Skip to main content

Part of the book series: The IBM Research Symposia Series ((IRSS))

  • 92 Accesses

Abstract

The science of nucleation is briefly surveyed and many attendant challenges are noted. The emerging molecular-level theory of nucleation is discussed as is the importance of a diffusion-controlled reaction kinetic treatment in that theory. Experimental study of nucleation at the molecular level is discussed.

Research sponsored in part by the Metallurgy and Materials Program of the Division of Research, U. S. Atomic Energy Commission, under Contract No. AT-(11-1)-3478.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For recent surveys see “Nucleation”, Edited by A. C. Zettlemoyer (Marcel Dekker, N. Y., 1969).

    Google Scholar 

  2. M. Volmer and A. Weber, Z. Phys. Chem. (Leipzig) 119, 277 (1926).

    CAS  Google Scholar 

  3. R. Becker and W. Döring, Ann. Physik, 24, 719 (1935).

    Article  CAS  Google Scholar 

  4. J. B. Zeldovich, Acta Physicochimica, USSR, 18, 1 (1943).

    CAS  Google Scholar 

  5. Of course the assumption of the classical theory is that there is no dissociation for the nucleation and growth reactions.

    Google Scholar 

  6. L. Farkas, Z. Phys. Chem. 125, 236 (1927).

    CAS  Google Scholar 

  7. W. G. Courtney, J. Chem. Phys. 36, 2009, 2018 (1962).

    Article  CAS  Google Scholar 

  8. For a clear review of these matters see P. P. Wegener and J.-Y. Parlange, Naturwissen. 57, 525 (1970).

    Article  CAS  Google Scholar 

  9. J. Frenke 1, J. Chem. Phys. 7, 200 (1939) and in “Kinetic Theory of Liquids” (Oxford Univ. Press, Clarendon, 1946 ), p. 381.

    Article  Google Scholar 

  10. F. Kuhrt, Z. Phys. 131, 185, 205 (1952).

    CAS  Google Scholar 

  11. J. Lothe and G. M. Pound, J. Chem. Phys. 36, 2080 (1962).

    Article  CAS  Google Scholar 

  12. See W. J. Dunning in Ref. 1, p. 1.

    Google Scholar 

  13. See J. Lothe and G. M. Pound in Ref. 1, p. 109.

    Google Scholar 

  14. H. Reiss and J. L. Katz, J. Chem. Phys. 46, 2496 (1967).

    Article  CAS  Google Scholar 

  15. H. Reiss, J. L. Katz and E. R. Cohen, J. Chem. Phys. 48, 5553 (1968).

    Article  CAS  Google Scholar 

  16. H. L. Jaeger, E. J. Willson, P. G. Hill and K. C. Russell, J. Chem. Phys. 51, 5380 (1969).

    Article  CAS  Google Scholar 

  17. D. B. Dawson, E. J. Willson, P. G. Hill and K. C. Russell, J. Chem. Phys. 51, 5389 (1969).

    Article  CAS  Google Scholar 

  18. J. L. Katz, Proceedings of the Clark Univ. Conf. on Nucleation, May 1972, to be published.

    Google Scholar 

  19. C. Carlier and H. L. Frisch, Phys. Rev., to be published.

    Google Scholar 

  20. In fact the release of this heat in hypersonic nozzle experiments causes an increase in pressure which is what is actually measured.

    Google Scholar 

  21. J. P. Hirth and G. M. Pound, Prog. Mater. Sci. 11, 35 (1963).

    Google Scholar 

  22. M. Okuyama and J. T. Zung, J. Chem. Phys. 46, 1580 (1967).

    Article  CAS  Google Scholar 

  23. G. O. Goodman, J. Chem. Phys. 53, 2281 (1970).

    CAS  Google Scholar 

  24. F. O. Goodman and J. D. Gillerlain, J. Chem. Phys. 54, 3077 (1971).

    CAS  Google Scholar 

  25. J. A. Pople, this conference.

    Google Scholar 

  26. We ignore here the growth via coalescence of clusters.

    Google Scholar 

  27. M. V. Smoluchowski, Z. Phys. Chem. 92, 129 (1917).

    Google Scholar 

  28. The Smoluchowski boundary condition obtains for β→∞.

    Google Scholar 

  29. F. C. Collins and G. E. Kimball, J. Coll. Sci. 4, 25 (1949).

    Article  Google Scholar 

  30. H. L. Frisch and F. C. Collins, J. Chem. Phys. 20, 1797 (1952).

    Article  CAS  Google Scholar 

  31. T. R. Waite, Phys. Rev. 107, 463, 471 (1957); J. Chem. Phys. 28, 103 (1958).

    Article  CAS  Google Scholar 

  32. D. Peak and J. W. Corbett, Phys. Rev. B5, 1226 (1972).

    Article  Google Scholar 

  33. D. Peak, H. L. Frisch and J. W. Corbett, Rad. Eff. 11, 149 (1971).

    Article  CAS  Google Scholar 

  34. Roughly as g1/3

    Google Scholar 

  35. For a recent summary see “Vacancies and Interstitials in Metals”, Edited by A. Seeger, D. Schumacher, W. Schilling and J. Siehl (North-Ho11and Press, Amsterdam, 1970).

    Google Scholar 

  36. See, for example, E. W. Müller in Ref. 35, p. 557 and R. W. Balluffi and D. N. Seidman in Ref. 37, p. 563.

    Google Scholar 

  37. Radiation Induced Voids in Metals, Edited by J. W. Corbett and L. C. Ianniello, ( U.S.A.E.C., Washington, 1972 ).

    Google Scholar 

  38. H. P. Huntington in “Encyclopedia of Chemical Technology” Suppl. Volume 2nd Edition ( John Wiley & Sons, N.Y., 1971 ) p. 278.

    Google Scholar 

  39. See, for example, I. A. Blech and E. S. Meieran, Appl. Phys. Letters, 11, 263 (1967).

    Article  CAS  Google Scholar 

  40. P. R. Huebotter and T. R. Bump in Ref. 37, p. 84.

    Google Scholar 

  41. It is also felt that some gas, e. g., He, in the void is required to stabilize the void morphology; therefore this is heterogeneous nucleation.

    Google Scholar 

  42. R. W. Powell and K. C. Russell, Rad. Eff. 12, 127 (1972).

    Article  CAS  Google Scholar 

  43. F. L. Vook and K. L. Brower, this proceedings.

    Google Scholar 

  44. E. Whittle, D. A. Dows and G. C. Pimentel, J. Chem. Phys. 22, 1943 (1954).

    CAS  Google Scholar 

  45. See B. Meyer, “Low Temperature Spectroscopy” (Amer. Elsevier Publ., N. Y., 1971 ).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Plenum Press, New York

About this paper

Cite this paper

Corbett, J.W., Frisch, H.L., Peak, D., St. Peters, M. (1973). Molecular Theory of Nucleation. In: Herman, F., McLean, A.D., Nesbet, R.K. (eds) Computational Methods for Large Molecules and Localized States in Solids. The IBM Research Symposia Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2013-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2013-5_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2015-9

  • Online ISBN: 978-1-4684-2013-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics