Skip to main content

Abstract

The word tribology was first reported in a landmark report by Jost (1966). The word is derived from the Greek work tribos meaning rubbing, so the literal translation would be “the science of rubbing.” Its popular English language equivalent is friction and wear or lubrication science, alternatively used. The latter term is hardly all-inclusive; a leading American journal in the field categorizes its subjects of interest in the following technical areas: concentrated contacts; bearing materials, traction; friction and wear; fluid film bearings; lubricants; and wear control and seals. Dictionaries define tribology as the science and technology of interacting surfaces in relative motion and of related subjects and practices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agarwal, S. (1985). Structure and morphology of rf sputtered carbon overlayer films. IEEE Trans. Magn. MAG-21, 1527–1529.

    Google Scholar 

  • Anonymous. “Techniques for Slitting and Winding”. John Dusenbery Co., Inc., Randolph, New Jersey.

    Google Scholar 

  • ANSI (1984). Standard for a contact start/stop metallic thin film storage disk. Standard X3B7.

    Google Scholar 

  • Baasch, H. J., and Luecke, F. S. (1981). Read-write and tunnel erase magnetic head assembly. US Patent 4,276,574.

    Google Scholar 

  • Bajorek, C. H. (1987). Future trends in magnetic recording for data storage. Presented at IEEE Intermag Conference, Tokyo, Japan, April 15.

    Google Scholar 

  • Bajorek, C. H. (1988). “Trends in Recording and Control Technologies and Evolution of Subsystem Architectures for Data Storage”, Technical Report No. TR07.903, Abstract Division, IBM Corp., Rochester, Minnesota.

    Google Scholar 

  • Bashe, C. J., Johnson, L. R., Palmer, J. H., and Pugh, E. W. (1986). “IBM’s Early Computers.” MIT Press, Cambridge, Massachusetts.

    Google Scholar 

  • Berghof, W., and Gatzen, H. H. (1980). Sputter deposited thin-film multilayer head. IEEE Trans. Magn. MAG-16, 782–784.

    Article  ADS  Google Scholar 

  • Bhushan, B. (1990). “Reliability of Flexible Magnetic Media,” Springer-Verlag (under preparation).

    Google Scholar 

  • Bhushan, B., Hahn, F. W., Sharma, B. S., and Connolly, D. (1984). Long-term reliability of magnetic tapes for digital recording. In “Tribology and Mechanics of Magnetic Storage Systems” (B. Bhushan et al., eds.), pp. 132–147. SP-16, ASLE, Park Ridge, Illinois.

    Google Scholar 

  • Bowden, F. P., and Tabor, D. (1950 and 1964). “Friction and Lubrication of Solids,” Vol. I (1950) and Vol. II (1964). Claredon Press, Oxford.

    Google Scholar 

  • Brock, G. W., and Shelledy, F. B. (1975). Batch-fabricated heads from an operational standpoint. IEEE Trans. Magn. MAG-11, 1218–1220.

    Article  ADS  Google Scholar 

  • Chen, G. L., Shir, J., and Chen, T. (1988a). High-coercivity, low noise, and low bit shift on sputtered thin-film glass disks. Presented at the 4th Joint MMM-Intermag Conference, Vancouver, July 12–15.

    Google Scholar 

  • Chen, M. M., Lin, J., Wu, T. W., and Castillo, G. (1988b). Wear resistance of iron oxide

    Google Scholar 

  • thin films. J. Appl. Phys., 63, 3275–3277.

    Google Scholar 

  • Croll, I. (1985). Evolution of rigid disk media. In “Tribology and Mechanics of Magnetic Storage Systems,” Vol. 2 (B. Bhushan and N. S. Eiss, eds.), pp. 1–6. SP-19, ASLE, Park Ridge, Illinois.

    Google Scholar 

  • Davidson, C. S. C. (1957). Bearings since the Stone Age. Engineering 183, 2–5.

    Google Scholar 

  • Dimigen, H., and Hubsch, H. (1983–1984). Applying low-friction wear-resistant thin solid films by physical vapor deposition. Philips Tech. Rev. 41, 186–197.

    Google Scholar 

  • Doremus, R. H. (1973). “Glass Science”, Wiley, New York.

    Google Scholar 

  • Dowson, D. (1973). Tribology before Columbus, Lub. Eng. 29, 245–252.

    Google Scholar 

  • Dowson, D. (1979). “History of Tribology.” Longman, London and New York.

    Google Scholar 

  • Ferry, J. D. (1980). “Viscoelastic Properties of Polymers.” Wiley, New York.

    Google Scholar 

  • Feuerstein, A., and Mayr, M. (1984). High vacuum evaporation of ferromagnetic materials. IEEE Trans. Magn. MAG-20, 51–56.

    Article  ADS  Google Scholar 

  • Fisher, R. D., and Blades, J. D. (1971). Single crystal manganese zinc ferrite recording heads. IEEE Trans. Magn. MAG-7, 350–351.

    Article  ADS  Google Scholar 

  • Gregory, T. A., Keller, C. G., Kennedy, B. E., Murray, B. A., and Rothschild, W. J. (1988). Method and apparatus for lubricating a magnetic disk continuously in a recording file. US Patent 4,789,913, December 6.

    Google Scholar 

  • Gross, W. A. (1984). Origins and early development of air-bearing magnetic heads for disk-file digital storage systems. In “Tribology and Mechanics of Magnetic Storage Systems” (B. Bhushan et al., eds.), pp. 63–71. SP-16, ASLE, Park Ridge, Illinois.

    Google Scholar 

  • Harada, K. (1981).Plasma polymerized protective films for plated magnetic disks. J. Appl. Poly. Sci. 26, 3707–3718.

    Article  Google Scholar 

  • Harker, J. M., Brede, D. W., Pattison, R. E., Santana, G. R., and Taft, L. G. (1981). A quarter century of disk file innovation. IBM J. Res. Develop. 25, 677–689.

    Article  Google Scholar 

  • Harris, J. P., Phillips, W. B., Wells, J. F., and Winger, W. D. (1981). Innovations in the design of magnetic tape subsystems. IBM J. Res. Develop. 25, 691–699.

    Article  Google Scholar 

  • Hirota, E., Mihara, T., Ikeda, A., and Chiba, H. (1971). Hot-pressed Mn-Zn ferrite for magnetic recording heads. IEEE Trans. Magn. MAG-7, 337–341.

    Article  ADS  Google Scholar 

  • Hoagland, A. S. (1963). “Digital Magnetic Recording.” Wiley, New York.

    Google Scholar 

  • Holm, R. (1946). “Electrical Contacts.” Springer-Verlag, New York.

    Google Scholar 

  • Howard, J. K. (1986). Thin-films for magnetic recording technology: A review. J. Vac. Sci. Technol. A4, 1–13.

    ADS  Google Scholar 

  • IBM. (1984). “Tape and Cartridge Requirements for the IBM 3480 Magnetic Tape Drives.” IBM Order No. GA32–0048–0.

    Google Scholar 

  • Ishii, Y., Terada, A., Ishii, O., Ohta, S., Hattori, S., and Makino, K. (1980). New preparation process for sputtered γ-Fe2O3 thin film disks. IEEE Trans. Magn. MAG-16, 1114–1117.

    Google Scholar 

  • Iwasaki, S. (1984). Perpendicular magnetic recording—evaluation and future. IEEE Trans. Magn. MAG-20, 657–668.

    Article  MathSciNet  ADS  Google Scholar 

  • Iwasaki, S., and Nakamura, Y. (1977). An analysis for the magnetization mode for high density magnetic recording. IEEE Trans. Magn. MAG-13, 1272–1277.

    Google Scholar 

  • Jones, R. E. (1980). IBM 3370 film head design and fabrication. “Disk Storage Technology.” IBM Order No. GA26–1665–0, p. 6.

    Google Scholar 

  • Jones, R. E., and Nystrom, W. (1980). US Patent 4,190,872, February 26.

    Google Scholar 

  • Jorgensen, F. (1988). “The Complete Handbook of Magnetic Recording,” 3rd ed. Tab Books Inc., Blue Ridge Summit, Pennsylvania.

    Google Scholar 

  • Jost, P. (1966). Lubrication (tribology)—a report on the present position and industry’s needs. Department of Education and Science, H. M. Stationary Office, London.

    Google Scholar 

  • Jost, P. (1976). Economic impact of tribology. Proc. Mechanical Failures Prevention Group. NBS Special Pub. 423. Gaithersburg, Maryland

    Google Scholar 

  • Kimachi, Y., Yoshimura, F., Hoshino, M., and Terada, A. (1987). Uniformity qualification of lubricant layer on magnetic recording media. IEEE Trans. Magn. MAG-23, 2392–2394.

    Article  ADS  Google Scholar 

  • Kingery, W. D., Bowen, H. K., and Uhlmann, D. R. (1976). “Introduction to Ceramics,” 2nd ed., pp. 25–88, ((Wiley, New York.

    Google Scholar 

  • Kingery, W. D., Bowen, H. K., and Uhlmann, D. R. (1976). “Introduction to Ceramics,” 2nd ed., pp. ??975–1015. Wiley, New York.

    Google Scholar 

  • Ko, M., Oxsen, M. E., and Prime, R. B. (1984). Polymeric additives for magnetic coating materials. U.S. Patent 4,546,035.

    Google Scholar 

  • Layard, A. G. (1853). “Discoveries in the Ruins of Nineveh and Babylon,” I and II. John Murray, Albemarle Street, London.

    Google Scholar 

  • Luborsky, F. E. (1980). Amorphous ferromagnets. “Ferromagnetic Materials,” Vol. 1. North-Holland, Amsterdam.

    Google Scholar 

  • Mallinson, J. C. (1969). Maximum signal-to-noise ratio of a tape recorder. IEEE Trans. Magn. MAG-5, 182–186.

    Article  ADS  Google Scholar 

  • Mallinson, J. C. (1987). “The Foundations of Magnetic Recording.” Academic Press, San Diego, California.

    Google Scholar 

  • McLellan, G. W. and Shand, E. B. (1984). “Glass Engineering Handbook”, 3rd Ed., McGraw Hill, New York.

    Google Scholar 

  • Mee, C. D. (1964). “The Physics of Magnetic Recording.” North-Holland, Amsterdam.

    Google Scholar 

  • Mee, C. D., and Daniel, E. D. (1987). “Magnetic Recording,” Vol. I: Technology. McGraw Hill, New York.

    Google Scholar 

  • Mitsuya, Y., and Takanami, S. (1987). Technologies for high recording density in a large-capacity fast-access magnetic disk storage. IEEE Trans. Magn. MAG-23, 2674–2679.

    Article  ADS  Google Scholar 

  • Miyamoto, T., Sato, I., and Ando, Y. (1987). Lubrication performance of melamine cyanurate composite lubricant for thin film disk media. IEEE Trans. Magn. MAG-23, 2386–2388.

    Article  ADS  Google Scholar 

  • Miyasato, T., Kawakami, Y., Kawano, T., and Hiraki, A. (1984). Preparation of sp3-rich amorphous carbon film by hydrogen gas reactive rf-sputtering of graphite, and its properties. Jpn J. Appl. Phys. 23 (4), L234–L237.

    Article  ADS  Google Scholar 

  • Mizushima, M. (1971). Mn-Zn single crystal ferrite as a video-head material. IEEE Trans. Magn. MAG-7, 342–344.

    Article  ADS  Google Scholar 

  • Monforte, F. R., Chen, R., and Baba, P. D. (1971). Pressure sintering of MnZn and NiZn ferrites. IEEE Trans. Magn. MAG-7, 345–350.

    Article  ADS  Google Scholar 

  • Mulvany, R. B., and Thompson, L. H. (1981). Innovations in disk film manufacturing. IBM J. Res. Develop. 25, 711–723.

    Article  Google Scholar 

  • Nagao, M., Suganuma, Y., Tanaka, H., Yanagisawa, M., and Goto, F. (1979). 787 BPM/40 TPM feasibility of a plated disk. IEEE Trans. Magn. MAG-15, 1543–1545.

    Article  ADS  Google Scholar 

  • Ohta, S., Yoshimura, F., Kimachi, Y., and Terada, A. (1987). Wear properties of sputtered γ-Fe2O3 thin-film disks. In “Tribology and Mechanics of Magnetic Storage Systems,” Vol. 4 (B. Bhushan and N. S. Eiss, eds.), pp. 110–115. SP-22, STLE, Park Ridge, Illinois.

    Google Scholar 

  • Ostrowski, H. S. (1983). Nonwoven liners for floppy disks and related jacket manufacturing methods. Presented at Symp. on Mag. Media Manuf. Methods, held at Honolulu Hawaii in May, sponsered by Mag. Media Information Service, Chicago, Illinois.

    Google Scholar 

  • Parish, W. F. (1935). Three thousand years of progress in the development of machinery and lubricants for the hand crafts. Mill and Factory, Vols. 16 and 17.

    Google Scholar 

  • Petroff, N. P. (1883). Friction in machines and the effects of the lubricant. Engng. J. (in Russian), St. Petersburg. 71–140, 228–279, 377–436, 535–564.

    Google Scholar 

  • Petroff, N. P. (1883). Friction in machines and the effects of the lubricant. Engng. J. (in Russian), St. Petersburg. 228–279.

    Google Scholar 

  • Petroff, N. P. (1883). Friction in machines and the effects of the lubricant. Engng. J. (in Russian), St. Petersburg. 377–436.

    Google Scholar 

  • Petroff, N. P. (1883). Friction in machines and the effects of the lubricant. Engng. J. (in Russian), St. Petersburg. 535–564.

    Google Scholar 

  • Rand, W. M. (1983). Electron curing of magnetic coatings. Radiation Curing, February, 26–30.

    Google Scholar 

  • Reynolds, O. O. (1886). On the theory of lubrication and its application to Mr. Beauchamp Tower’s experiments. Phil. Trans. R. Soc. (Lond.) 177, 157–234.

    Article  Google Scholar 

  • Rienau, J. H. (1980). Achieving higher productivity in slitting/rewinding. Paper, Film & Foil Converter, 54 (8), 62–64; 54 (9), 82–86.

    Google Scholar 

  • Rienau, J. H. (1980). Achieving higher productivity in slitting/rewinding. Paper, Film & Foil Converter, 54 (9), 82–86.

    Google Scholar 

  • Rossi, E. M., McDonough, G., Tietze, A., Arnoldussen, T., Brunsch, A., Doss, S., Henneberg, M., Lin, F., Lyn, R., Ting, A., and Trippel, G. (1984). Vacuum-deposited hin-metal-film disk. J. Appl. Phys. 55, 2254.

    Article  ADS  Google Scholar 

  • Sakakima, H., Yanaguchi, Y., Satomi, M., Senno, H., and Hirota, E. (1981). Improvement in amorphous magnetic alloys for magnetic head core. Proc. Fourth Int. Conf. Rapidly Quenched Metals (T. Masumoto and K. Suzuki, eds.), p. 941. Jpn Soc. Metals, Sendai, Japan.

    Google Scholar 

  • Savvides, N., and Window, B. (1985). Diamondlike amorphous carbon films prepared by magnetron sputtering of graphite. J. Vac. Sci. Tech., A3, 2386–2390.

    ADS  Google Scholar 

  • Smallen, M., Mee, P. B., Ahmad, A., Freitag, W., and Nanis, L. (1985). Observation on electrochemical and environmental corrosion tests for cobalt alloy disk media. IEEE Trans. Magn. MAG-21, 1530–1532.

    Article  ADS  Google Scholar 

  • Sugaya, H. (1985). Mechatronics and the development of the video tape recorder. In “Tribology and Mechanics of Magnetic Storage Systems,” Vol. 2 (B. Bhushan and N. S. Eiss, eds.), pp. 64–71. SP-19, ASLE, Park Ridge, Illinois.

    Google Scholar 

  • Tago, A., Masuda, T., and Ando, Y. (1977). Plated magnetic disk. Elec. Comm. Lab. Tech. J. (Japan) 26, 471–498.

    Google Scholar 

  • Teramura, N. (1985). Recent progress in floppy disk recording technology (review paper). In “Tribology and Mechanics of Magnetic Storage Systems,” Vol. 2 (B. Bhushan and N. S. Eiss, eds.), pp. 27–35. SP-19, ASLE, Park Ridge, Illinois.

    Google Scholar 

  • Tse, M. K. and Lewis, A. F. (1986). Triboacoustics of nonwoven fabric/floppy disk dynamic contact. In “Tribology and Mechanics of Magnetic Storage Systems,” Vol. 2 (B. Bhushan and N. S. Eiss, eds.), pp. 63–71. SP-21, ASLE, Park Ridge, Illinois.

    Google Scholar 

  • Tochihara, S. (1982). Magnetic coatings and their applications in Japan. Progress in Organic Coatings 10, 195–204.

    Article  Google Scholar 

  • Tooley, F. V. (1960). “The Handbook of Glass Manufacture”. Ogden Publishing, New York. Vol. 11.

    Google Scholar 

  • Tower, B. (1884). Report on friction experiments. Proc. Instn. Mech. Engrs., 632.

    Google Scholar 

  • Tsai, H. and Bogy, D. B. (1987). Characterization of diamondlike carbon films and their application as overcoats on thin-film media for magnetic recording, J. Vac. Sci. Tech., A5, 3287–3312.

    ADS  Google Scholar 

  • Uhlman, D. R. and Kreidl, N. J. (1980). “Glass Science and Technology”, Vol. 5: Elasticity and Strength in Glasses, Academic Press, New York.

    Google Scholar 

  • Uhlman, D. R. and Kreidl, N. J. (1983). “Glass Science and Technology”, Vol. 1: Glass Forming Systems, Academic Press, New York.

    Google Scholar 

  • Van Gestel, W. J., Gorter, F. W., and Kuijk, K. E. (1977). Read-out of a magnetic tape by the magnetoresistance effect. Philips Tech. Rev. 37, (2/3), 42–50.

    Google Scholar 

  • Wallace, R. L. (1951). The reproduction of magnetically recorded signal. Bell Syst. Tech. J. 30, 1145–1173.

    Google Scholar 

  • White, R. M. (1985). “Introduction to Magnetic Recording.” IEEE Press, New York.

    Google Scholar 

  • Yamamori, K., Nishikawa, R., Muraoka, T., and Suzuki, T. (1983). Perpendicular magnetic recording floppy disk drive. IEEE Trans. Magn. MAG-19, 1701–1703.

    Article  ADS  Google Scholar 

  • Yamashita, T., Chen, G. L., Shir, J., and Chen, T. (1988). Sputtered ZrO2 overcoat with superior corrosion protection and mechanical performance in thin-film rigid disk application.” IEEE Trans. Magn. MAG-24, 2629–2634.

    Article  ADS  Google Scholar 

  • Yanagisawa, M. (1985a). Lubricants on plated magnetic recording disks. In “Tribology and Mechanics of Magnetic Storage Systems,” Vol. 2 (B. Bhushan and N. S. Eiss, eds.), pp. 16–20. SP-19, ASLE, Park Ridge, Illinois.

    Google Scholar 

  • Yanagisawa, M. (1985b). Tribological properties of spin-coated SiO2 film on plated magnetic recording disks. In “Tribology and Mechanics of Magnetic Storage Systems,” Vol. 2 (B. Bhushan and N. S. Eiss, eds.), pp. 21–26. SP-19, ASLE, Park Ridge, Illinois.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Bhushan, B. (1990). Introduction. In: Tribology and Mechanics of Magnetic Storage Devices. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-0335-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0335-0_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-0337-4

  • Online ISBN: 978-1-4684-0335-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics