Skip to main content

Part of the book series: Population and Community Biology Series ((PCBS,volume 18))

Abstract

The combination of age or size structure and density-dependent recruitment has a defining influence on the dynamics of many plant and animal populations. Over the past 40 years, population biologists have combined mathematical models and field data in attempts to better understand the dynamics of such populations. Here I present a tutorial review of the interplay between mathematical and empirical biology that has shaped our understanding of populations with these characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Abbiati, M., G. Buffoni, G. Caforio, G. Di Col, and G. Santangelo. 1992. Harvesting, predation and competition effects on a red coral population. Netherlands Journal of Sea Research 30: 219–228.

    Article  Google Scholar 

  • Allen, R. L., and P. Basasibwaki. 1974. Properties of age structure models for fish populations. Journal of the Fisheries Research Board of Canada 31: 1119–1125.

    Article  Google Scholar 

  • van der Heiden, U., and M. C. Mackey. 1982. Dynamics of destruction and renewal. Journal of Mathematical Biology 16: 75–101.

    Article  Google Scholar 

  • Beddington, J. R. 1974. Age distribution and the stability of simple discrete time population models. Journal of Theoretical Biology 47: 65–74.

    Article  PubMed  CAS  Google Scholar 

  • Bence, J. R., and R. M. Nisbet. 1989. Space-limited recruitment in open systems: The importance of time delays. Ecology 70: 1434–1441.

    Article  Google Scholar 

  • Bergh, M. O., and W. M. Getz. 1988. Stability of discrete age-structured and aggregated delay-difference population models. Journal of Mathematical Biology 26: 551–581.

    Article  Google Scholar 

  • Botsford, L. W. 1981. The effects of increased individual growth rates on depressed population size. American Naturalist 117: 38–63.

    Article  Google Scholar 

  • Botsford, L. W. 1984. Effect of individual growth rates on expected behavior of the northern California Dungeness crab (Cancer magister) fishery. Canadian Journal of Fisheries & Aquatic Science 41: 99–107.

    Google Scholar 

  • Botsford, L. W. 1986. Effects of environmental forcing on age-structured populations: Northern California Dungeness crab (Cancer magister) as an example. Canadian Journal of Fisheries & Aquatic Science 43: 2345–2352.

    Google Scholar 

  • Botsford, L. W. 1991. Crustacean egg production and fisheries management. Pp. 379–394 in A. M. Wenner, ed., Crustacean Egg Production. A. A. Balkema, Rotterdam.

    Google Scholar 

  • Botsford, L. W. 1992a. Further analysis of Clark’s delayed-recruitment model. Bulletin of Mathematical Biology 54: 275–293.

    Google Scholar 

  • Botsford, L. W. 1992b. Individual state structure in population models. Pp. 213–236 in D. L. DeAngelis and L. J. Gross, eds., Individual-Based Models and Approaches in Ecology. Chapman & Hall, New York.

    Google Scholar 

  • Botsford, L. W., and R. C. Hobbs. 1995. Recent advances in the understanding of cyclic behavior of Dungeness crab (Cancer magister) populations. International Council for the Exploration of the Sea Marine Sciences Symposium 199: 157–196.

    Google Scholar 

  • Botsford, L. W., and D. E. Wickham. 1978. Behavior of age-specific, density-dependent models and the northern California Dungeness crab (Cancer magister) fishery. Journal of the Fisheries Research Board of Canada 35: 833–843.

    Article  Google Scholar 

  • Botsford, L. W., R. D. Methot, and W. E. Johnston. 1983. Effort dynamics of the northern California Dungeness crab (Cancer magister) fishery. Canadian Journal of Fisheries & Aquatic Science 40: 337–346.

    Article  Google Scholar 

  • Botsford, L. W., D. A. Armstrong, and J. Shenker. 1989. Oceanographic influences on the dynamics of commercially fished populations. Pp. 511–565 in M. R. Landry and B. M. Hickey, eds., Coastal Oceanography of Washington and Oregon. Elsevier, Amsterdam.

    Chapter  Google Scholar 

  • Botsford, L. W., C. L. Moloney, A. Hastings, J. L. Largier, T. M. Powell, K. Higgins, and J. F. Quinn. 1994. The influence of spatially and temporally varying oceanographic conditions on meroplanktonic metapopulations. Deep-Sea Research II 41: 107–145.

    Article  Google Scholar 

  • Caswell, H., H. E. Koenig, J. A. Resh, and Q. E. Ross. 1972. An introduction to systems science for ecologists. Pp. 3–78 in B. C. Patten, ed., Systems Analysis and Simulation in Ecology. Academic Press, New York.

    Google Scholar 

  • Caughley, G. 1970. Eruption of ungulate populations with emphasis on Himalayan Thar in New Zealand. Ecology 51: 53–72.

    Article  Google Scholar 

  • Clark, C. W. 1976. A delayed-recruitment model of population dynamics, with an application to baleen whale populations. Journal of Mathematical Biology 3: 381–391.

    Article  PubMed  CAS  Google Scholar 

  • Diekmann, O., R. M. Nisbet, W. S. C. Gurney, and F. van den Bosch. 1986. Simple mathematical models for cannibalism: A critique and a new approach. Mathematical Biosciences 78: 21–46.

    Article  Google Scholar 

  • Dong, Q., and G. A. Polis. 1992. The dynamics of cannibalistic populations: A foraging perspective. Pp. 13–37 in. M. A. Elgar and B. Crespi, eds., Cannibalism: Ecology and Evolution among Diverse Taxa. Oxford University Press.

    Google Scholar 

  • Fox, L. R. 1975. Cannibalism in natural populations. Annual Review of Ecology & Systematics 6: 87–106.

    Article  Google Scholar 

  • Frauenthal, J. C. 1975. A dynamic model for human population growth. Theoretical Population Biology 8: 64–73.

    Article  PubMed  CAS  Google Scholar 

  • Gabriel, W. 1985. Overcoming food limitation by cannibalism: A model study on cyclopoids. Archiv fur Hydrobiologie 21: 373–381.

    Google Scholar 

  • Gaines, S., and J. Roughgarden. 1985. Larval settlement rate: A leading determinant of structure in an ecological community of the marine intertidal zone. Proceedings of the National Academy of Sciences (USA) 82: 3707–3711.

    Article  CAS  Google Scholar 

  • Gilpin, M., and I. Hanski. 1991. Metapopulation Dynamics: Empirical and Theoretical Investigations. Academic Press, London.

    Google Scholar 

  • Guckenheimer, J., G. Oster, and A. Ipaktchi. 1977. The dynamics of density-dependent population models. Journal of Mathematical Biology 4: 101–147.

    Article  Google Scholar 

  • Gurney, W. S. C., R. M. Nisbet, and J. H. Lawton. 1983. The systematic formulation of tractable single-species population models incorporating age structure. Journal of Animal Ecology 52: 479–495.

    Article  Google Scholar 

  • Hastings, A. 1987. Cycles in cannibalistic egg-larval interactions. Journal of Mathematical Biology 24: 651–666.

    Article  Google Scholar 

  • Hastings, A. 1992. Age-dependent dispersal is not a simple process: Density dependence, stability and chaos. Theoretical Population Biology 41: 388–400.

    Google Scholar 

  • Hastings, A., and R. F. Costantino. 1987. Cannibalistic egg-larva interactions in Tribolium: An explanation for the oscillations in population numbers. American Naturalist 130: 36–52.

    Article  Google Scholar 

  • Hastings, A., and R. F. Costantino 1991. Oscillations in population numbers: Age-dependent cannibalism. Journal of Animal Ecology 60: 471–482.

    Google Scholar 

  • Hastings, A., and K. Higgins. 1994. Persistence of transients in spatially structured ecological models. Science (Washington, D.C.) 263: 1133–1136.

    Article  PubMed  CAS  Google Scholar 

  • Higgins, K., A. Hastings, and L. W. Botsford. In press. Adult survivorship in the delayed-recruitment model: Influence on dynamics. American Naturalist.

    Google Scholar 

  • Hobbs, R. C., and L. W. Botsford. 1989. Dynamics of an age-structured prey with density-and predation-dependent recruitment: The Dungeness crab and a nemertean egg predator worm. Theoretical Population Biology 36: 1–22.

    Article  Google Scholar 

  • Horwood, J. W. 1983. A general linear theory for the variance of yield from fish stocks. Mathematical Biosciences 64: 203–225.

    Article  Google Scholar 

  • Horwood, J. W. 1984. The variance and response of biological systems to variability in births and survivals. (Institute of Mathematics and Its Applications) Journal of Mathematics Applied in Medicine & Biology 1: 309–323.

    Google Scholar 

  • Horwood, J. W., and J. A. Shepherd. 1981. The sensitivity of age-structured populations to environmental variability. Mathematical Biosciences 57: 59–82.

    Article  Google Scholar 

  • Keyfitz, N. 1972. Population waves. Pp. 1–38 in T. N. E. Greville, ed., Population Dynamics. Academic Press, New York.

    Google Scholar 

  • Lee, R. 1974. The formal dynamics of controlled populations and the echo, the boom and the bust. Demography 11: 563–585.

    Article  PubMed  CAS  Google Scholar 

  • Leopold, A., L. K. Sowls, and D. L. Spencer. 1947. A survey of over-populated deer ranges in the United States. Journal of Wildlife Management 11: 162–177.

    Article  Google Scholar 

  • Levin, S. A. 1981. Age structure and stability in multiple-age spawning populations. Pp. 21–45 in T. L. Vincent and J. M. Skowronski, eds., Renewable Resource Management. Springer-Verlag, New York.

    Chapter  Google Scholar 

  • Levin, S. A., and C. P. Goodyear. 1980. Analysis of an age-structured fishery model. Journal of Mathematical Biology 9: 245–274.

    Article  Google Scholar 

  • May, R., and G. F. Oster. 1976. Bifurcations and dynamic complexity in simple ecological models. American Naturalist 110: 573–599.

    Article  Google Scholar 

  • McKelvey, R., D. Hankin, K. Yanosko, and C. Snygg. 1980. Stable cycles in multistage recruitment models: An application to the northern California Dungeness crab (Cancer magister) fishery. Canadian Journal of Fisheries & Aquatic Science 37: 2323–2345.

    Article  Google Scholar 

  • Menshutkin, V. V. 1964. Population dynamics studied by representing the population as a cybernetic system. Voprosy Ikthiologii 1: 23–33.

    Google Scholar 

  • Murdoch, W. W., and E. McCauley. 1985. Three distinct types of dynamic behavior shown by a single planktonic system. Nature 316: 628–630.

    Article  Google Scholar 

  • Nisbet, R. M., and J. R. Bence. 1989. Alternative dynamic regimes for canopy-forming kelp: A variant on density-vague population regulation. American Naturalist 134: 377–408.

    Article  Google Scholar 

  • Pascual, M., and H. Caswell. 1991. The dynamics of a size-classified benthic population with reproductive subsidy. Theoretical Population Biology 39: 129–147.

    Article  Google Scholar 

  • Pennycuick, C. J., R. M. Compton, and L. Beckingham. 1968. A computer model for simulating the growth of a population of two interacting populations. Journal of Theoretical Biology 18: 316–329.

    Article  PubMed  CAS  Google Scholar 

  • Polis, G. 1981. The evolution and dynamics of intraspecific predation. Annual Review of Ecology & Systematics 12: 125–151.

    Article  Google Scholar 

  • Possingham, H., S. Tuljapurkar, J. Roughgarden, and M. Wilks. 1994. Population cycling in space-limited organisms subject to density-dependent predation. American Naturalist 143: 563–582.

    Article  Google Scholar 

  • Reed, W. J. 1983. Recruitment variability and age structure in harvested animal populations. Mathematical Biosciences 65: 239–268.

    Article  Google Scholar 

  • Ricker, W. E. 1954. Stock and recruitment. Journal of the Fisheries Research Board of Canada 11: 559–623.

    Article  Google Scholar 

  • Rorres, C. 1976. Stability of an age-specific population with density-dependent fertility. Theoretical Population Biology 10: 26–46.

    Article  PubMed  CAS  Google Scholar 

  • Roughgarden, J., and Y. Iwasa. 1986. Dynamics of a metapopulation with space-limited subpopulations. Theoretical Population Biology 29: 235–261.

    Article  Google Scholar 

  • Roughgarden, J., Y. Iwasa, and C. Baxter. 1985. Demographic theory for an open marine population with space-limited recruitment. Ecology 66: 54–67.

    Article  Google Scholar 

  • Strong, D. R. 1986. Density-vagueness: Abiding the variance in the demography of real populations. Pp. 257–268 in J. Diamond and T. J. Case, eds., Community Ecology. Harper & Row, New York.

    Google Scholar 

  • Tuljapurkar, S. 1987. Cycles in nonlinear age-structured models. I. Renewal equations. Theoretical Population Biology 32: 26–41.

    Article  PubMed  CAS  Google Scholar 

  • Tuljapurkar, S., C. Boe, and K. W. Wachter. 1994. Nonlinear feedback dynamics in fisheries: Analysis of the Deriso-Schnute model. Canadian Journal of Fisheries & Aquatic Science 51: 1462–1473.

    Article  Google Scholar 

  • Usher, M. B. 1972. Developments in the Leslie matrix model. Pp. 29–60 in J. N. R. Jeffers, ed., Mathematical Models in Ecology. British Ecological Society Symposium 12. Blackwell Scientific, Oxford.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Botsford, L.W. (1997). Dynamics of Populations with Density-Dependent Recruitment and Age Structure. In: Tuljapurkar, S., Caswell, H. (eds) Structured-Population Models in Marine, Terrestrial, and Freshwater Systems. Population and Community Biology Series, vol 18. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5973-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5973-3_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-412-07271-0

  • Online ISBN: 978-1-4615-5973-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics