987, Lysosphingolipids inhibit protein kinase C: Implications for the sphingolipidoses, Science, 235:670

    Article  PubMed  CAS  Google Scholar 

  • Hansson, A., Skoglund, G., Lassing, I., Lindberg, U. and Ingelman-Sundberg, M., 1988, Protein kinase C-dependent phosphorylation of profilin is specifically stimulated by Phosphatidylinositol biphosphate (PIP2), Biochem. Biophys. Res. Commun., 150:526.

    Article  PubMed  CAS  Google Scholar 

  • Hessova, Z., Varsanyi, M. & Heilmeyer, L.M.G., Jr., 1985, Dual function of calmodulin (6) in phosphorylase kinase, Eur. J. Biochem., 146:107

    Article  PubMed  CAS  Google Scholar 

  • Hörl, W.H., Jennissen, H.B. and Heilmeyer, L.M.G., Jr., 1978, Evidence for the participation of a Ca2+-dependent protein kinase and a protein phosphatase in the regulation of the Ca2+-transport ATPase of the sarcoplasmic reticulum. 1. Effect of inhibitors of the Ca2+-dependent protein kinase and protein phosphatase, Biochemistry, 17:759

    Article  PubMed  Google Scholar 

  • Ito, M., Tanaka, T., Inagaki, M., Nakanishi, K. and Hidaka, H., 1986, N-(6-Phenylhexyl)-5-chloro-1-Naphthalenesulfonamide. A novel activator of protein kinase C., Biochemistry, 25:4179

    Article  PubMed  CAS  Google Scholar 

  • Jett, M.-F., Schworer, C.M., Bass, M. and Soderling, T.R., 1987, Identification of membrane-bound calcium, calmodulin-dependent protein kinase II in canine heart, Arch. Biochem. Biophys., 255:354

    Article  PubMed  CAS  Google Scholar 

  • Juckevich, J.C., Kuhn, D.M. and Lovenberg, W., 1983, Phosphorylation of brain cytosol proteins. Effects of phospholipids and calmodulin. J. Biol. Chem., 258:1950

    Google Scholar 

  • Kikkawa, V. and Nishizuka, Y., 1986, Protein kinase C., in: “The Enzymes”, P. Boyer and E.G. Krebs, eds, Academic Press, New York

    Google Scholar 

  • Kishimoto, A., Kajikawa, N., Siota, M. and Nishizuka, Y., 1983, Proteolytic activation of calmodulin-activated, phospholipid-dependent protein kinase by calcium-dependent neutral protease, J. Biol. Chem., 258:1156

    PubMed  CAS  Google Scholar 

  • Kraft, A.S. and Anderson, W.B., 1983, Phorbol esters increase the amount of Ca2+ phospholipid-dependent protein kinase associated with plasma membrane, Nature, (London) 301:621

    Article  PubMed  CAS  Google Scholar 

  • Krebs, E.G., 1986, The Enzymology of control by phosphorylation, in: “The Enzymes”, P. Boyer and E.G. Krebs, eds, Academic Press New York

    Google Scholar 

  • Kreutter, D., Kim, J.Y.H., Goldenring, J.R., Rasmussen, H., Ukomadu, C., DeLorenzo, R.J. and Yu, R.K., 1987, Regulation of protein kinase C activity by gangliosides, J. Biol. Chem., 262:1633

    PubMed  CAS  Google Scholar 

  • Ktenas, T.B., Sotiroudis, T.G., Nikolaropoulos, S. and Evangelopoulos, A.E., 1985, Interaction of phosphorylase kinase with polymixins, Biochem. Biophys. Res. Commun., 133:891

    Article  PubMed  CAS  Google Scholar 

  • Ktenas, T.B., Sotiroudis, T.G. and Evangelopoulos, A.E. in preparation

    Google Scholar 

  • Kuret, J. and Schulman, H., 1984, Purification and characterization of a Ca2+/calmodulin-dependent protein kinase from rat brain Biochemistry, 23:5495

    Article  PubMed  CAS  Google Scholar 

  • Kyriakidis, S.M., Sotiroudis, T.G. and Evangelopoulos, A.E., 1986a, Stimulation of glycogen phosphorylase kinase with phospholipids, Biochem. Inter., 13:853

    CAS  Google Scholar 

  • Kyriakidis, S.M., Sotiroudis, T.G. and Evangelopoulos, A.E., 1986b, Interaction of flavonoids with rabbit muscle phosphorylase kinase, Biochim. Biophys. Acta, 871:121

    Article  PubMed  CAS  Google Scholar 

  • Kyriakidis, S.M., Sotiroudis, T.G. and Evangelopoulos, A.E., 1988, Ca2+ and Mg2+-dependent association of phosphorylase kinase with human erythrocyte membranes, submitted for publication

    Google Scholar 

  • Lindemann, J.P. and Watanabe, A.M., 1985, Phosphorylation of phospholamban in intact myocardium. Role of Ca2+-calmodulin-dependent mechanisms. J. Biol. Chem., 260:4516

    PubMed  CAS  Google Scholar 

  • Lucas, T.J., Burgess, W.H., Prendergast, F.G., Lau, W. and Watterson, D.M., 1986, Calmodulin binding domains: Characterizarion of a phosphorylating and calmodulin binding site from myosin light chain kinase, Biochemistry, 25:1458

    Article  Google Scholar 

  • Mamoi, T., 1986, Activaton of protein kinase C by ganglioside GM3 in the presence of calcium and 12-o-tetradecanoylphorbol-13-acetate, Biochem. Biophys. Res. Commun., 138:865

    Article  Google Scholar 

  • Mazzei, G.J., Qi, D.-F., Schatzman, R.C., Raynor, R.L., Turner, R.S. and Kuo, J.F., 1983, Comparative abilities of lanthanide ions La3+ and Tb3+ to substitute for Ca2+ in regulating phospholipid-sensitive Ca2+-dependent kinase and myosin light chain kinase, Life Sci., 33:119

    Article  PubMed  CAS  Google Scholar 

  • Mazzei, G.J., Girrard, P. and Kuo, J.F., 1984, Environmental pollutant Cd2+ biphasically and differentially regulates myosin light chain kinase and phospholipid/Ca2+-dependent protein kinase, FEBS Lett., 173:124

    Article  PubMed  CAS  Google Scholar 

  • Meyer, T., Fabro, D., Eppenberger, U. and Matter, A., 1986, The lipohilic muramyltripeptide MTP-PE, a biological response modifier, is an activator of protein kinase C, Biochem. Biophys. Res. Commun., 140:1043

    Article  PubMed  CAS  Google Scholar 

  • Murakami, K., Chan, S.Y. and Routtenberg, A., 1986, Protein kinase C activation by cis-fatty acid in the absence of Ca2+ and phospholipids, J. Biol. Chem., 261:15424

    PubMed  CAS  Google Scholar 

  • Murakami, K., Whitley, M.K. and Routtenberg, A., 1987, Regulation of protein kinase C activity by cooperative interaction of Zn2+ and Ca2+, J. Biol. Chem., 262:13902

    PubMed  CAS  Google Scholar 

  • Nairn, A.C., Hemmings, H.C., Jr. and Greengard, P., 1985, Protein kinases in the brain, Ann. Rev. Biochem., 54:931

    Article  PubMed  CAS  Google Scholar 

  • Negami, A.I., Sasaki, H. and Yamamura, H., 1986, Activation of phosphorylase kinase through autophosphorylation by membrane component Phospholipids, Eur. J. Biochem., 157:597

    Article  PubMed  CAS  Google Scholar 

  • Nikolaropoulos, S. and Sotiroudis, T.G., 1985, Phosphorylase kinase from chicken gizzard. Partial purification and characterization, Eur. J. Biochem., 151:467

    Article  PubMed  CAS  Google Scholar 

  • Nishizuka, Y., 1984, The role of protein kinase C in cell-surface signal transduction and tumor promotion, Nature, 308:693

    Article  PubMed  CAS  Google Scholar 

  • Nishizuka, Y., 1986, Studies and perspectives of protein kinase C, Science 233:305

    Article  PubMed  CAS  Google Scholar 

  • Nishizuka, Y., 1988, The molecular heterogeneity of protein kinase C and its implications for cellular regulation, Nature, 334:661

    Article  PubMed  CAS  Google Scholar 

  • Ono, Y., Fujii, T. Ogita, K., Kikkawa, U., Igarashi, K. and Nishizuka, Y., 1988, The structure, expression and properties of additional members of the protein kinase C family, J. Biol. Chem., 263:6927

    PubMed  CAS  Google Scholar 

  • Parker, P.J. and Ullrich, A., 1987, Protein kinase C, J. Cell. Physiol. Suppl., 5:53

    Article  PubMed  Google Scholar 

  • Pickett-Giese, C.A. & Walsh, D.A., 1986, Phosphorylase kinase, in: “The Enzymes”, P. Boyer & E.G. Krebs, eds, Academic Press, New York

    Google Scholar 

  • Sakai, K., Kobayashi, T., Komuvo, T., Nakamura, S., Mizuta, K., Sakanoue, Y., Hashimoto, E. and Yamamura, H., 1987, Non-requirement of calcium on protamine phosphorylation by calcium-activated, phospholipid dependent protein kinase, Biochem. Inter., 14:63

    CAS  Google Scholar 

  • Sato, H., Fukunaga, K., Araki, S., Ohtsuki, I. and Miyamoto, E., 1988, Identification of the multifunctional calmodulin-dependent protein kinase in the cytosol, sarcoplasmic reticulum and sarcolemma of rabbit skeletal muscle, Arch. Biochem. Biophys., 260:443

    Article  PubMed  CAS  Google Scholar 

  • Schulman, H., 1984, Calcium—dependent protein kinases and neuronal function, Trends Pharmacol. Sci., 5:188

    Article  CAS  Google Scholar 

  • Shenolikar, S., Cohen, P.T.W., Cohen, P., Nairn, A.C. and Peryy, S.V., 1979, Role of calmodulin in the structure and regulation of phosphorylase kinase from rabbit skeletal muscle, Eur. J. Biochem., 100:329

    Article  PubMed  CAS  Google Scholar 

  • Shenolikar, S., Lickteig, R., Hardie, D.G., Soderling, T.R., Hanley, R.M. and Kelly, P.T., 1986, Calmodulin-dependent multifunctional protein kinases. Evidence for isoenzyme forms in mammalian tissues, Eur. J. Biochem., 161:739

    Article  PubMed  CAS  Google Scholar 

  • Singh, T., & Wang, J.H., 1979, Stimulation of glycogen phosphorylase kinase from rabbit skeletal muscle by organic solvents, J. Biol. Chem., 254:8466

    PubMed  CAS  Google Scholar 

  • Sotiroudis, T.G., 1986, Lanthanide ions and Ca2+ are able to substitute for Ca2+ in regulating phosphorylase kinase, Biochem. Inter., 13:59

    CAS  Google Scholar 

  • Stull, J.T., Nunnally, M.H. and Michnoff, C.H., 1986, Calmodulin-dependent protein kinases, in: “The Enzymes”, P. Boyer and E.G. Krebs, eds, Academic Press, New York

    Google Scholar 

  • Takai, Y., Kishimoto, A., Iwasa, Y., Kawahara, Y., Mori, T. and Nishizuka, Y., 1979, Calcium-dependent activation of a multifunctional protein kinase by membrane phospholipids, J. Biol. Chem., 254:3692

    PubMed  CAS  Google Scholar 

  • Tanaka, J. and Hidaka, H., 1980, Hydrophobic regions function in calmodulin enzyme(s) interactions, J. Biol. Chem., 255:11078

    PubMed  CAS  Google Scholar 

  • Thieleczek, R., Behle, G., Behle, G., Messer, A., Varsanyi, M., Heilmeyer, L.M.G., Jr & Drenckhahn, D., 1987, Localization of phosphorylase kinase subunits at the sarcoplasmic reticulum of rabbit skeletal muscle by monoclonal and polyclonal antibodies, Eur. J. Cell Biol., 44:333

    PubMed  CAS  Google Scholar 

  • Tuana, B.S. and MacLennan, D.H., 1984, Calmidazolium and compound 48/80 inhibit calmodulin-dependent Ca2+ uptake but not Ca2+-ATPase activity in skeletal muscle sarcoplasmic reticulum, J. Biol. Chem., 259:6979

    PubMed  CAS  Google Scholar 

  • Wightman, P.D. and Raetz, C.R.H., 1984, The activation of protein kinase C by biologically active lipid moieties of lipopolysaccharide, J. Biol. Chem., 259:10048

    PubMed  CAS  Google Scholar 

  • Wolf, M., LeVine III, H., May, S., Jr, Cuatrecasas, P. and Sahyoun, N., 1985, A model for intracellular translocation of protein kinase C involving synergism between Ca2+ and phosrbol esters, Nature, 317:546

    Article  PubMed  CAS  Google Scholar 

  • Woodgett, J.R., Davison, M.T. and Cohen, P., 1983, The calmodulin-dependent glycogen synthase kinase from rabbit skeletal muscle. Purification subunit structure and substrate specificity, Eur. J. Biochem., 136:481

    Article  PubMed  CAS  Google Scholar 

  • Zevgolis, V.G., Sotiroudis, T.G. and Evangelopoulos, A.E. in preparation.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Sotiroudis, T.G., Kyriakidis, S.M., Baltas, L.G., Zevgolis, V.G., Evangelopoulos, A.E. (1989). Ca2+-Calmodulin-Dependent Protein Kinases and Protein Kinase C: Functional Similarities. In: Grunberg-Manago, M., Clark, B.F.C., Zachau, H.G. (eds) Evolutionary Tinkering in Gene Expression. NATO ASI Series, vol 169. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5664-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5664-6_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5666-0

  • Online ISBN: 978-1-4684-5664-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics