Skip to main content

Abstract

The majority of surface effects are temperature dependent. This is not surprising because on an atomic scale mechanical, chemical, and electrical phenomena are generally dependent on the thermal energy available to assist or activate these phenomena. The mechanical properties (such as elastic modulus) and lubricating properties of many magnetic media start to degrade just above the ambient temperature. This degradation affects their tribological performance (Chapters 3 and 4). Therefore, an estimate of the interface temperature rise is necessary for the design of the head-medium interface (HMI).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • AGA Infrared System (1976). “AGA Thermovision 750 Operating Manual.” Publication 556–103 612. Lidingo, Sweden.

    Google Scholar 

  • Archard, J. C. (1958). The temperature of rubbing surfaces. Wear 2, 438–455.

    Article  Google Scholar 

  • Barnes Engineering Company (1975). “Instruction Manual Infrared Radiometric Microscope Model RM-2A.” Stamford, Connecticut.

    Google Scholar 

  • Bhushan, B. (1971). Temperature and friction of sliding surfaces. MS Thesis, MIT, Cambridge, Massachusetts.

    Google Scholar 

  • Bhushan, B. (1984). Analysis of the real area of contact between a polymeric magnetic medium and a rigid surface. J. Trib., Trans. ASME 106, 26–33.

    Article  Google Scholar 

  • Bhushan, B. (1987a). Magnetic head-media interface temperatures part 1—analysis. J. Trib., Trans. ASME 109, 243–251.

    Article  Google Scholar 

  • Bhushan, B. (1987b). Magnetic head-media interface temperatures part 2—application to magnetic tapes. J. Trib., Trans. ASME, 109, 252–256.

    Article  Google Scholar 

  • Bhushan, B., and Cook, N. H. (1973). Temperatures in sliding. J. hub. Tech., Trans. ASME 95, 535–536.

    Article  Google Scholar 

  • Bhushan, B., and Cook, N. H. (1975). On the correlation between friction coefficients and adhesion stresses. J. Eng. Mat. and Tech., Trans. ASME 97, 285–287.

    Article  Google Scholar 

  • Bhushan, B., Bair, S., Gulino, R., and Winer, W. O. (1985). Infrared measurement of tape-surface temperatures with a simulated head-tape interface. Technical Report TR-82.0132, IBM Corp, Tucson, Arizona.

    Google Scholar 

  • Blok, H. (1937). Theoretical study of temperature rise at surfaces of actual contact under oiliness lubricating conditions. Gen. Disn. Lubn. Inst. Mech. Eng. 2, 222–235.

    Google Scholar 

  • Bowden, F. P., and Tabor, D. (1950). “The Friction and Lubrication of Solids,” Part I. Claredon Press, Oxford.

    Google Scholar 

  • Carslaw, H. S. and Jaeger, J. C., 1980, Conduction of Heat in Solids, Second Edition, Oxford Univ. Press, London and New York.

    Google Scholar 

  • Cook, N. H. (1970). Personal Communications.

    Google Scholar 

  • Cook, N. H., and Bhushan, B. (1973). Sliding surface interface temperatures. J. hub. Tech., Trans. ASME 95, 59–64.

    Article  Google Scholar 

  • Etiles, C. M. Mc (1986). Possible flash temperatures in slider and recording disk transient contact. ASLE Trans. 29, 321–328.

    Article  Google Scholar 

  • Gecim, B., and Winer, W. O. (1985). Transient temperatures in the vicinity of an asperity contact. J. Trib., Trans. ASME 107, 333–342.

    Article  ADS  Google Scholar 

  • Gulino, R., Bair, S., Winer, W. O., and Bhushan, B. (1986). Temperature measurement of microscopic areas within a simulated head/tape interface using infrared radiometric technique. J. Trib., Trans. ASME 108, 29–34.

    Article  Google Scholar 

  • Gupta, P. K., and Cook, N. H. (1972). Junction deformation models for asperities in sliding interaction. Wear 20, 73–87.

    Article  Google Scholar 

  • Hempstead, R. D. (1974). Thermally induced pulses in magnetoresistive heads. IBM J. Res. Develop. 18, 547–550.

    Article  Google Scholar 

  • Holm, R. (1967). “Electrical Contacts Theory and Application.” Springer-Verlag, Berlin and New York.

    Google Scholar 

  • Jaeger, J. C. (1942). Moving sources of heat and the temperature at sliding contacts. Proc. Roy. Soc. N.S.W. 76, 203–224.

    Google Scholar 

  • Lederle, G. M. (1971). Heat-transfer calculations at the tape-head interface of a computer tape drive. IBM J. Res. Develop. 15, 236–241.

    Article  Google Scholar 

  • Ling, F. F., and Saibel, E. (1957). Thermal aspects of galling of dry metallic surfaces in sliding contact. Wear 1, 80–91.

    Article  Google Scholar 

  • Ling, F. F., and Simkins, T. E. (1963). Measurement of pointwise juncture condition of temperature at the interface of two bodies in sliding contact. J. Basic Eng., Trans. ASME 85, 481–486.

    Google Scholar 

  • Loewen, E. G., and Shaw, M. C. (1954). On the analysis of cutting tool temperatures. Trans. ASME 76, 217–231.

    Google Scholar 

  • Meinders, M. A., Wilcock, D. F., and Winer, W. O. (1982). Infrared temperature measurements of a reciprocating seal test. Proc. Ninth Leeds-Lyon Symp. on Trib. University of Leeds, Leeds, England.

    Google Scholar 

  • Nagaraj, H. S., Sanborn, D. M., and Winer, W. O. (1978). Direct surface temperature measurement by infrared radiation in elastohydrodynamic contacts and the correlation with the Blok flash temperature theory. Wear 49, 43–59.

    Article  Google Scholar 

  • Rabinowicz, E. (1965). “Friction and Wear of Materials.” Wiley, New York.

    Google Scholar 

  • Shaw, M. C. (1984). “Metal Cutting Principles,” 2nd Ed. Clarendon Press, Oxford.

    Google Scholar 

  • Siegel, R., and Howell, J. R. (1981). “Thermal Radiation Heat Transfer,” 2nd Ed. Hemisphere Publishing Co., New York.

    Google Scholar 

  • Snelling, E. C. (1969). “Soft Ferrite Properties and Applications.” CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Spurr, R. T. (1980). Temperatures reached by sliding thermocouples. Wear 61, 175–182.

    Article  Google Scholar 

  • Union Carbide (1972). Technical bulletin: Optical properties and applications of Linde Cz sapphire. Copyright F-CPD 72950, San Diego, California.

    Google Scholar 

  • Wyant, J. C., Koliopoulos, C. L., Bhushan, B., and George, O. E. (1984). An optical profilometer for surface characterization of magnetic media. ASLE Trans. 27, 101–113.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Bhushan, B. (1990). Interface Temperature of Sliding Surfaces. In: Tribology and Mechanics of Magnetic Storage Devices. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-0335-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0335-0_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-0337-4

  • Online ISBN: 978-1-4684-0335-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics