Skip to main content

Gene Flow in Seed Plants

  • Chapter
Evolutionary Biology

Abstract

Gene dispersal (flow, or migration) within and between plant populations has been of continuous interest to plant breeders and seed producers for many decades. Economic considerations have stimulated studies of gene flow as a function of distance, breeding system, pollinating agent, and planting design in numerous domestic plants. Only during the past two decades have a large body of plant evolutionists become interested in information accruing from these studies, and in the rates of gene flow in wild populations. Their efforts have concentrated primarily on related problems such as adaptations for and mechanics of pollen and seed (or fruit) dispersal, plant-pollinator coevolution, adaptive radiation in pollination and seed dispersal mechanisms, and colonization and the alteration of species boundaries. Early in this century, anecdoctal evidence on the movement of pollen and seed vectors, dispersal of pollen by wind, and the range extensions of weed species led to the casual assumption that gene flow must be extensive, and that it must play a major role in the cohesion of populations and population systems. This view eroded as more information became available and was more critically interpreted (e.g., Grant, 1958, 1971; Ehrlich and Raven, 1969; Stebbins, 1970a; Bradshaw, 1972).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Afzal, M., and Khan, H., 1950, Natural crossing in cotton in western Punjab, Agron J. 42:14–19, 89–93, 202–205, 236–238.

    Google Scholar 

  • Allard, R. W., 1965, Genetic systems associated with colonizing ability in predominantly selfpollinated species, in: The Genetics of Colonizing Species (H. G. Baker and G. L. Stebbins, eds.), pp. 50–75, Academic Press, New York.

    Google Scholar 

  • Allard, R. W., and Kahler, A. L., 1971, Allozyme polymorphisms in plant populations, Stadler Symp. Vol. 3:9–24.

    Google Scholar 

  • Allard, R. W., and Kahler, A. L., 1972, Patterns of molecular variation in plant populations, in: Proceedings of the 6th Berkeley Symposium on Mathematical Probability and Statistics, Vol. 5, pp. 237–254. University of California Press, Berkeley.

    Google Scholar 

  • Allard, R. W., Jain, S. K., and Workman, P. L., 1968, The genetics of inbreeding species, Advan. Genet. 14:55–131.

    Google Scholar 

  • Anderson, E., 1953, Introgressive hybridization, Biol. Rev. 28:280–307.

    Google Scholar 

  • Anonymous, 1939, Black Spruce Is a Limited Air Traveler, USDA Forest Service, Lake States Forest Experiment Station Technical Bulletin No. 147.

    Google Scholar 

  • Antonovics, J., 1968a, Evolution in closely adjacent plant populations. VI. Manifold effects of gene flow, Heredity 23:507–524.

    Google Scholar 

  • Antonovics, J., 1968b, Evolution in closely adjacent plant populations. V. Evolution of selffertility, Heredity 23:219–238.

    Google Scholar 

  • Archimowitsch, A., 1949, Control of pollination in sugar beets, Bot. Rev. 15:613–628.

    Google Scholar 

  • Armstrong, J. T., 1965, Breeding home range in the nighthawk and other birds: Its evolutionary and ecological signifcance, Ecology 53:350–361.

    Google Scholar 

  • Ashton, P. S., 1969, Speciation among tropical forest trees: Some deductions in light of recent evidence, Biol. J. Linn. Soc. Lond. 1:155–196.

    Google Scholar 

  • Aston, J. L., and Bradshaw, A. D., 1966, Evolution in closely adjacent populations. II. Agrostis stolonijera in marine habitats. Heredity 21:649–664.

    Google Scholar 

  • Aubreville, A., 1938, La forêt coloniale: Les forets de l’Afrique occidentale francaise, Ann. Acad. Sci. Paris 9:1–245.

    Google Scholar 

  • Baker, H. G., 1959, Reproductive methods as factors in speciation in flowering plants, Cold Spring Harbor Symp. Quant. Biol. 24:177–190.

    PubMed  CAS  Google Scholar 

  • Baker, H. G., 1963, Evolutionary mechanisms in pollination biology, Science 139:877–883.

    PubMed  CAS  Google Scholar 

  • Baker, H. G., 1965, Characteristics and modes of origins of weeds, in: The Genetics of Colonizing Species (H. G. Baker and G. L. Stebbins, eds.), pp. 147–168, Academic Press, New York.

    Google Scholar 

  • Baker, H. G., 1970, Evolution in the tropics, Biotropica 2:101–111.

    Google Scholar 

  • Baker, H. G., 1972, Seed weight in relation to environmental conditions in California, Ecology 53:997–1010.

    Google Scholar 

  • Baker, H. G., 1973, Evolutionary relationships between flowering plants and animals in American and African tropical forests, p. 145–159. In B. J. Meggers, E. S. Ayensu, and W. D. Duckworth (eds.), Tropical Forest Ecosystems in Africa and South America: A Comparative Review. Smithsonian Institution Press, Washington, D.C.

    Google Scholar 

  • Bannister, M. H., 1965, Variation in the breeding system of Pinus radiata, in: The Genetics of Colonizing Species (H. G. Baker and G. L. Stebbins, eds.), pp. 353–372, Academic Press, New York.

    Google Scholar 

  • Barrons, K. C., 1939, Natural crossing in beans at different degrees of isolation, Proc. Am. Soc. Hort. Sci. 36:637–640.

    Google Scholar 

  • Barton, L. V., 1961, Seed Preservation and Longevity, Hill, London.

    Google Scholar 

  • Bateman, A. J., 1947a, Contamination of seed crops. I. Insect pollination, J. Genet. 48:257–275.

    PubMed  CAS  Google Scholar 

  • Bateman, A. J., 1947b, Contamination of seed crops. III. Relation with isolation distance, Heredity 1:303–336.

    Google Scholar 

  • Bateman, A. J., 1951, Is gene dispersion normal? Heredity 4:253–263.

    Google Scholar 

  • Bateman, A. J., 1956, Cryptic self-incompatibility in the wallflower: Cheiranthus cheiri L., Heredity 10:251–261.

    Google Scholar 

  • Bawa, K. S., 1974, Breeding systems of tree species of a lowland tropical community, Evolution 28:85–92.

    Google Scholar 

  • Bene, F., 1946, The feeding and related behavior of hummingbirds, Mem. Boston Soc. Nat.Hist. 9:403–478.

    Google Scholar 

  • Bonnier, G., 1906, Sur la division du travail chez les abeilles, Comp. Rend. Acad. Sci. Paris 143:941–946.

    Google Scholar 

  • Boyer, W. D., 1958, Longleaf pine seed dispersal in south Alabama, J. Forestry 56:265–268.

    Google Scholar 

  • Bradner, N. R., Frakes, R. V., and Stephen, W. P., 1965, Effects of bee species and isolation distances on possible varietal contamination in alfalfa, Agron. J. 57:247–248.

    Google Scholar 

  • Bradshaw, A. D., 1959, Population differentiation in Agrostis tenuis, I. Morphological differentiation. New Phytol. 58:208–227.

    Google Scholar 

  • Bradshaw, A. D., 1972, Some of the evolutionary consequences of being a plant, Evol. Biol. 5:25–44.

    Google Scholar 

  • Brittain, W. H., and Newton, D. E., 1933, A study in the relative constancy of hive bees and wild bees in pollen gathering, Can. J. Res. 9:334–349.

    Google Scholar 

  • Brower, L. P., 1961, Studies on the migration of the monarch butterfly. I. Breeding populations of Danaus plexippus and D. gilippus berenice in south central Florida, Ecology 42:76–83.

    Google Scholar 

  • Brownlee, J., 1911, The mathematical theory of random migration and epidemic distribution, Proc. Roy. Soc. Edinburgh 31:262–289.

    Google Scholar 

  • Brussard, P. F., and Ehrlich, P. R., 1970, The population structure of Erebia epipsodea (Lepidoptera: Satyrinae), Ecology 51:119–129.

    Google Scholar 

  • Burrows, F. M., 1973, Calculation of the primary trajectories of plumed seeds in steady winds with variable convection, New Phytol. 72:647–664.

    Google Scholar 

  • Butler, C. G., Jeffree, E. P., and Kalmus, H., 1943, The behavior of a population of honeybees on an artificial and on a natural crop, J. Exp. Biol. 20:65–73.

    Google Scholar 

  • Buzzard, C. N., 1936, De l’organisation du travail chez les abeilles, Bull. Soc. Apic. Alpes-Marit. 15:65–70.

    Google Scholar 

  • Calde, R. D., 1965, Particle Size, Reinhold, New York.

    Google Scholar 

  • Carborn, J. M., 1957, Shelterbelts and Microclimate, Forestry Commission Bulletin No. 29, Edinburgh.

    Google Scholar 

  • Carlquist, S., 1966, The biota of long-distance dispersal. II. Loss of dispersability in Pacific Compositae, Evolution 20:30–48.

    Google Scholar 

  • Chamberlain, A. C., 1967, Deposition of particles to natural surfaces, in: Airborne Microbes (17th Symposium of the Society for General Microbiology, Cambridge), pp. 138–164. Cambridge University Press, Cambridge.

    Google Scholar 

  • Clausen, J., 1954, Partial apomixis as an equilibrium system in evolution, Caryologia 6:469–479, (suppl.).

    Google Scholar 

  • Clegg, M. T., and Allard, R. W., 1972, Patterns of genetic differentiation in the slender wild oat species Avena barbata, Proc. Natl. Acad. Sci. 69:1820–1824.

    CAS  Google Scholar 

  • Connell, J. H., and Orias, E., 1964, The ecological regulation of species diversity, Am. Naturalist 98:399–413.

    Google Scholar 

  • Cook, S. A., 1962, Genetic system, variation and adaptation in Eschscholzia californica, Evolution 16:278–299.

    Google Scholar 

  • Corner, E. J. H., 1954, The evolution of the tropical forest, in: Evolution as a Process (J. Huxley, A. C. Hardy, and E. B. Ford, eds.), Allen and Unwin, London.

    Google Scholar 

  • Crane, M. B., and Mather, K., 1943, The natural cross-pollination of crop plants with particular reference to the radish, J. Appl. Biol. 30:301–308.

    Google Scholar 

  • Croat, T. B., 1974, A case for selection for delayed fruit maturation in Spondias (Anacardiaceae), Biotropica 6:135–137.

    Google Scholar 

  • Crocker, W., 1938, Life-span of seeds, Bot. Rev. 4:235–274.

    Google Scholar 

  • Crow, J. F., and Kimura, M., 1972, The effective number of a population with overlapping generations: A correction and further discussion, Am. J. Hum. Genet. 24:1–10.

    PubMed  CAS  Google Scholar 

  • Crow, J. F., and Maruyama, T., 1971, The number of neutral alleles maintained in a finite, geographically structured population, Theoret. Pop. Biol. 2:437–453.

    CAS  Google Scholar 

  • Cruden, R. W., 1966, Birds as agents of dispersal for disjunct plant groups of the temperate western hemisphere, Evolution 20:516–532.

    Google Scholar 

  • Currence, T. M., and Jenkins, J. M., 1942, Natural crossing in tomatoes as related to distance and direction, Proc. Am. Soc. Hort. Sci. 41:273–276.

    Google Scholar 

  • Dansereau, P., and Lems, K., 1957, The grading of dispersal types, Contrib. Inst. Bot.Montreal, No. 71.

    Google Scholar 

  • Davies, M. S., and Snaydon, R. W., 1973a, Physiological differences among populations of Anthoxanthum odoratum L. collected from the Park Grass experiment, Rothamsted. I. Response to calcium, J. Appl. Ecol. 10:33–45.

    Google Scholar 

  • Davies, M. S., and Snaydon, R. W., 1973b, Physiological differences among populations of Anthoxanthum odoratum collected from the Park Grass experiment, Rothamsted, II. Response to aluminum, J. Appl. Ecol. 10:47–55.

    Google Scholar 

  • den Hartog, C., 1964, Over de oecologie van bloeiende Lemna trisulca, Gorteria 2:68–72.

    Google Scholar 

  • Dethier, V. G., and MacArthur, R. H., 1964, A field’s capacity to support a butterfly population, Nature 201:728–729.

    Google Scholar 

  • Dickinson, H., and Antonovics, J., 1973a, The effects of environmental heterogeneity on the genetics of finite populations, Genetics 73:713–735.

    PubMed  CAS  Google Scholar 

  • Dickinson, H., and Antonovics, J., 1973b, Theoretical considerations of sympatric divergence, Am. Naturalist 107:256–274.

    Google Scholar 

  • Dingle, A. N., Gill, G. C., Wagner, W. H., Jr., and Hewson, E. W., 1959, The emission, dispersion, and deposition of ragweed pollen, Advan. Geophys. 6:367–386.

    Google Scholar 

  • Dowdeswell, W. H., Fisher, R. A., and Ford, E. B., 1940, The quantitative study of populations in the Lepidoptera. I. Polyommatus icarus Rott., Ann. Eugen. 10:123–136.

    Google Scholar 

  • Dowdeswell, W. H., Fisher, R. A., and Ford, E. B., 1949, The quantitative study of populations in the Lepidoptera. II. Maniola jurtina L., Heredity 3:67–84.

    CAS  Google Scholar 

  • Dressier, R. L., 1968, Pollination by euglossine bees, Evolution 22:202–210.

    Google Scholar 

  • Duggar, J. F., 1934, The distance to which Crotalaria seed are thrown by pods, Ann. Rep.Alabama Agr. Exp. Sta. 35:27.

    Google Scholar 

  • Ehrendorfer, F., 1953, Okologisch-geographische Mikro-Differenzierung einer Population von Galium pumilum Murr. s. str., Oesterr. Bot. Z. 100:616–638.

    Google Scholar 

  • Ehrendorfer, F., 1965, Dispersal mechanisms, genetic systems, and colonizing abilities in some flowering plant families, in: Genetics of Colonizing Species (H. G. Baker and G. L. Stebbins, ed.), Academic Press, New York.

    Google Scholar 

  • Ehrlich, P. R., 1965, The population biology of the butterfly Euphydryas editha. II. The structure of th Jasper Ridge colony, Evolution 19:327–336.

    Google Scholar 

  • Ehrlich, P. R., and Gilbert, L. E., 1973, Population structure and dynamics of the tropical butterfly Heliconius ethilla, Biotropica 5:69–82.

    Google Scholar 

  • Ehrlich, P. R., and Raven, P. H., 1969, Differentiation of populations, Science 165:1228–1232.

    PubMed  CAS  Google Scholar 

  • Ehrman, L., 1962, Hybrid sterility as an isolating mechanism in the genus Drosophila, Quart. Rev. Biol. 37:279–302.

    Google Scholar 

  • Emmel, T. C., 1964, The ecology and distribution of butterflies in a montane community near Florissant, Colorado. Amer. Midl. Natur. 72:358–373.

    Google Scholar 

  • Emmel, T. C., 1968, The population biology of the neotropical satyrid butterfly Euptychiaherma., J. Lipid. Res. 7:153–165.

    Google Scholar 

  • Emmel, T. C., 1972, Dispersal in a cosmopolitan butterfly species (Pieris raphae) having open population structure, J. Lipid. Res. 11:95–98.

    Google Scholar 

  • Epling, C., Lewis, H., and Ball, F. M., 1960, The breeding group and seed storage: A study in population dynamics, Evolution 14:238–255.

    Google Scholar 

  • Faegri, K., and van der Pijl, L., 1966, Principles of Pollination Ecology, Pergamon Press, New York.

    Google Scholar 

  • Falconer, D. S., 1960, Introduction to Quantitative Genetics, Ronald Press, New York.

    Google Scholar 

  • Fales, J. H., 1959, A field study of the flight behavior of the tiger swallowtail butterfly, Ann.Entomol. Soc. Am. 52:486–487.

    Google Scholar 

  • Felsenstein, J., 1971, The effective size of a population with overlapping generations, Genetics 68:581–597.

    PubMed  CAS  Google Scholar 

  • Fisher, R. A., 1930, The Genetical Theory of Natural Selection, Clarendon Press, Oxford.

    Google Scholar 

  • Fosdick, M. K., 1972, A population study of the neotropical nymphalid butterfly, Anartiaamalthea, in Ecuador, J. Res. Lepid. 11:65–80.

    Google Scholar 

  • Free, J. B., 1960, The behavior of honeybees visiting the flowers of fruit trees, J. Anim. Ecol. 29:385–395.

    Google Scholar 

  • Free, J. B., 1962, The effect of distance from pollinizer varieties on the fruit set on trees in plum and apple orchards, J. Hort. Sci. 37:262–271.

    Google Scholar 

  • Free, J. B., 1964, The behavior of honeybees on sunflowers (Helianthus annuus L.), J. Appl.Ecol. 1:19–27.

    Google Scholar 

  • Free, J. B., 1968, The foraging behavior of honeybees (Apis mellifera) and bumblebees (Bombus spp.) on blackcurrant (Ribes nigrum), raspberry (Rubus idaeus) and strawberry (Fragaria x Ananassa) flowers, J. Appl. Ecol. 5:157–168.

    Google Scholar 

  • Free, J. B., 1970, Insect Pollination of Crops, Academic Press, New York.

    Google Scholar 

  • Fryxell, P. A., 1956, Effect of varietal mass on the percentage of outcrossing in Gossypiumhirsutum in New Mexico, J. Hered. 57:299–301.

    Google Scholar 

  • Fryxell, P. A., 1957, Mode of reproduction in higher plants, Bot. Rev. 23:135–233.

    Google Scholar 

  • Fukuda, I., 1967, The formation of subgroups by the development of inbreeding systems in a Trillium population, Evolution 21:141–147.

    Google Scholar 

  • Gadgil, M., 1970, Dispersal: Population consequences and evolution, Ecology 52:253–261.

    Google Scholar 

  • Gardner, E. J., 1946, Wind pollination in guayule, Parthenium argentatum Gray, J. Am. Soc.Agron, 38:264–272.

    Google Scholar 

  • Geiger, R., 1950, The Climate Near the Ground, Harvard University Press, Cambridge, Mass.

    Google Scholar 

  • Gilbert, J. M., 1958, Forest succession in the Florentine Valley, Tasmania, Proc. Roy. Soc.Tasmania 93:129–151.

    Google Scholar 

  • Gilbert, L. E., and Singer, M. C., 1973, Dispersal and gene flow in a butterfly species, Am.Naturalist 107:58–72.

    Google Scholar 

  • Gilmartin, A. J., 1968, Baker’s law and dioecism in the Hawaiian flora: An apparent contradiction, Pacific Sci. 22:285–292.

    Google Scholar 

  • Giltay, E., 1904, Ãœber die Bedeutung der Krone bei den Blüten und über das Farbenunterscheidungsvermögen der Insekten, Jahrbuch Wiss. Bot. 40:368–402.

    Google Scholar 

  • Gleaves, J. T., 1973, Gene flow mediated by wind-borne pollen, Heredity 31:355–366.

    Google Scholar 

  • Gloyne, R. W., 1954, Some effects of shelterbelts upon local and microclimate, J. Forestry 27:85–95.

    Google Scholar 

  • Goplen, B. P., Cooke, D. A., and Pankiw, P., 1972, Effects of isolation distance on contamination in sweetclover, Canad. J. Plant Sci. 52:517–524.

    Google Scholar 

  • Gottlieb, L. D., 1974, Genetic stability in a peripheral isolate of Stephanomeria exigua ssp. coronaria that fluctuates in population size, Genetics 76:551–556.

    PubMed  CAS  Google Scholar 

  • Grant, K., and Grant, V., 1968, Hummingbirds and Their Flowers, Columbia University Press, New York.

    Google Scholar 

  • Grant, V., 1958, The regulation of recombination in plants, Cold Spring Harbor Symp.Quant. Biol. 23:337–363.

    PubMed  CAS  Google Scholar 

  • Grant, V., 1971, Plant Speciation, Columbia University Press, New York.

    Google Scholar 

  • Green, H. L., and Lane, W. R., 1957, Particulate Clouds: Dusts, Smokes, and Mists, Span, London.

    Google Scholar 

  • Green, J. M., and Jones, M. D., 1953, Isolation of cotton for seed increase. Agron J. 45:366–368.

    Google Scholar 

  • Gregory, P. H., 1973, The Microbiology of the Atmosphere, 2nd ed., Wiley, New York.

    Google Scholar 

  • Griffiths, D. J., 1950, The liability of seed crops of perennial ryegrass (Lolium perenne) to contamination by wind-borne pollen, J. Agr. Sci. 40:19–38.

    Google Scholar 

  • Haberlandt, G., 1914, Physiological Plant Anatomy, Macmillan, London.

    Google Scholar 

  • Haga, T., 1969, Structure and dynamics of natural populations of a diploid Trillium, in: Chromosomes Today, Vol. 2 (C. D. Darlington and K. R. Lewis, eds.), pp. 207–217, Oliver and Boyd, London.

    Google Scholar 

  • Hamrick, J. L., and Allard, R. W., 1972, Microgeographical variation in allozyme frequencies Avena barbata, Proc. Natl. Acad. Sci. 69:2100–2104.

    CAS  Google Scholar 

  • Harlan, J. R., and deWet, J. M. J., 1963, The compilospecies concept, Evolution 17:497–501.

    Google Scholar 

  • Harper, J. L., Lovell, P. H., and Moore, K. G., 1970, The shapes and sizes of seeds, Ann. Rev. Ecol. Syst. 1:327–356.

    Google Scholar 

  • Heinrich, B., and Raven, P. H., 1972, Energetics and pollination ecology, Science 176:597–602.

    PubMed  CAS  Google Scholar 

  • Heiser, C. B., 1949, Natural hybridization with particular reference to introgression, Bot. Rev. 15:645–687.

    Google Scholar 

  • Heiser, C. B., 1973, Introgression reexamined, Bot. Rev. 39:347–366.

    Google Scholar 

  • Hill, W. G., 1972, Effective size of populations with overlapping generations, Theoret. Pop. Biol. 3:278–289.

    CAS  Google Scholar 

  • Hillel, J., Feldman, M. W., and Simchen, G., 1973, Mating systems and population structure in two closely related species of the wheat group. I. Variation between and within populations, Heredity 30:141–167.

    Google Scholar 

  • Hodgson, H. J., 1949, Flowering habits and pollen dispersal in Pensacola Bahia grass, Paspalum notatum Flugge, J. Am. Soc. Agron. 41:337–343.

    Google Scholar 

  • Hofmann, J. V., 1911, Natural reproduction from seed stored in the forest floor, J. Agr. Res. 11:1–26.

    Google Scholar 

  • International Crop Improvement Association, 1963, Minimum Seed Certification Standards, Publication 20.

    Google Scholar 

  • Imam, A. G., and Allard, R. W., 1965, Population studies in predominantly self-pollinated species. VI. Genetic variability between and within natural populations of wild oats from differing habitats in California, Genetics 51:49–62.

    PubMed  CAS  Google Scholar 

  • Isaac, L. A., 1930, Seed flight in the Douglas-fir region, J. Forestry 28:492–499.

    Google Scholar 

  • Jain, S. K., 1973, Population structure and the effects of the breeding system, in: Plant Genetic Resources: Today and Tommorow (FAO/IBP Conference, O. H. Frankel and J. G. Hawkes, eds.).

    Google Scholar 

  • Jain, S. K., and Bradshaw, A. D., 1966, Evolutionary divergence among adjacent plant populations. I. Evidence and its theoretical analysis, Heredity 21:407–441.

    Google Scholar 

  • Jain, S. K., and Marshall, D. R., 1967, Population studies in predominantly self-pollinating species. X. Variation in natural populations of Avena fatua and A. barbata, Am. Naturalist 101:19–33.

    Google Scholar 

  • Jain, S. K., and Marshall, D. R., 1968, Simulation of models involving mixed selfing and random mating. I. Stochastic variation in outcrossing and selection parameters, Heredity 23:411–432.

    PubMed  CAS  Google Scholar 

  • Janzen, D. H., 1969, Seed eater versus seed size, number, toxicity and dispersal, Evolution 32:1–27.

    Google Scholar 

  • Janzen, D. H., 1970, Herbivores and the number of tree species in tropical forests, Am. Naturalist 104:501–528.

    Google Scholar 

  • Janzen, D. H., 1971a, Euglossine bees as long-distance pollinators of tropical plants, Science 171:203–205.

    PubMed  CAS  Google Scholar 

  • Janzen, D. H., 1971b, Seed predation by animals, Ann. Rev. Ecol. Syst. 2:465–492.

    Google Scholar 

  • Janzen, D. H., 1972, Escape in space by Sterculia apatala seeds from the bug Dysdercus jasciatus in a Costa Rican deciduous forest, Ecology 53:360–361.

    Google Scholar 

  • Jemison, G. M., and Korstian, C. F., 1944, Loblolly pine seed production and dispersal, J.Forestry 42:734–741.

    Google Scholar 

  • Jensen, I., and Bogh, H., 1941, On conditions influencing the danger of crossing in the case of wind pollinated cultivated plants, Tidsskr. Planteavl 46:238–266.

    Google Scholar 

  • Johnson, C. G., 1969, Migration and Dispersal of Insects by Flight, 763 pp., Methuen, London.

    Google Scholar 

  • Jones, E. W., 1956, Ecological studies on the rain-forest of southern Nigeria. II, J. Ecol. 44:83–117.

    Google Scholar 

  • Jones, M. D., and Brooks, J. S., 1950, Effectiveness of Distance and Border Rows in Preventing Outcrossing in Corn, Oklahoma Agricultural Experiment Station Technical Bulletin No. T-38.

    Google Scholar 

  • Jones, M. D., and Brooks, J. S., 1952, Effect of Tree Barriers on Outcrossing in Corn, Oklahoma Agricultural Experiment Station Bulletin No. T-45.

    Google Scholar 

  • Jones, M. D., and Newell, L. C., 1946, Pollination Cycles and Pollen Dispersal in Relation to Grass Improvement, Nebraska Agricultural Research Bulletin No. 148.

    Google Scholar 

  • Jones, M. E., 1971, The population genetics of Arabidopsis thaliana. I. Breeding system, Heredity 27:39–50.

    Google Scholar 

  • Kaplan, S. M., 1970, Aspects of the reproductive biology of Thalictrum, Ph.D. thesis, University of Massachusetts, Amherst.

    Google Scholar 

  • Keay, R. W. J., 1957, Wind-dispersed species in a Nigerian forest, J. Ecol. 45:471–478.

    Google Scholar 

  • Keller, E. C., Mattoni, R. H. T., and Seiger, M. S. B., 1966, Preferential return of artificially displaced butterflies, Anim. Behav. 14:197–200.

    PubMed  Google Scholar 

  • Kerner, M. A., 1898, Pflanzenleben, Vol. II, 2nd ed., Leipzig, Wien.

    Google Scholar 

  • Kernick, M. D., 1961, Seed production of specific crops, in: Agricultural and HorticulturalSeeds, pp. 181–547, FAO Agricultural Studies No. 55.

    Google Scholar 

  • Kerster, H. W., and Levin, D. A., 1968, Neighborhood size in Lithospermum caroliniense, Genetics 60:577–587.

    PubMed  CAS  Google Scholar 

  • Kiang, Y. T., 1972, Pollination study in a natural population of Mimulus guttatus, Evolution 26:308–320.

    Google Scholar 

  • Kimura, M., 1953, Stepping stone model of population, Ann. Rep. Natl. Inst. Genet. 3:63–65.

    Google Scholar 

  • Kimura, M., and Crow, J. F., 1963, The measurement of effective population number, Evolution 17:279–288.

    Google Scholar 

  • Kimura, M., and Maruyama, T., 1971, Pattern of neutral polymorphism in a geographically structured population, Genet. Res. 18:125–133.

    PubMed  CAS  Google Scholar 

  • Kimura, M., and Weiss, G. H., 1964, The stepping stone model of population structure and the decrease of genetic correlation with distance, Genetics 49:561–576.

    PubMed  CAS  Google Scholar 

  • Knowles, P. F., 1943, Improving annual bromegrass, Bromus mollis L., for range purposes, J.Am. Soc. Agron. 35:584–594.

    Google Scholar 

  • Knowles, R. P., 1969, Nonrandom pollination in polycrosses of smooth bromegrass, Bromusinermis Leyss., Crop Sci. 9:58–61.

    Google Scholar 

  • Knowles, R. P., and Baenziger, H., 1962, Fertility indices in cross-pollinated grasses, Canad.J. Plant Sci. 42:460–471.

    Google Scholar 

  • Knowles, R. P., and Ghosh, A. W., 1968, Isolation requirements for smooth bromegrass, Bromus inermis, as determined by a genetic marker, Crop Sci. 3:371–374.

    Google Scholar 

  • Levin, D. A., 1968, The breeding system of Lithospermum caroliniense: Adaptation and counteradaptation, Am. Naturalist 102:427–441.

    Google Scholar 

  • Levin, D. A., 1972i, Interspecific pollen exchange as a function of species proximity in Phlox, Evolution 26:251–258.

    Google Scholar 

  • Levin, D. A., 1972b, Plant density, cleistogamy, and self-fertilization in natural populations of Lithospermum caroliniense. Am. J. Bot. 59:71–77.

    Google Scholar 

  • Levin, D. A., 1974, The oil content of seeds: An ecological perspective, Am. Naturalist 108:193–206.

    Google Scholar 

  • Levin, D. A., and Beruhe, D., 1972, Phlox and Colias: The efficiency of a pollination system, Evolution 26:242–250.

    Google Scholar 

  • Levin, D. A., and Kerster, H. W., 1967, An analysis of interspecific pollen exchange in Phlox, Am. Naturalist 101:387–400.

    Google Scholar 

  • Levin, D. A., and Kerster, H. W., 1968, Local gene dispersal in Phlox pilosa, Evolution 22:130–139.

    Google Scholar 

  • Levin, D. A., and Kerster, H. W., 1969a, The dependence of bee-mediated pollen dispersal on plant density, Evolution 23:560–571.

    Google Scholar 

  • Levin, D. A., and Kerster, H. W., 1969b, Density-dependent gene dispersal in Liatris, Am.Naturalist 103:61–74.

    Google Scholar 

  • Levin, D. A., and Kerster, H. W., 1971, Neighborhood structure under diverse reproductive methods in plants, Am. Naturalist 104:345–354.

    Google Scholar 

  • Levins, R., 1968, Evolution in Changing Environments, Princeton University Press, Princeton, N.J.

    Google Scholar 

  • Lewis, D., 1942, The evolution of sex in flowering plants, Biol. Rev. 17:46–67.

    Google Scholar 

  • Lewontin, R. C., 1967, Population genetics, Ann. Rev. Genet. 1:37–70.

    Google Scholar 

  • Linhart, Y. B., 1973, Ecological and behavioral determinants of pollen dispersal in hummingbird-pollinated Heliconia, Am. Naturalist 107:511–523.

    Google Scholar 

  • MacArthur, R. H., 1972, Geographical Ecology, Harper and Row, New York.

    Google Scholar 

  • MacArthur, R. H., and Wilson, E. O., 1967, The Theory of Island Biogeography, Princeton University Press, Princeton, N.J.

    Google Scholar 

  • MacDaniels, L. H., 1931, Further experience with the pollination problem, Proc. N.Y. StateHort. Soc. 76:32–37.

    Google Scholar 

  • Maruyama, T., 1969, Genetic correlation in the stepping stone model with non-symmetrical migration rates, J. Appl. Prob. 6:463–477.

    Google Scholar 

  • Maruyama, T., 1970a, On the rate of decrease of heterogeneity in circular stepping stone models of populations, Theoret. Pop. Biol. 1:101–119.

    CAS  Google Scholar 

  • Maruyama, T., 1970b, Rate of decrease of genetic variability in a subdivided population, Biometrika 57:299–311.

    Google Scholar 

  • Maruyama, T., 1970c, Effective number of alleles in a subdivided population, Theoret. Pop.Biol. 1:273–306.

    CAS  Google Scholar 

  • Maruyama, T., 1971, Analysis of population structure. II. Two-dimensional stepping stone models of finite length and other geographically structured populations, Ann. Hum.Genet. 35:179–196.

    PubMed  CAS  Google Scholar 

  • Maruyama, T., 1972, Rate of decrease of genetic variability in a two-dimensional continuous population of finite size, Genetics 70:639–651.

    PubMed  CAS  Google Scholar 

  • Mattoni, R. H. T., and Seiger, M. S. B., 1963, Techniques in the study of population structure in Philotes sonorensis, J. Res. Lepid. 1:237–244.

    Google Scholar 

  • Maynard Smith, J., 1970a, Population size, polymorphism, and the rate of non-Darwinian evolution, Am. Naturalist 104:231–237.

    Google Scholar 

  • Maynard Smith, J., 1970b, Genetic polymorphism in a varied environment, Am. Naturalist 104:487–490.

    Google Scholar 

  • McCubbin, W. A., 1944, Relation of spore dimensions to their rate of fall, Phytopathology 34:230–234.

    Google Scholar 

  • McKey, D., 1974, The ecology of coevolved seed dispersal systems, in: Plant-Animal Coevolution (P. H. Raven and L. E. Gilbert, eds.), University of Texas Press, Austin.

    Google Scholar 

  • McNab, B. K., 1963, Bioenergetics and the determination of home range size, Am. Naturalist 93:133–140.

    Google Scholar 

  • McNeilly, T., 1968, Evolution in closely adjacent plant populations. III. Agrostis tenuis on a small copper mine, Heredity 23:99–108.

    Google Scholar 

  • Medway, L., 1972, Phenology of a tropical rain forest in Malaya, Biol. J. Linn. Soc. 4:117–146.

    Google Scholar 

  • Minderhoud, A., 1931, Untersuchungen über das Betragen der Honigbiene als Blütenbestauberin, Gartenbauwissenshajt 4:342–362.

    Google Scholar 

  • Morley, B. D., 1972, The distribution and variation of some gesneriads on Caribbean Islands, in: Taxonomy, Phytogeography and Evolution (D. H. Valentine, ed.), pp. 239–257, Academic Press, New York.

    Google Scholar 

  • Müller, H., 1882, Versuche über die Farbenliebhabeire der Honigbiene, Kosmos 12:273–299.

    Google Scholar 

  • Müller, P., 1955, Verbreitungs, biologie der Blutenpflanzen, Verh. Geobot. Inst. Zurich, Publication 30.

    Google Scholar 

  • Neel, J., and Ward, R. H., 1972, The genetic structure of a tribal population, the Yanomama Indians, Ann. Hum. Genet. 36:255–279.

    Google Scholar 

  • Nei, M., 1972, Genetic distance between populations, Am. Naturalist 106:283–292.

    Google Scholar 

  • Nei, M., and Imaizumi, Y., 1966a, Genetic structure of human populations. I. Local differentiation of blood group gene frequencies in Japan, Heredity 21:9–35.

    PubMed  CAS  Google Scholar 

  • Nei, M., and Imaizumi, Y., 1966b, Genetic structure of human populations. II. Differentiation of blood group gene frequencies among isolated populations, Heredity 21:183–190.

    PubMed  CAS  Google Scholar 

  • Nieuwhof, M., 1963, Pollination and contamination of Brassica oleracea L., Euphytica 12:17–26.

    Google Scholar 

  • Norberg, R. A., 1973, Autorotation, self-stability, and structure of single-winged fruits and seeds (samaras) with comparative remarks on animal flight, Biol. Rev. 48:561–596.

    Google Scholar 

  • Parsons, P. A., 1958, Evolution of sex in the flowering plants of Australia, Nature 181:1673–1674.

    Google Scholar 

  • Paterniani, E., and Short, A. C., 1974, Effective maize pollen dispersal in the field, Euphytica 23:129–134.

    Google Scholar 

  • Pedersen, N. W., Hurst, R. L., Levin, M. D., and Stoker, G. L., 1969, Computer analysis of the genetic contamination of alfalfa seed, Crop. Sci. 9:1–4.

    Google Scholar 

  • Pedersen, P. N., Johansen, H. B., and Jorgensen, J., 1961a, Pollen spreading in diploid and tetraploid rye. I. Importance of pollen quantity and pollen distribution for the percentage of seed setting in the ears, Royal Vet. Agr. Coll. Ann. Yearbook, 10 pp. 54–67.

    Google Scholar 

  • Pedersen, P. N., Johansen, H. B., and Jorgensen, J., 1961b, Pollen spreading in diploid and tetraploid rye. II. Distance of pollen spreading and risk of intercrossing, Royal Vet. Agr.Coll. Ann. Yearbook, 12 pp. 68–86.

    Google Scholar 

  • Pianka, E. R., 1970, On rand K-selection, Am. Naturalist 104:592:597.

    Google Scholar 

  • Pitelka, F. A., 1942, Territoriality and related problems in North American hummingbirds, Condor 44:189–204.

    Google Scholar 

  • Plummer, G. L., and Keever, C., 1963, Autumnal daylight weather and camphor-weed dispersal in the Georgia Piedmont region, Bot. Gaz. 124:283.

    Google Scholar 

  • Pope, O. A., Simpson, D. M., and Duncan, E. N., 1944, Effect of corn barriers on natural crossing in cotton, J. Agr. Res. 68:347–361.

    Google Scholar 

  • Raynor, G. S., 1967, Effects of a forest on particulate dispersion, in: USAEC MeteorologicalInformation Meeting Proceedings (C. A. Mawson, ed.), Chalk River Nuclear Laboraties, Ontario.

    Google Scholar 

  • Raynor, G. S., and Ogden, E. C., 1965, Twenty-four Hour Dispersion of Ragweed Pollen from a Known Source, Brookhaven National Laboratory Bulletin BNL 957 (T398).

    Google Scholar 

  • Raynor, G. S., Cohen, L. A., Hayes, J. V., and Ogden, E. C., 1966, Dyed pollen grains and spores as tracers in dispersion and deposition studies, J. Appl. Meteorol. 5:728–729.

    Google Scholar 

  • Raynor, G. S., Ogden, E. C., and Hayes, J. V., 1970a, Dispersion and deposition of ragweed pollen from experimental sources, J. Appl. Meteorol. 9:885–895.

    Google Scholar 

  • Raynor, G. S., Hayes, J. V., and Ogden, E. C., 1970b, Experimental Data on Dispersion and Deposition of Timothy and Corn Pollen from Known Sources, Brookhaven National Laboratory Bulletin BNL 50266.

    Google Scholar 

  • Ribbands, C. R., 1949, The foraging method of individual honeybees, J. Anim. Ecol. 18:47–66.

    Google Scholar 

  • Ribbands, C. R., 1955, The scent perception of the honeybee, Proc. Roy. Soc. Lond. (B) 143:367–379.

    Google Scholar 

  • Rick, C. M., 1947, The effect of planting design upon the amount of seed produced by male sterile tomato plants as a result of natural cross-pollination, Proc. Am. Soc. Hort. Sci. 50:273–284.

    Google Scholar 

  • Ridley, H. N., 1930, The Dispersal and Plants Throughout the World, Reeve, Ashford.

    Google Scholar 

  • Roberts, D., 1956, Sugar sprays aid fertilization of plums by bees, N.Z. J. Agr. 93:206–211.

    Google Scholar 

  • Roe, A. L., 1967, Seed dispersal in a bumper spruce seed year, U.S. Forest Service Intermountain Forest and Range Experiment Station Research Paper INT-39.

    Google Scholar 

  • Rohlf, F. J., and Schnell, G. D., 1971, An investigation of the isolation by distance model, Am. Naturalist 105:295–324.

    Google Scholar 

  • Ronco, F., 1970, Englemann spruce seed dispersal and seedling establishment in clearcut forest openings in Colorado, USDA Forest Service Research Note RM-168.

    Google Scholar 

  • Salisbury, E. J., 1942, The Reproductive Capacity of Plants, Bell, London.

    Google Scholar 

  • Salisbury, E. J., 1961, Weeds and Aliens, Collins, London.

    Google Scholar 

  • Schaal, B. A., 1974, Population structure and balancing selection in Liatris cylindracea, Doctoral dissertation, Yale University, New Haven.

    Google Scholar 

  • Schlising, R. A., and Turpin, R. A., 1971, Hummingbird dispersal of Delphinium cardinale pollen treated with radioactive iodine, Am. J. Bot. 58:401–406.

    Google Scholar 

  • Schmidt, W., 1918, Die Verbreitung von Samen and Blutenstaub durch die Luftbewegung, Oesterr. Bot. Z. 67:313–328.

    Google Scholar 

  • Schoener, T. W., 1968, Sizes of feeding territories among birds, Ecology 49:123–141.

    Google Scholar 

  • Scott, R. K., and Longden, P. C., 1970, Pollen release by diploid and tetraploid sugar-beet plants, Ann. Appl. Biol. 66:129–135.

    Google Scholar 

  • Shapiro, A. M., 1970, The role of sexual behavior in density-related dispersal of pierid butterflies, Am. Naturalist 104:367–372.

    Google Scholar 

  • Sheldon, J. C., and Burrows, F. M., 1973, The dispersal effectiveness of the achene pappus units of selected Compositae in steady winds with convection, New Phytol. 72:665–675.

    Google Scholar 

  • Simpson, D. M., 1954, Natural cross-pollination in cotton, U.S.D.A. Technical Bulletin No. 1094.

    Google Scholar 

  • Simpson, D. M., and Duncan, E. N., 1956, Cotton pollen dispersal by insects, Agron. J. 48:305–308.

    Google Scholar 

  • Sindu, A. S., and Singh, S., 1961, Studies on the agents of cross pollination of cotton, Indian Cotton Grow. Rev. 15:341–353.

    Google Scholar 

  • Singh, S., 1950, Behavior studies on honeybees in gathering nectar and pollen, Memoirs of the Cornell Agricultural Experiment Station, No. 288.

    Google Scholar 

  • Smythe, N., 1970, Relationships between fruiting seasons and seed dispersal methods in a neotropical forest, Amer. Natur. 104:25–35.

    Google Scholar 

  • Snaydon, R. W., 1970, Rapid population differentiation in a mosiac environment. I. The response of Anthoxanthum odoratum populations to soils, Evolution 24:257–269.

    Google Scholar 

  • Snogerup, S., 1967, Studies in the Aegean flora. IX. Erysimum sect. Cheiranthus. B. Variation and evolution in small population systems, Opera Bot., No. 14.

    Google Scholar 

  • Snow, D. W., 1965, A possible selective factor in the evolution of fruiting seasons in tropical forests, Oikos 15:274–281.

    Google Scholar 

  • Southwood, T. R. E., 1962, Migration of terrestrial arthropods in relation to habitat, Biol. Rev. 37:171–214.

    Google Scholar 

  • Stebbins, G. L., 1950, Variation and Evolution in Plants, Columbia University Press, New York.

    Google Scholar 

  • Stebbins, G. L., 1957, Self-fertilization and population variability in the higher plants, Am.Naturalist 91:337–354.

    Google Scholar 

  • Stebbins, G. L., 1959, The role of hybridization in evolution, Proc. Am. Phil. Soc. 103:231–251.

    Google Scholar 

  • Stebbins, G. L., 1970a, Variation and evolution in plants: Progress during the past twentyyears, in: Essays in Evolutionary Genetics (M. K. Hecht and W. C. Steere, eds.), pp. 173–208, Appleton-Century-Crofts, New York.

    Google Scholar 

  • Stebbins, G. L., 1970b, Adaptive radiation of reproductive characteristics in angiosperms. I. Pollination mechanisms, Ann. Rev. Ecol. Syst. 1:307–326.

    Google Scholar 

  • Stebbins, G. L., 1971, Adaptive radiation of reproductive characteristics in angiosperms. II. Seeds and seedlings, Ann. Rev. Ecol. Syst. 2:237–260.

    Google Scholar 

  • Stephen, W. P., 1958, Pear Pollination Studies in Oregon, Technical Bulletin of the Oregon Agricultural Experiment Station No. 43.

    Google Scholar 

  • Stephens, S. G., and Finkner, M. D., 1953, Natural crossing in cotton, Econ. Bot. 7:257–269.

    Google Scholar 

  • Stiles, F. G., 1972, Time, energy, and territoriality in the Anna hummingbird (Calypte anna), Science 173:818–820.

    Google Scholar 

  • Strand, L., 1957, Pollen dispersal, Silvae Genet. 6:129–136.

    Google Scholar 

  • Strid, A., 1970, Studies in the Aegean flora. XVI. Biosystematics of the Nigella arvensis complex, Opera Bot., No. 28.

    Google Scholar 

  • Sutton, O. G., 1932, A theory of eddy diffusion in the atmosphere, Proc. Roy. Soc. Lond. Ser.A 135:143–165.

    Google Scholar 

  • Sutton, O. G., 1947, The theoretical distribution of airborne pollution from factory chimneys, Quart. J. Roy. Meteor. Soc. 73:426–436.

    Google Scholar 

  • Tauber, H., 1965, Differential pollen dispersion and the interpretation of pollen diagrams, Geol. Surv. Denmark Ser. II, No. 89.

    Google Scholar 

  • Tauber, H., 1967, Differential pollen dispersion and filtration, in: Quaternary Paleoecology (E. J. Cushing and H. E. Wright, eds.), pp. 131–141, Yale University Press, New Haven.

    Google Scholar 

  • Thies, S. A., 1953, Agents concerned with natural crossing of cotton, Agron. J. 45:481–484.

    Google Scholar 

  • Tigerstedt, P. M. A., 1973, Studies on isozyme variation in marginal and central populations of Picea abies, Hereditas 75:47–60.

    CAS  Google Scholar 

  • Tracy, W. W., 1910, The Production of Vegetable Seeds; Sweet Corn and Garden Peas and Beans, U.S.D.A. Bulletin 184.

    Google Scholar 

  • Turner, F. B., Jennrich, R. I., and Weintraub, J. D., 1969, Home ranges and body sizes of lizard, Ecology 50:1076–1081.

    Google Scholar 

  • Turner, J. R. G., 1971, Experiments on the demography of tropical butterflies. II. Longevity and home-range behavior in Heliconius erato, Biotropica 3:21–31.

    Google Scholar 

  • van Der Meer, Q. P., and Van Bennekom, J. L., 1968, Research on pollen distribution in onion seed fields, Euphytica 17:216–219.

    Google Scholar 

  • van der Pijl, L., 1969, Principles of Dispersal in Higher Plants, Springer-Verlag, New York.

    Google Scholar 

  • Vasek, F. C., 1967, Outcrossing in natural populations. III. The Deer Creek population of Clarkia exilis, Evolution 21:241–248.

    Google Scholar 

  • Wang, C. W., Perry, T. O., and Johnson, A. G., 1960, Pollen dispersion of slash pine (Pinuselliottii Engelm.) with special reference to seed orchard management, Silvae Genet. 9:78–86.

    Google Scholar 

  • Watson, P. J., 1970, Evolution in closely adjacent plant populations. VI. An entomophilous species, Potentilla erecta, in two contrasting habitats, Heredity 24:407–422.

    Google Scholar 

  • Weaver, N., 1957, The foraging behavior of honeybees on hairy vetch. II. The foraging area and foraging speed, Insectes Sociaux 4:43–57.

    Google Scholar 

  • Weil, J., and Allard, R. W., 1964, The mating system and genetic variability in natural populations of Collinsia heterophylla, Evolution 18:515–525.

    Google Scholar 

  • Whitehead, D. R., 1969, Wind pollination in the angiosperms: Evolutionary and environmental considerations, Evolution 23:28–35.

    Google Scholar 

  • Williams, N. H., and Dodson, C. H., 1972, Selective attraction of male euglossine bees to orchid floral fragrances and its importance in long distance pollen flow, Evolution 26:84–95.

    Google Scholar 

  • Williams, R. D., and Evans, G., 1935, The efficiency of spatial isolation in maintaining the purity of red clover, Welsh J. Agr. 11:164–171.

    Google Scholar 

  • Wilson, D. E., and Janzen, D. H., 1972, Predation on Scheelea palm seeds by brucid beetles: Seed density and distance from the parent palm, Ecology 53:954–959.

    Google Scholar 

  • Wit, F., 1952, The pollination of perennial ryegrass (Lolium perenne L.) in clonal plantations and polycross fields, Euphytica 1:95–105.

    Google Scholar 

  • Wolf, L. L., 1969, Female territoriality in a tropical hummingbird, Auk 86:490–504.

    Google Scholar 

  • Wolfenbarger, D. O., 1946, Dispersion of small organisms, Am. Midl. Naturalist 35:1–152.

    Google Scholar 

  • Wolfenbarger, D. O., 1959, Dispersion of small organisms, Lloydia m:1–105.

    Google Scholar 

  • Workman, P. L., and Niswander, J. D., 1970, Population studies on southwestern Indian tribes, II. Local genetic differentiation in the Papago, Am. J. Hum. Genet. 22:24–49.

    PubMed  CAS  Google Scholar 

  • Wright, J. W., 1952, Pollen dispersion of some forest trees, Northeast Forest Experiment Station Paper 46.

    Google Scholar 

  • Wright, J. W., 1953, Pollen dispersion studies: Some practical applications, J. Forestry 51:114–118.

    Google Scholar 

  • Wright, S., 1931, Evolution in mendelian populations, Genetics 16:97–159.

    PubMed  CAS  Google Scholar 

  • Wright, S., 1938, Size of population and breeding structure in relation to evolution, Science 87:430–431.

    Google Scholar 

  • Wright, S., 1940, Breeding structure of populations in relation to speciation, Am. Naturalist 74:232–248.

    Google Scholar 

  • Wright, S., 1943a, Isolation by distance, Genetics 28:114–138.

    PubMed  CAS  Google Scholar 

  • Wright, S., 1943b, An analysis of local variability of flower color in Linanthus parryae. Genetics 28:139–156.

    PubMed  CAS  Google Scholar 

  • Wright, S., 1946, Isolation by distance under diverse systems of mating, Genetics 31:39–59.

    Google Scholar 

  • Wright, S., 1951, The genetic structure of populations, Ann. Eugen. 15:323–354.

    Google Scholar 

  • Wright, S., 1960, Physiological genetics, ecology of populations and natural selection, in: Evolution After Darwin, Vol. I (S. Tax, ed.), pp. 429–475, University of Chicago Press, Chicago.

    Google Scholar 

  • Wright S., 1965, The interpretation of population structure by F-statistics with special regard to systems of mating, Evolution 19:395–420.

    Google Scholar 

  • Wright, S., 1969, Evolution and the Genetics of Populations, Vol. II: The Theory of Gene Frequencies, University of Chicago Press, Chicago.

    Google Scholar 

  • Yampolsky, C., and Yampolsky, H., 1922, Distribution of sex forms in the phanerogamic flora, Bibl. Genet. 3:1–62.

    Google Scholar 

  • Young, A.M., 1972a, The ecology and ethology of the tropical nymphaline butterfly, Victorina epaphus. I. Life cycle and natural history, J. Lepid. Soc. 26:155–170.

    Google Scholar 

  • Young, A. M., 1972b, Breeding success and survivorship in some tropical butterflies, Oikos 23:318–326.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Plenum Press, New York

About this chapter

Cite this chapter

Levin, D.A., Kerster, H.W. (1974). Gene Flow in Seed Plants. In: Dobzhansky, T., Hecht, M.K., Steere, W.C. (eds) Evolutionary Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6944-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6944-2_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6946-6

  • Online ISBN: 978-1-4615-6944-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics