Skip to main content

Centrifugal Materials Processing

  • Chapter
Book cover Centrifugal Materials Processing

Summary

This is a brief review of the influence of centrifugation on materials processing. The emphasis in this summary is on papers presented at the Third International Workshop on Materials Processing at High Gravity. This highly successful meeting was held June 2–8, 1996 on the campus of Clarkson University in Potsdam, New York, under the sponsorship of Corning Corporation and the International Center for Gravity Materials Science and Applications. The present volume constitutes the proceedings of this workshop.

The workshop began with our discussion of the influence of centrifugation on transport phenomena. We pointed out that centrifugation not only increases the acceleration, but also introduces the Coriolis force and a spatial dependence for the acceleration vector. Increasing the acceleration to a few ge greatly increases sedimentation of second-phase particles, but should have little effect on sedimentation of the components in ordinary solutions or on the pressure in a liquid. Much of this material is in the present paper.

The primary stimulus for increased activity in centrifugal materials processing was the 1988 report by Liya Regel and Huguette Rodot of uniform Ag doping in PbTe grown by a gradient freeze technique. This observation indicated diffusion-controlled segregation at a particular acceleration -- an unexpected and surprising result. At the Second International Workshop in 1993, numerical modeling indicated that a sharp minimum in convection should occur at the rotation rate where the acceleration vector is nearly perpendicular to the solid-liquid interface. At the present Workshop, Friedrich and Müller confirmed the Regel-Rodot results, both experimentally and theoretically. They obtained a maximum in the effective distribution coefficient for Ga in Ge at a particular rotation rate. They used a scaling analysis, in which they equated the axial and radial buoyancy terms to their corresponding Coriolis terms, in order to predict a minimum in convection versus rotation rate for a concave interface shape. Their three-dimensional numerical model predicted that this convection should be steady, with circumferential rotational features. These features were, in turn, confirmed by the flow visualization experiments of Skudarnov, Regel and Wilcox.

At the 1996 Workshop, Arnold and Regel showed numerical results for rotation of a cylinder about its own axis. They predicted a sharp minimum in buoyancy-driven convection for for example, analysis of impurity concentration to the ends of the crystals and over entire cross sections, microstructure, dislocation content, inclusions, and electrical properties.

Similarly, additional research should be performed on solution crystal growth, vapor transport, chemical vapor deposition, polymerization, and welding. Other opportunities exist in Bridgman-Stockbarger solidification, electrodeposition, fabrication and joining of composite materials, and fine particle processing.

Flow visualization and temperature measurements should be performed and compared with theoretical predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.J. Shlichta, J. Crystal Growth119: 1 (1992).

    Article  CAS  Google Scholar 

  2. P.J. Shlichta and RE. Knox, J. Crystal Growth3 /4: 808 (1968).

    Article  Google Scholar 

  3. M.Y.D. Lanzerotti, J. Autera, J. Pinto, and J. Sharma, in ref. 6.

    Google Scholar 

  4. M.Y.D. Lanzerotti, J. Autera, L. Borne, and J. Sharma, in present volume.

    Google Scholar 

  5. L.L. Regel, M. Rodot, and W.R. Wilcox, editors, “Material Processing in High Gravity, Proceedings of the First International Workshop on Material Processing in High Gravity,” North-Holland, Amsterdam (1992). Also, volume 119 of the Journal of Crystal Growth.

    Google Scholar 

  6. L.L. Regel and W.R. Wilcox, editors, “Materials Processing in High Gravity,” Plenum Press (1994).

    Google Scholar 

  7. R Rodot, L.L. Regel, G.V. Sarafanov, H. Hamidi, I.V. Videskü, and A.M. Turchaninov, J. Crystal Growth79: 77 (1986).

    Article  CAS  Google Scholar 

  8. H. Rodot, L.L. Regel, and A.M. Turtchaninov, J. Crystal Growth104: 280 (1990).

    Article  CAS  Google Scholar 

  9. L.L. Regel et al., Fiz. Khim. Obrab. Mater.45 (1989).

    Google Scholar 

  10. L.L. Regel, A.M. Turchaninov, RV. Parfeniev, I. Farbshtein, N.K. Shulga, S.V. Nikitin, and S.V. Yakimov, “Electrofizicheskie Svoistva Monokristallov Tellura i Splava Tel_xSex, Poluchennilch v Usloviyakh pri Vishennoi Gravitatsii (5 go i 10 go),” USSR Space Research Institute, Moscow (July 1989).

    Google Scholar 

  11. L.L. Regel, I.V. Videnskii, V.V. Zubenko, I.M. Cafonova, and I.V. Telegina, Fizika i Chimiya Obrabotki Materialov23: 45 (1989).

    Google Scholar 

  12. P. Bartsi, L.L. Regel and I. Solyom, in: “Proceedings of the 4th Intercosmos Seminar on Cosmic Materials and Technologies,” Bucharest (1989) pp 117–137.

    Google Scholar 

  13. B.V. Burdin, L.L. Regel, A.M. Turchaninov, and O.V. Shumaev, J. Crystal Growth119: 61 (1992).

    Article  Google Scholar 

  14. L.L. Regel and O.V. Shumaev, J. Crystal Growth119: 70 (1992).

    Article  CAS  Google Scholar 

  15. P. Barczy, J. Solyom, and L.L. Regel, J. Crystal Growth119: 160 (1992).

    Article  CAS  Google Scholar 

  16. L.L. Regel et al., J. Phys. France2: 373 (1992).

    Article  CAS  Google Scholar 

  17. M.A. Fikri, G. Labrosse, and M. Betrouni, J. Crystal Growth119: 41–60 (1992).

    Article  Google Scholar 

  18. R Derebail, W.R. Wilcox and L.L. Regel, J. Spacecraft & Rockets30: 202 (1993).

    Article  CAS  Google Scholar 

  19. R Derebail, “Study of Directional Solidification of InSb under Low, Normal, and I-Trgh Gravity,” M.S. Thesis, Clarkson University (1990).

    Google Scholar 

  20. R Derebail, “Directional Solidification of Indium Antimonide under High Gravity in Large Centrifuges,” PhD Thesis, Clarkson University (1994).

    Google Scholar 

  21. L.I. Farbshtein, RV. Parfeniev, S.V. Yakimov, L.L. Regel, R. Derebail, and W.R. Wilcox, in ref 6.

    Google Scholar 

  22. L.I. Farbshtein, RV. Parfeniev, N.K. Shulga and L.L. Regel, in ref 6.

    Google Scholar 

  23. L.L. Regel, A.M. Turchaninov, O.V. Shumaev, I.N. Bandeira, C.Y. An, and P.H.O. Rappl, J. Crystal Growth119: 94 (1992).

    Article  CAS  Google Scholar 

  24. M.P. Volkov, B.T. Melekh, RV. Parfeniev, N.F. Kartenko, and L.L. Regel, J. Crystal Growth119: 122 (1992).

    Article  CAS  Google Scholar 

  25. H. Wiedemeier, L.L. Regel, and W. Palosz, J. Crystal Growth119: 79 (1992).

    Article  CAS  Google Scholar 

  26. R Derebail, W.R. Wilcox, and L.L. Regel, J. Crystal Growth119: 98 (1992).

    Article  CAS  Google Scholar 

  27. G. Müller, in: ESA Special Publication No. 114, European Space Agency, Paris (1980) pp 213–216.

    Google Scholar 

  28. G. Müller and G. Neumann, J. Crystal Growth59: 548 (1982).

    Article  Google Scholar 

  29. G. Müller, in: “Convective Transport and Instability Phenomena,” J. Zierep and FL Oertel, Jr., eds., Braun Verlag, Karlsruhe (1982).

    Google Scholar 

  30. G. Müller, in: Selisch Fachbuch-Verlag, Langensendelbach (1986) pp 151–165.

    Google Scholar 

  31. G. Müller, J. Crystal Growth99: 1242 (1990).

    Article  Google Scholar 

  32. W. Weber, G. Neumann, and G. Müller, J. Crystal Growth100: 100 (1990).

    Google Scholar 

  33. G. Müller, G. Neumann, and W. Weber, J. Crystal Growth119: 8 (1992).

    Article  Google Scholar 

  34. G. Müller, E. Schmidt, and P. Kyr, J. Crystal Growth49: 387 (1980).

    Article  Google Scholar 

  35. J. Friedrich and G. Müller, in present volume.

    Google Scholar 

  36. Z. Chvoj and C. Barta, Czech. J. Phys. B36: 868 (1986).

    Article  Google Scholar 

  37. C. Barta, F. Fendrych, E. Krcova, and A. Triska, Adv. Space Res. 8:167 (1988). Alsoin: “Proceedings of the 4th Intercosmos Seminar on Cosmic Materials and Technologies,” V. Lupei and D. Toma, eds., Rumanian Academy of Science, Bucharest (1989).

    Google Scholar 

  38. RS. Sokolowski, Ph.D. Thesis, Rensselaer Polytechnic Institute, Troy, NY (1981).

    Google Scholar 

  39. M.E. Glicksman and RS. Sokolowski, Adv. Space Res. 3: 129 (1983).

    CAS  Google Scholar 

  40. R.S. Sokolowski and M.E. Glicksman, J. Crystal Growth119: 126 (1992).

    Article  CAS  Google Scholar 

  41. R.N. Grugel, A.B. Hmelo, C.C. Battaile, and T.G. Wang, in ref 6.

    Google Scholar 

  42. A. Chevy, P. Williams, M. Rodot, and G. Labrosse, in ref 6.

    Google Scholar 

  43. A. Chevy, Compte Rendue Acad. Sci. Paris307: 1147 (1988).

    CAS  Google Scholar 

  44. A. Chevy, Private Communication, Universite Pierre et Marie Curie, Paris, France (1990).

    Google Scholar 

  45. J.C. Launay, S. Bouchet, A. Randriamampianina, P. Bontoux, and P. Gibart, in ref 6.

    Google Scholar 

  46. J. Chen, J.M. Most, P. Joulain, and D. Durox, in ref 6.

    Google Scholar 

  47. L. Bergelin and A. Chevy, in present volume.

    Google Scholar 

  48. R. Parfeniev, D. Shamshur, L.L. Regel, and S. Nemov, in present volume.

    Google Scholar 

  49. J. Gamier and L.M. Cottineau, J. Crystal Growth119: 66 (1992).

    Article  Google Scholar 

  50. Y.A. Chen, I.N. Bandeira, A.H. Franzan, S. Eleutério Fdho and M.R. Slomka, in ref. 6.

    Google Scholar 

  51. Y.A. Chen, L.C. Russo, M.F. Ribeiro, and I.N. Bandeira, in present volume.

    Google Scholar 

  52. Y.A. Chen, E.G. Salgado, C.R.M. Silva, and I.N. Bandeira, in present volume.

    Google Scholar 

  53. B. Zhou, F. Cao, L. Lin, W. Ma, Y. Zheng, F. Tao, and M. Xue, in ref. 6.

    Google Scholar 

  54. W.J. Ma, F. Tao, Y. Zheng, M.L. Xue, B.J. Zhou, and L.Y. Lin, in ref. 6.

    Google Scholar 

  55. F. Tao, Y. Zheng, W.J. Ma, and M.L. Xue, in ref 6.

    Google Scholar 

  56. T. Flibiya, S. Nakamura, K.W. Yi, and K. Kakimoto, in ref. 6.

    Google Scholar 

  57. R Derebail, W.A. Arnold, G.J. Rosen, W.R. Wilcox, and L.L. Regel, in ref 6.

    Google Scholar 

  58. P.V. Skudarnov, L.L. Regel, and W.R. Wilcox, in present volume.

    Google Scholar 

  59. I. Moskowitz, L.L. Regel, and W.R. Wilcox, in present volume.

    Google Scholar 

  60. L.O. Ladeira, J. Shen, L.L. Regel, and W.R. Wilcox, in present volume.

    Google Scholar 

  61. Y. Takagi, L.L. Regel, and W.R. Wilcox, in present volume.

    Google Scholar 

  62. J. Simmons, L.L. Regel, W.R. Wilcox, and R. Partch, in present volume.

    Google Scholar 

  63. D. Aidun, in present volume.

    Google Scholar 

  64. D. Aidun, private communication, Clarkson University, Potsdam, NY (1995).

    Google Scholar 

  65. R. Folkersma, A.J.G. van Diemen, J. Laven, and H.N. Stein, in present volume.

    Google Scholar 

  66. Y. Inatomi, O. Kitajima, W. Huang, and K. Kuribayashi, in present volume.

    Google Scholar 

  67. Y. Abe, G. Maizza, H. Rouch, N. Sone, and Y. Nagasaka, in present volume.

    Google Scholar 

  68. J.W. Mullin and C.L. Leci, Phil. Mag.19: 1075–1077 (1969).

    Article  CAS  Google Scholar 

  69. A.T. Allen, M.P. McDonald, W.M. Nicol, and R.M. Wood, in: “Particle Growth in Suspensions,” A.L. Smith, ed., Academic Press, London (1973) pp 239–246.

    Google Scholar 

  70. A.T. Allen, M.P. McDonald, W.M. Nicol, and R.M. Wood, Nature Phys. Sci.235: 36–37 (1972).

    CAS  Google Scholar 

  71. M.A. Larson and J. Garside, Chem. Eng. Sci.41: 1285–1289 (1986).

    Article  CAS  Google Scholar 

  72. I.T. Rush and M.A. Larson, in: “Crystallization and Precipitation,” G.L. Strathdee, M.O. Klein, and L.A. Melis, eds., Pergamon, Oxford (1987) pp 71–77.

    Google Scholar 

  73. A.S. Myerson and P.Y. Lo, J. Crystal Growth99: 1048–1052 (1990).

    Article  CAS  Google Scholar 

  74. V. Veverka, O. Minet, P. Bennema, and J. Garside, AIChE J. 37: 490–498 (1991).

    Article  CAS  Google Scholar 

  75. A.S. Myerson and P.Y. Lo, J. Crystal Growth110: 26–33 (1991).

    Article  CAS  Google Scholar 

  76. K. Ohgaki, Y. Makihara, M. Morishita, M. Ueda, and N. Ffirokawa, Chem. Eng. Sci.46: 3283–3287 (1991).

    Article  CAS  Google Scholar 

  77. R.M. Ginde and A.S. Myerson, J. Crystal Growth116: 41–47 (1992).

    Article  CAS  Google Scholar 

  78. A.F. Izmailov and A.S. Myerson, PhysicaA224: 503–532 (1996).

    Google Scholar 

  79. R Derebail and J.N. Koster, Metallurgical & Mat. Trans.27B: 1–4 (1996).

    Google Scholar 

  80. A.P. Mohanty, “Determination of the Soret Coefficient of Mn-Bi Melts,” M.S. Thesis, Clarkson University, Potsdam (1990).

    Google Scholar 

  81. V.M. Glazov, L.M. Pavlova, and S.V. Stankus, in present volume.

    Google Scholar 

  82. R. Folkersma, A.J.G. van Diemen, J. Laven, and H.N. Stein, in present volume.

    Google Scholar 

  83. W. Arnold, “Numerical Modeling of Directional Solidification in a Centrifuge,” PhD Thesis, Clarkson University (1993).

    Google Scholar 

  84. W.A. Arnold and L.L. Regel, in ref. 6.

    Google Scholar 

  85. J. Friedrich and G. Müller, in present volume

    Google Scholar 

  86. Sh. Mavlonov, J. Crystal Growth119: 167–175 (1992).

    Article  Google Scholar 

  87. W. Arnold, W.R. Wilcox, F. Carlson, A. Chair, and L.L. Regel, J. Crystal Growth119: 24 (1992).

    Article  Google Scholar 

  88. W. Arnold, W. Wilcox, F. Carlson, A. Chait, and L. Regel, in: “Proceedings of the Society of Engineering Science,” Gainesville (November 1991).

    Google Scholar 

  89. V.A. Urpin, in ref. 6.

    Google Scholar 

  90. W.R. Arnold and L.L. Regel, in present volume.

    Google Scholar 

  91. S.Ya. Gertsenshtein, N.V. Nikitin, and A.N. Sukhorukov, in present volume.

    Google Scholar 

  92. D.T. Valentine and C.C. Jahnke, in present volume.

    Google Scholar 

  93. T.P. Lee, “Finite Element Analysis of the Thermal and Stress Fields during Directional Solidification of Cadmium Telluride,” Ph.D. Thesis, Clarkson University (1996).

    Google Scholar 

  94. T. Lee, J.C. Moosbrugger, F.M. Carlson, and D.J. Larson, Jr., in ref. 6.

    Google Scholar 

  95. C.E. Chang, V.F.S. Yip, and W.R. Wilcox, J. Crystal Growth22: 247 (1974).

    Article  CAS  Google Scholar 

  96. C.E. Chang and W.R. Wilcox, J. Crystal Growth21: 135 (1974).

    Article  CAS  Google Scholar 

  97. S. Sen and W.R. Wilcox, J. Crystal Growth28: 36 (1975).

    Article  CAS  Google Scholar 

  98. T.W. Fu and W.R. Wilcox, J. Crystal Growth48: 416 (1980).

    Article  CAS  Google Scholar 

  99. G.T. Neugebauer and W.R. Wilcox, J. Crystal Growth89: 143 (1988).

    Article  Google Scholar 

  100. S. Motakef, J. Crystal Growth102: 197 (1990).

    Article  CAS  Google Scholar 

  101. J. Domey, D.K. Aidun, G. Ahmadi, L.L. Regel, and W.R. Wilcox, in ref 6.

    Google Scholar 

  102. C.F. Baker and D.N. Riahi, in present volume.

    Google Scholar 

  103. D.N. Riahi, in present volume.

    Google Scholar 

  104. K.O. Pedersen, Z Phys. Chem. A170: 41 (1934).

    Google Scholar 

  105. D.J. Cox, Arch. Biochem. Biophys.119: 230 (1967).

    Article  CAS  Google Scholar 

  106. W.R. Wilcox and P. Shlichta, J. Appl. Phys.42: 1823 (1971).

    Article  CAS  Google Scholar 

  107. W.R. Wilcox, J. Crystal Growth13 /14: 787 (1972).

    Article  Google Scholar 

  108. T.R. Anthony and H.E. Cline, Phil. Mag.22: 893 (1970).

    Article  CAS  Google Scholar 

  109. E. Blagova, E. Morgunova, E. Smirnova, A. MIIchailov, S. Armstrong, C. Mao, and S. Ealick, in present volume.

    Google Scholar 

  110. V.N. Gurin, S.P. Nikanorov, L.L. Regel and L.I. Derkachenko, in present volume.

    Google Scholar 

  111. D.T. Hayhurst, P.J. Melling, W.J. Kim, and W. Bibbey, in: “Zeolite Synthesis,” M.L. Occelli and H.E. Robson, ers., American Chemical Society (1989) di 17.

    Google Scholar 

  112. W.J. Kim, Ph.D. Thesis, Cleveland State University, Cleveland, Ohio (1989); through Chem. Abstr. 112: 219459 (1990).

    Google Scholar 

  113. D.T. Hayhurst, W.J. Kim, and P.J. Melling, US Patent Application 233,287 (1988); PCT Int. Appl. WO 90 02,221 (1990); through Chem. Abstr. 113: 32438 (1990).

    Google Scholar 

  114. V.A. Briskman, K.G. Kostarev and T.P. Lyubimova, in ref 6.

    Google Scholar 

  115. V. Briskman, K. Kostarev, and T. Yudina, in present volume.

    Google Scholar 

  116. Kh.S. Karimov, Kh.M. Akhmedov, and A.M. Achourov, in present volume.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Regel, L.L., Wilcox, W.R. (1997). Centrifugal Materials Processing. In: Regel, L.L., Wilcox, W.R. (eds) Centrifugal Materials Processing. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5941-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5941-2_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7722-1

  • Online ISBN: 978-1-4615-5941-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics