Skip to main content

A Survey of Recent Theoretical Work

  • Chapter

Abstract

We organize this theoretical discussion around a scheme having three elements: the local field acting on each molecule, the induced molecular dipole and its radiation.

You marry the person who is available when you are most vulnerable

K. Berwick

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Bagchi, R.G. Barrera, and B.B. Dasgupta, Classical local field effect on an adsorbed overlayer, Bull. Am. Phys. Soc. 25:259 (1980).

    Google Scholar 

  2. R.A. Shigeshi and D.A. King, Surface structure and surface lattice constant of (001) vapor deposited Au films using high resolution transmission electron microscopy, Surf. Sci. 58:484 (1976);

    Google Scholar 

  3. G.D. Mahan and A.A. Lucas, Collective vibrational modes of adsorbed CO, J. Chem. Phys. 69:5126 (1978);

    Article  ADS  Google Scholar 

  4. M. Moskovits and J.E. Hulse, Frequency shifts in the spectra of molecules adsorbed on metals with emphasis on the infrared spectrum of adsorbed CO, Surf. Sci. 78:397 (1978); M. Scheffler, The influence of lateral interactions on the vibrational spectrum of adsorbed CO, Surf. Sci. 81:562.

    Article  ADS  Google Scholar 

  5. S. Efrima and H. Metiu, Vibrational frequencies of a chemisorbed molecule: The role of the electrodynamic interactions, Surf. Sci. 92:433 (1980); S. Efrima and H. Metiu, Surf. Sci., to be published.

    Article  ADS  Google Scholar 

  6. R.R. Chance, A. Prock, and R. Sibley, Molecular fluorescence and energy transfer near interfaces, Adv. Chem. Phys. 37:1 (1978).

    Article  Google Scholar 

  7. S. Efrima and H. Metiu, Resonance Raman scattering by ad-sorbed molecules, J. Chem. Phys. 70:1939 (1979).

    Article  ADS  Google Scholar 

  8. S. Efrima and H. Metiu, Surface induced resonance Raman scattering, Surf. Sci. 92:417 (1980);

    Article  ADS  Google Scholar 

  9. S. Efrima and H. Metiu, Raman scattering from adsorbed molecules in electrochemical systems, Israel J. Chem. 18:17 (1979).

    Google Scholar 

  10. J. Behringer, in: “Molecular Spectroscopy,” Vol. 2, The Chemical Society, London (1974).

    Google Scholar 

  11. H. Metiu, to be published.

    Google Scholar 

  12. S. Efrima and H. Metiu, Classical theory of light scattering by an adsorbed molecule, J. Chem. Phys., 70:1602 (1979);

    Article  ADS  Google Scholar 

  13. S. Efrima and H. Metiu, Light scattering by a molecule near a solid surface, J. Chem. Phys., 70:2297 (1979).

    Article  ADS  Google Scholar 

  14. M. Udagawa, C-C. Chou, J.C. Hemminger, and S. Ushioda, preprint, Raman scattering cross sections of an adsorbed pyridine molecule on a smooth silver surface.

    Google Scholar 

  15. S.G. Schultz, M. Janik-Czachor, and R.P. Van Duyne, Surface en-hanced Raman spectroscopy: a re-examination of the role of surface roughness and electrochemical anodization, Surf. Sci. 104:419 (1981).

    Article  ADS  Google Scholar 

  16. R. Naaman, S.J. Buelow, O. Cheschnovsky, and D. R. Herschbach, Surface enhanced Raman scattering from molecules adsorbed on mercury, J. Phys. Chem. 84:2692 (1980);

    Article  Google Scholar 

  17. L.A. Sanchez, R.L. Birke, and J.R. Lombardi, The surface enhanced Raman spectrum from pyridine on mercury, Chem. Phys. Lett. 79:219 (1981); R.P. Van Duyne, private communication.

    Article  ADS  Google Scholar 

  18. A. Otto, Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection, Z. Physik 216:398 (1968);

    Article  ADS  Google Scholar 

  19. E. Kretschmann, Die bestimmung optischer konstanten von metallen durch anregung von oberflächenplasmo-schwingungen, Z. Physik, 241:313 (1971).

    Article  ADS  Google Scholar 

  20. M.R. Philpott, in: “Topics in Surface Chemistry,”, E. Kay and P. S. Bagus, eds., Plenum, New York (1979), p. 329.

    Google Scholar 

  21. A. Otto in: “Optical Properties of Solids-New Developments,” B. O. Seraphin, ed., North Holland, Amsterdam (1976), p. 677.

    Google Scholar 

  22. V. Celli, A. Marvin, and F. Toigo, Light scattering from rough surfaces, general; angle and polarization, Phys. Rev. B 11:2777 (1975).

    Article  ADS  Google Scholar 

  23. A.A. Maradudin and D.L. Mills, Scattering and adsorption of electromagnetic radiation by a semi-infinite medium in the presence of surface roughness, Phys. Rev. B 11:1392 (1975).

    Article  ADS  Google Scholar 

  24. W.P. Chen, G. Ritchie, and E. Burstein, Excitation of surface electromagnetic waves in attenuated total-reflection prism configurations, Phys. Rev. Lett. 37:993 (1976).

    Article  ADS  Google Scholar 

  25. B. Pettinger, A. Tadjeddine, and D.M. Kolb, Enhancement in Raman intensity by use of surface Plasmons, Chem. Phys. Lett. 66:544 (1979);

    Article  ADS  Google Scholar 

  26. R. Dornhaus, R.E. Benner, R.K. Chang, and I. Chabay, Surface plasmon contribution to SERS, Surf. Sci. 101:367 (1980).

    Article  ADS  Google Scholar 

  27. S.S. Jha, J.R. Kirtley, and J.C. Tsang, Intensity of Raman scat-tering from molecules adsorbed on a metallic grating, Phys. Rev. B 22:3973 (1980).

    Article  ADS  Google Scholar 

  28. D.L. Mills, Attenuation of surface polaritons by surface rough-ness, Phys. Rev. B 12:4036 (1975);

    Article  ADS  Google Scholar 

  29. A.A. Maradudin and W. Zierau, Effects of surface roughness on the surface polari-ton dispersion relation, Phys. Rev. B 14:484 (1976);

    Article  ADS  Google Scholar 

  30. E. Kroeger and E. Kretschmann, Surface plasmon and polariton dispersion at rough boundaries, Phys. Stat. Sol. 76b:515 (1976).

    ADS  Google Scholar 

  31. B. Laks and D.L. Mills, Roughness and the mean free path of surface polaritons in tunnel junction structures, Phys. Rev. B 20:4962 (1979).

    Article  ADS  Google Scholar 

  32. P.K. Aravind, E. Hood, and H. Metiu, Angular resonances in the emission from a dipole located near a grating, Surf. Sci. (in press).

    Google Scholar 

  33. J.C. Tsang, J.R. Kirtley, and J.A. Bradley, Surface en-hanced Raman scattering and surface plasmons, Phys. Rev. Lett. 43:772 (1979);

    Article  ADS  Google Scholar 

  34. J.C. Tsang, J.R. Kirtley, and J.N. Theis, Surface plasmon polariton contributions to Stokes emission from molecular monolayers on periodic silver surfaces, Solid State Commun. 35:667 (1980).

    Article  ADS  Google Scholar 

  35. A. Girlando, M.R. Philpott, D. Heitman, J.D. Swalen, and R. Santo, Raman spectra of a thin organic film enhanced by plasmon surface polaritons on holographic metal gratings, J. Chem. Phys. 72:5187 (1980).

    Article  ADS  Google Scholar 

  36. P.N. Sanda, J.M. Warlaumont, J.E. Demuth, J.C. Tsang, K. Christman, and J.A. Bradley, Surface enhanced Raman scattering from pyridine on Ag (111), Phys. Rev. Lett. 45:1519 (1980).

    Article  ADS  Google Scholar 

  37. J.S. Creighton, C.G. Blatchford, and M.G. Albrecht, Plasmon resonance enhancement of Raman scattering by pryidine adsorbed on silver or gold particles of size comparable to the excitation wavelength, J. Chem. Soc. Faraday Trans. II, 75:790 (1979)

    Article  Google Scholar 

  38. M. Kerker, O. Siiman, L.A. Bumm, and D.-S. Wang, Surface enhanced Raman scattering of citrate ions adsorbed on colloidal silver, Appl. Opt. 19:3253 (1980),

    Article  ADS  Google Scholar 

  39. H. Wetzel and H. Gerischer, Surface enhanced Raman scattering from pyridine and halide ions adsorbed on silver and gold sol particles., Chem. Phys. Lett. 76:460 (1980).

    Article  ADS  Google Scholar 

  40. M.E. Lippitsch, Observation of surface enhanced Raman spectra by adsorption to silver colloids, Chem. Phys. Lett. 74:125 (1980).

    Google Scholar 

  41. (e) K.U. von Raben, R.K. Chang and B.L. Laube, Surface enhanced Raman scattering of Au(CN)2 - ions adsorbed on gold colloids, Chem. Phys. Lett. 6:272 (1981).

    Google Scholar 

  42. J.D. Eversole and H.P. Broida, Electron microscopy of size dis-tribution and growth of small zinc crystals formed by homogeneous nucleation in a flowing inert gas system, J. Appl. Phys. 45:596 (1974).

    Article  ADS  Google Scholar 

  43. H. Abe, K. Manzel, W. Schulze, M. Moskovits, and D.P. DiLella, Surface enchanced Raman spectroscopy of CO adsorbed on colloidal silver particles, J. Chem. Phys. 74:792 (1981).

    Article  ADS  Google Scholar 

  44. C.Y. Chen, E. Burstein, and S. Lundquist, Giant Raman scattering by pyridine and CN adsorbed on silver, Solid State Commun. 32:63 (1979);

    Article  ADS  Google Scholar 

  45. E. Burstein and C.Y. Chen, Raman scattering by molecules adsorbed at metal surfaces. The role of surface roughness, in: “Proceedings of the VIIth International Raman Conference,” W.F. Murphy, ed., North Holland, New York (1980), p. 346;

    Google Scholar 

  46. C.Y. Chen and E. Burstein, Giant Raman scattering by molecules at metal island films, Phys. Rev. Lett. 45:1287 (1980);

    Article  ADS  Google Scholar 

  47. C.Y. Chen, I. Davoli, G. Ritchie, and E. Burstein, Giant Raman scattering by molecules adsorbed on Ag and Au metal island films, Surf. Sci. 101: 363 (1980).

    Article  ADS  Google Scholar 

  48. J.A. Stratton, “Electromagnetic Theory,” McGraw Hill, New York, (1941).

    MATH  Google Scholar 

  49. D.-S. Wang, H. Chew, and M. Kerker, Enhanced Raman scatter-ing at the surface of a spherical particle, Appl. Opt. 19:2256 (1980).

    Article  ADS  Google Scholar 

  50. M. Kerker, D.-S. Wang, and H. Chew, Surface enhanced Raman scattering by molecules adsorbed at spherical particles, Appl. Opt. 19:3373 (1980).

    Article  ADS  Google Scholar 

  51. S.L. McCall, P.M. Platzman, and P.A. Wolff, Surface enhanced Raman scattering, Phys. Lett. 77A:381 (1980). (d) B.J. Messinger, K. Ulrich von Raben, R.K. Chang, and P.W. Barber, Local fields at the surface of noble metal microspheres, Phys. Rev. B (in press).

    ADS  Google Scholar 

  52. J.I. Gersten, The effect of surface roughness on surface enhanced Raman scattering, J. Chem. Phys. 72:5779 (1980).

    Article  ADS  Google Scholar 

  53. J.I. Gersten and A. Nitzan, Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces, J. Chem. Phys. 73:3023 (1980).

    Article  ADS  Google Scholar 

  54. F.J. Adrian, Surface enhanced Raman scattering by surface plasmon enhancement of electromagnetic fields near spheroidal particles on a roughened metal surface, Chem. Phys. Lett. 78:45 (1981). (d) M. Kerker, Phys. Rev. B (in press).

    Article  ADS  Google Scholar 

  55. J.I. Gersten, D.A. Weitz, T.J. Gramila, and A.Z. Genack, Inelas-tic Mie scattering from rough metal surfaces: theory and experiment, Phys. Rev. B 22:4562 (1980);

    Article  ADS  Google Scholar 

  56. D. Weitz, A.Z. Genack, T.J. Gramila, and J.I. Gersten, Anomalmous low frequency Raman scattering from rough metal surface and the origin of surface enhanced Raman scattering, Phys. Rev. Lett. 45:355 (1980).

    Article  ADS  Google Scholar 

  57. A.Z. Genack, D.A. Weitz, and T.J. Gramila, Very low frequency surface enhanced Raman scattering, Surf. Sci. 101:381 (1980).

    Article  ADS  Google Scholar 

  58. H. Morawitz and T.R. Koehler, A model for Raman active vibra-tional modes on a metal surface: pyridine and CN on silver, Chem. Phys. Lett. 71:64 (1980).

    Article  ADS  Google Scholar 

  59. P. K. Aravind, A. Nitzan, and H. Metiu, The interaction between electromagnetic resonances and its role in spectroscopic studies of molecules adsorbed on colloidal particles or metal spheres, Surf. Sci. (to be published).

    Google Scholar 

  60. P.K. Aravind and H. Metiu (unpublished).

    Google Scholar 

  61. H. Chew, M. Kerker, and P.J. McNulty, Raman and fluorescence scattering by molecules embedded in concentric spheres, J. Opt. Soc. Am. 66:440 (1976).

    Article  ADS  Google Scholar 

  62. H. Chew, D.D. Cook, and M. Kerker, Raman and fluorescence scat-tering by molecules embedded in dielectric cylinders, Appl. Opt. 19:44 (1980).

    Article  ADS  Google Scholar 

  63. E.H. Lee, R.E. Benner, J.B. Fenn, and R.K. Chang, Angular dis-tribution of fluorescence from monodispersed particles, Appl. Opt. 17:1980 (1978);

    Article  ADS  Google Scholar 

  64. J.P. Kratohvil, M.-P. Lee, and M. Kerker, Angular distribution of fluorescence from small particles, Appl. Opt. 17:1978 (1978).

    Article  ADS  Google Scholar 

  65. M. Moskovits, Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals, J. Chero. Phys. 69:4159 (1978);

    Article  ADS  Google Scholar 

  66. M. Moskovits, Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals, Solid State Commun. 32:59 (1979).

    Article  ADS  Google Scholar 

  67. P.K. Aravind and H. Metiu (to be published).

    Google Scholar 

  68. J.E. Rowe, C.V. Shank, D.A. Zwemer, and C.A. Murray, Ultra high vacuum studies of enhanced Raman scattering from pyridine on Ag surfaces, Phys. Rev. Lett. 44:1770 (1980);

    Article  ADS  Google Scholar 

  69. D.A. Zwemer, C.V. Shank and J.E. Rowe, Surface enhanced Raman scattering as a function of molecule surface separation, Chem. Phys. Lett. 73:201 (1980);

    Article  ADS  Google Scholar 

  70. C.A. Murray, D.L. Allara, and M. Rhinewine, Silver-molecule separation dependence of surface-enhanced Raman scattering, Phys. Rev. Lett. 46:57 (1981).

    Article  ADS  Google Scholar 

  71. P.K. Aravind, R. Rendell, and H. Metiu (to be published).

    Google Scholar 

  72. B. Pettinger, M.R. Philpott, and J.G. Gordon, Contribution of specifically adsorbed ions, water and impurities to the surface enhanced Raman spectroscopy of Ag electrodes, J. Chem. Phys. (to be published).

    Google Scholar 

  73. A.A. Maradudin and D.L. Mills, Scattering and adsorption of electromagnetic radiation by a semi-infinite medium in the presence of surface roughness, Phys. Rev. B 11:1392 (1975).

    Article  ADS  Google Scholar 

  74. J.G. Endriz and W.E. Spicer, Surface plasmons: 1. Electron decay and its observation in photoemission, Phys. Rev. Lett. 24:64 (1970);

    Article  ADS  Google Scholar 

  75. J.G. Endriz and W.E. Spicer, Study of aluminum films: 2. Optical studies of reflectance drops and surface oscillations on controlled roughness films. Phys. Rev. B 4:4144 (1971).

    Article  ADS  Google Scholar 

  76. D.K. Cohen, S.O. Sari, and K.D. Scherkoske, Interfacial scat-tering and electrodynamics due to roughness at silver surfaces, Surf. Sci. 101:355 (1980).

    Article  ADS  Google Scholar 

  77. P.K. Aravind and H. Metiu, The enhancement of Raman and fluores-cence intensity by small surface roughness, changes in dipole emission, Chem. Phys. Lett. 74:301 (1980).

    Article  ADS  Google Scholar 

  78. P.K. Aravind, J. Arias, and H. Metiu, Chem. Phys. Lett. (sub-mitted).

    Google Scholar 

  79. A. Adams, R.W. Rendell, W.P. West, H.P. Broida, P.K. Hansma, and H. Metiu, Luminescence and nonradiative energy transfer to surfaces, Phys. Rev. B 21:5565 (1980).

    Article  ADS  Google Scholar 

  80. T. Maniv and H. Metiu, Electron gas effects in the spectroscopy of molecules chemisorbed at a metal surface: 1. Theory, J. Chem. Phys. 72:1996 (1980);

    Article  ADS  Google Scholar 

  81. T. Maniv and H. Metiu, Electrodynamics at a metal surface with applications to the spectroscopy of adsorbed molecules: 1. General theory, Phys. Rev. B 22:4731 (1980).

    Article  ADS  Google Scholar 

  82. T. Maniv and H. Metiu, J. Chem. Phys. (to be published, 1982).

    Google Scholar 

  83. G. Korzeniewski, T. Maniv, and H. Metiu, The interaction between an oscillating dipole and a metal surface described by a jellium model and the random phase approximation, Chem. Phys. Lett. 73: 212 (1980); J. Chem. Phys. (to be published, 1982).

    Article  ADS  Google Scholar 

  84. D.M. Newns, Dielectric response of a semi-infinite degenerate electron gas, Phys. Rev. B 1:3304 (1970);

    Article  ADS  Google Scholar 

  85. D.E. Beck and V. Celli, Linear response of a metal to an external charge distribution, Phvs. Rev. B 2:2955 (1970).

    Article  ADS  Google Scholar 

  86. P.J. Feibelman, Microscopic calculation of electromagnetic fields in refraction at a jellium vacuum interface, Phys. Rev. Lett. 34:1092 (1975);

    Article  ADS  Google Scholar 

  87. P.J. Feibelman, Surface electronic structure information from surface plasmon photoexcitation in free electron metal films, Phys. Rev. B 12:1319, 4282 (1975).

    Article  ADS  Google Scholar 

  88. K. L. Kliewer and R. Fuchs, Theory of dynamical properties of dielectric surfaces, Adv. Chem. Phys. 27:301 (1978).

    Google Scholar 

  89. W.H. Weber and G. W. Ford, Optical electric field enhancement at a metal surface arising from surface plasmon excitation, (to be published); P.R. Hilton and D.W. Oxtoby, Surface enhanced Raman spectra: A critical review of the image dipole description, J. Chem. Phys. 72:6346 (1980);

    Article  ADS  Google Scholar 

  90. W.E. Palke, The effect of image charges on molecular adsorption, Surf. Sci. 97:L331 (1980).

    Article  ADS  Google Scholar 

  91. J. Kirtley, D.J. Scalapino, and P.K. Hansma, Theory of vibra-tional mode intensities in inelastic electron tunneling spectroscopy, Phys. Rev. B 14:3177 (1976).

    Article  ADS  Google Scholar 

  92. J.A. Creighton, private communication.

    Google Scholar 

  93. C.S. Allen, G.G. Schatz, and R.P. Van Duyne, Tunable laser excitation profiles of surface enhanced Raman scattering from pyridine adsorbed on a copper electrode, Chem. Phys. Lett. (to be published).

    Google Scholar 

  94. T. Furtak and J. Kester, Do metal alloys work as substrates for surface enhanced Raman spectroscopy?, Phys. Rev. Lett. 45:1652 (1980)

    Article  ADS  Google Scholar 

  95. P.K. Aravind, J. Arias, and H. Metiu (unpublished).

    Google Scholar 

  96. P.K. Hansma and H. P. Broida, Light emission from gold particles excited by electron tunneling, Appl. Phys. Lett. 32:545 (1978);

    Article  ADS  Google Scholar 

  97. A. Adams, J.C. Wyss, and P.K. Hansma, Possible observation of local plasmon modes excited by electrons tunneling through junctions, Phys. Rev. Lett. 42:912 (1979).

    Article  ADS  Google Scholar 

  98. D. Hone, B. Mühlschlegel, and D.J. Scalapino, Theory of light emission from small particle tunnel junctions, Appl. Phys. Lett. 33:203 (1978);

    Article  ADS  Google Scholar 

  99. R.W. Rendell, D.J. Scalapino, and B. Mühlschlegel, Role of local plasmon models in light emission from small particle tunnel junctions, Phys. Rev. Lett. 41:1746 (1978).

    Article  ADS  Google Scholar 

  100. (a) C.K. Chen, A.R.B. de Castro, and Y.R. Shen, Surface enhanced second harmonic generation, Phys. Rev. Lett. (to be published); (b) J.F. Heritage, J.G. Bergman, A. Pinczuk, and J.M. Worlock, Surface picosecond Raman gain spectroscopy of a cyanide monolayer on silver, Chem. Phys. Lett. 67:229 (1979).

    Article  ADS  Google Scholar 

  101. F.W. King, R.P. Van Duyne and G.C. Schatz, Theory of Raman scattering by molecules adsorbed on electrode surfaces, J. Chem. Phys. 69:4472 (1978);

    Article  ADS  Google Scholar 

  102. G.L. Eesley, and J.R. Smith, Enhanced Ramam scattering on metal surfaces, Solid State Commun. 31:815 (1979);

    Article  ADS  Google Scholar 

  103. R. Loudon, “The Quantum Theory of Light,” Oxford University Press, London (1973), Ch. IV.

    Google Scholar 

  104. W.H. Weber and G.W. Ford, Enhanced Raman scattering by adsor-bates including the nonlocal response of the metal and the excitation of nonradiative modes, Phys. Rev. Lett. 44:1774 (1980); R. Fuchs and R.G. Barrera, Phys. Rev. B (to be published).

    Article  ADS  Google Scholar 

  105. E. Burstein, Y.J. Chen, C.Y. Chen, S. Lundquist, and E. Tosatti, Giant Raman scattering by adsorbed molecules on metal surfaces, Solid State Commun. 29:567 (1979).

    Article  ADS  Google Scholar 

  106. J.I. Gersten, R.L. Birke, and J.R. Lombard., Theory of enhanced light scattering from molecules adsorbed at the metal-solution interface, Phys. Rev. Lett. 43:147 (1979);

    Article  ADS  Google Scholar 

  107. G.W. Robinson, Surface enhanced Raman effect, Chem. Phys. Lett. 76:191 (1980);

    Article  ADS  Google Scholar 

  108. T.K. Lee and J.L. Birman, Molecules adsorbed on plane metal surfaces: Coupled system eigenstates, Quantum theory of enhanced Raman scattering by molecules on metals: Surface plasmon mechanism for plane metal surfaces, Phys. Rev. B 22:5953,5961 (1980);

    Article  ADS  Google Scholar 

  109. H. Ueba, Effective resonant light scattering from adsorbed molecules, J. Chem. Phys. 73:725 (1980);

    Article  ADS  Google Scholar 

  110. H. Ueba and S. Ichimura, Raman scattering of adsorbed molecules, J. Chem. Phys. 74:3070 (1981);

    Article  ADS  Google Scholar 

  111. M. Philpott, Effect of surface plasmons on transitions in molecules, J. Chem. Phys. 62:1812 (1975).

    Article  ADS  Google Scholar 

  112. S.L. McCall and P.M. Platzman, Raman scattering from chemisorbed molecules at surfaces, Phys. Rev. B 22:1660 (1980).

    Article  ADS  Google Scholar 

  113. A. Otto, J. Timper, J. Billmann, G. Kovacs, and I. Pockrand, Surface roughness induced electrode Raman scattering, Surf. Sci. 92:L55 (1980).

    Article  Google Scholar 

  114. T. Maniv and H. Metiu, Some comments concerning the microscopic theory of Raman scattering by adsorbed molecules, Surf. Sci. 101:399 (1980); R. Maniv and H. Metiu, Raman reflection: A possible mechanism for enhancement of Raman scattering by an adsorbed molecule, Chem. Phys. Lett. (in press).

    Article  ADS  Google Scholar 

  115. A. Otto, J. Timper, J. Billmann, and I. Pockrand, Enhanced inelastic light scattering from metal electrodes caused by adatoms, Phys. Rev. Lett. 45:46 (1980);

    Article  ADS  Google Scholar 

  116. A. Otto, Raman scattering from adsorbates on silver, Surf. Sci. 92:145 (1980);

    Article  ADS  Google Scholar 

  117. I. Pockrand and A. Otto, Coverage dependence of Raman scattering from pyridine adsorbed to silver — vacuum interfaces, Solid State Commun. 35:861 (1980);

    Article  ADS  Google Scholar 

  118. A. Otto, Surface Enhanced Raman scattering. What do we know?, Surf. Sci. 6:309 (1980);

    Article  Google Scholar 

  119. J. Billmann and A. Otto, Experimental evidence for a local mechanism of surface enhanced Raman scattering, Appl. Surf. Sci. 6:356 (1980);

    Article  Google Scholar 

  120. I. Pockrand and A. Otto, Raman scattering from silver/vacuum interfaces, Appl. Surf. Sci. 6:362 (1980).

    Article  Google Scholar 

  121. T.E. Furtak and J. Reyes, A critical review of theoretical models of surface enhanced Raman scattering, Surf. Sci. 93:351 (1980).

    Article  ADS  Google Scholar 

  122. H. Metiu, Prog. Surf. Sci. (to be published).

    Google Scholar 

  123. G. Schatz and R.P. Van Duyne, Image field theory of enhanced Raman scattering by molecules adsorbed on metal surfaces: Detailed comparison with experimental results, Surf. Sci. 101:425 (1980).

    Article  ADS  Google Scholar 

  124. B. Pettinger, U. Wenning, and D. M. Kolb, Raman and reflectance spectroscopy of pyridine adsorbed on single crystal Ag electrodes, Ber. Bunsenges. Physik. Chem. 82:1326 (1978); J. E. Demuth and P.N. Sanda, Observation of charged transfer states for pyridine chemisorbed on Ag (111), preprint.

    Google Scholar 

  125. P.W. Anderson, Localized magnetic states in metals, Phys. Rev. 124:41 (1961);

    Article  MathSciNet  ADS  Google Scholar 

  126. U. Fano, Effects of configuration interaction on intensities and phase shifts, Phys. Rev. 124:1866 (1961).

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Metiu, H. (1982). A Survey of Recent Theoretical Work. In: Chang, R.K., Furtak, T.E. (eds) Surface Enhanced Raman Scattering. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9257-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9257-0_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9259-4

  • Online ISBN: 978-1-4615-9257-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics