Skip to main content

Part of the book series: Cancer Treatment and Research ((CTAR,volume 101))

  • 97 Accesses

Abstract

The production of mature blood cells is controlled by a network of proteins called hematopoietic growth factors (HGFs). A number of HGFs were identified by their ability to stimulate colony formation in semi solid agar culture of normal bone marrow (1-2), and were called colony stimulating factors (3). It was shown that colonies of mature granulocytes were formed in the presence of granulocyte colony stimulating factor (G-CSF) (4), colonies of mature macrophages were formed in the presence of macrophage colony stimulating factor (M-CSF or CSF-1) (5) and mixed colonies of macrophages and granulocytes were formed in the presence of granulocyte-macrophage colony stimulating factor (GM-CSF) (6). Subsequently, some of the CSFs have been taken to clinical trials and are now used routinely in clinical treatments. G-CSF for example has been shown to stimulate recovery of neutrophils after chemotherapy and is used clinically to shorten the period of neutropenia after chemotherapy (7,8). Both G-CSF and GM-CSF are routinely used alone or in combination with chemotherapy to mobilize peripheral blood progenitor cells (PBPC) from the bone marrow to the peripheral circulation (9,10). The use of PBPC has replaced the use of bone marrow for cellular support following high dose chemotherapy, due to more rapid recovery in neutrophils and platelets resulting in a considerable decrease in overall costs of the transplant (11).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bradley TR, Metcalf D. The growth of mouse bone marrow cells in vitro. Aust J Exp Biol Med Sci 1966; 44: 287–299.

    Article  PubMed  CAS  Google Scholar 

  2. Pluznick DH, Sachs L. The cloning of normal “mast” cells in tissue culture. J Cell Comp Physiol 1965; 66: 319.

    Article  Google Scholar 

  3. Metcalf D. Hemopoietic colonies. In: In vitro cloning of normal and leukemic cells. Berlin: Springer-Verlag, 1977.

    Google Scholar 

  4. Metcalf D, Nicola NA. Synthesis by mouse peritoneal cells of G-CSF, the differentiation inducer for myeloid leukemia cells: stimulation by endotoxin, M-CSF, and multi-CSF. Leuk Res 1985;9: 35–50.

    Article  PubMed  CAS  Google Scholar 

  5. Warren MK, Ralph P. Macrophage growth factor CSF-1 stimulates human monocyte production of interferon, tumor necrosis factor, and colony stimulating activity. J Immunol 1986; 137: 2281–2285.

    PubMed  CAS  Google Scholar 

  6. Metcalf D, Burgess AW, Johnson GR, et al. In vitro actions on hemopoietic cells of recombinant murine GM-CSF purified after production in E. Coli: comparison with purified native GM-CSF. J Cell Physiol 1986; 128: 421–431.

    Article  PubMed  CAS  Google Scholar 

  7. Bronchud MH, Scarffe JH, Thatcher N, et al. Phase I/II study of recombinant human granulocyte colony stimulating factor in patients receiving intensive chemotherapy for small cell lung cancer. Br J Cancer 1987; 56(6): 809–813.

    Article  PubMed  CAS  Google Scholar 

  8. Gabrilove JL, Jakubowski A, Fain K, et al. Phase I study of granulocyte colony-stimulating factor in patients with transitional cell carcinoma of the urothelium. J Clin Invets 1988; 82(4): 1454–1461.

    Article  CAS  Google Scholar 

  9. Sheridan WP, Begley CG, Juttner C, et al. Effect of peripheral-blood progenitor cells mobilized by filgrastim (G-CSF) on platelet recovery after high-dose chemotherapy. Lancet 1992; 339(8794): 640–644.

    Article  PubMed  CAS  Google Scholar 

  10. Gianni AM, Siena S, Bregni M, et al. Granulocyte-macrophage colony-stimulating factor to harvest circulating haemopoietic stem cells for autotransplant. Lancet 1989;2: 580–585.

    Article  PubMed  CAS  Google Scholar 

  11. Peters WP, Rosner G. A bottom-line analysis of the financial impact of hematopoietic colony-stimulating factors and CSF-primed peripheral blood progenitor cells. Blood 1991; 78(suppl 1): 14a.

    Google Scholar 

  12. Crown J, Jakubowski A, Kemeny N, et al. A phase I trial of recombinant human interleukin-1B alone and in combination with myelosuppressive doses of 5-fluorouracil in patients with gastrointestinal cancer. Blood 1990; 78: 1420–1427.

    Google Scholar 

  13. Lindermann A, Ganser A, Seipelt G, et al. Biologic effects of recombinant interleukin-3 in vivo. J Clin One 1991; 9: 2120–2127.

    Google Scholar 

  14. Veldhuis GJ, Willemse PH, Sleijfer DT, et al. Toxicity and efficacy of escalating doses of recombinant human interleukin-6 after chemotherapy in patients with breast cancer or non-small cell lung cancer. J Clin Oncol 1995; 13: 2585–2593.

    PubMed  CAS  Google Scholar 

  15. Paul S, Bennett F, Calvetti J, et al. Molecular cloning of a cDNA encoding interleukin 11, a stromal cell-derived lymphopoietic and hematopoietic cytokine. Proc Natl Acad Sci USA 1990; 87;7512–7516.

    Article  PubMed  CAS  Google Scholar 

  16. McKinley D, Wu Q, Yang-Feng T, et al. Genomic sequence and chromosomal location of human interleukin (IL)-11 gene. Genomics 1992; 13: 814–819.

    Article  PubMed  CAS  Google Scholar 

  17. Yin T, Miyazawa K, Yang Y, et al., Interleukin (IL)-6 signal transducer, gpl30, is involved in IL-11 mediated signal transduction. J Immunol 1993; 151: 2555–2561.

    PubMed  CAS  Google Scholar 

  18. Toyama K, Yoshida Y, Ohashi K, et al. Production of multiple growth factors by a newly established human thyroid carcinoma cell line. Jpn J Cancer Res 1992; 83: 153–158.

    Article  Google Scholar 

  19. Elias JA, Lentz V, Cummings PJ. Transforming growth factor-B regulation of IL-6 production by unstimulated and IL-1-stimulated human fibroblasts. J Immunol 1991; 146;3437–3443.

    PubMed  CAS  Google Scholar 

  20. Leary A, Zeng HQ, Clark SC, Ogawa M. Growth factor requirements for survival in G0 and entry into the cell cycle of primitive hemopoietic progenitors. Proc Natl Acad Sci USA 1992; 89: 4013–4017.

    Article  PubMed  CAS  Google Scholar 

  21. Du XX, Williams DA. Effects of recombinant human interleukin-11 (IL-11) on murine hematopoiesis in vitro. Blood 1993; 82: 319a.

    Google Scholar 

  22. Bruno E, Briddell RA, Cooper RJ, Hoffman R. Effects of recombinant interleukin-11 on human megakaryocyte progenitor cells. Exp Hematol 1991; 19: 378–381.

    PubMed  CAS  Google Scholar 

  23. Bree A, Schlerman F, Timony G, et al. Pharmacokinetics and thrombopoietic effects of recombinant human interleukin-11 (rhIL-11) in nonhuman primates and rodents. Blood 1991;78: 132a.

    Google Scholar 

  24. Du XX, Neben T, Goldman S, Williams DA. Effects of recombinant human interleukin-11 on hematopoietic reconstitution in transplant mice: acceleration of recovery of peripheral blood neutrophils and platelets. Blood 1993; 81: 27–34.

    PubMed  CAS  Google Scholar 

  25. Gordon MS, McCaskill-Stevens WJ, Battiato LA, et al. A phase I trial of recombinant human interleukin-11 (neumega rhIL-11 growth factor) in women with breast cancer receiving chemotherapy. Blood 1996; 87: 3615–3624.

    PubMed  CAS  Google Scholar 

  26. Zsebo KM, Wypych J, McNiece IK, et al. Identification, purification, and biological characterization of hematopoietic stem cell factor from Buffalo Rat Liver conditioned medium. Cell 1990; 63: 195–201.

    Article  PubMed  CAS  Google Scholar 

  27. Anderson DM, Lyman SD, Baird A, et al. Molecular cloning of mast cell growth factor, a hematopoietin that is active in both membrane bound and soluble forms. Cell 1990; 63: 235–243.

    Article  PubMed  CAS  Google Scholar 

  28. Huang E, Nocka K, Beier DR, et al. The hematopoietic growth factor KL is encoded by the SI locus and is the ligand of the c-kit receptor, the gene product of the W locus. Cell 1990; 63: 225–233.

    Article  PubMed  CAS  Google Scholar 

  29. Toksoz D, Zsebo KM, Smith KA, et al. Support of human hematopoiesis in longterm bone marrow cultures by murine stromal cells selectively expressing the membrane bound and secreted forms of the human homolog of the steel gene product, stem cell factor. Proc Natl Acad Sci USA 1992:89: 7350–7354.

    Article  PubMed  CAS  Google Scholar 

  30. Martin FH, Suggs SV, Langley KE, et al. Primary structure and functional expression of rat and human stem cell factor DNAs. Cell 63: 203–211, 1990.

    Article  PubMed  CAS  Google Scholar 

  31. McNiece IK, Langley KE, Zsebo KM. The role of stem cell factor in B cell differentiation: synergistic interaction with IL-7. J. Immunol. 146: 3785–3790, 1991.

    PubMed  CAS  Google Scholar 

  32. McNiece IK, Langley KE, Zsebo KM. Recombinant human stem cell factor synergizes with GM-CSF, G-CSF, IL-3 and Epo to stimulate human progenitor cells of the myeloid and erythroid lineages. Exp. Hematol. 19: 226–231, 1991.

    PubMed  CAS  Google Scholar 

  33. Bernstein ID, Andrews RG, Zsebo KM. Recombinant human stem cell factor enhances the formation of colonies by CD34+ and CD34+lin-cells, and the generation of colony-forming cell progeny from CD34+lin-cells cultured with interleukin-3, granulocyte colony stimulating-factor or granulocyte-macrophage colony-stimulating factor. Blood 77: 2316–2321, 1991.

    PubMed  CAS  Google Scholar 

  34. Broxmeyer HE, Cooper S, Lu L, et al. Effect of murine mast cell growth factor (c-kit proto-oncogene ligand) on colony formation by human marrow hematopoietic progenitor cells. Blood 77: 2142–2149, 1991.

    PubMed  CAS  Google Scholar 

  35. Medlock E, Yung Y, McNiece I, et al. Role of stem cell factor (SCF) in the imulation of the mast cell lineage. Blood 76(10) suppl. 1: 154 (abstr.), 1991.

    Google Scholar 

  36. Broxmeyer HE, Hangoc G, Cooper S, et al. Influence of murine mast cell growth factor (c-kit ligand) on colony formation by mouse marrow hematopoietic progenitor cells. Exp. Hematol. 19: 143–146, 1991.

    PubMed  CAS  Google Scholar 

  37. Namen AE, Widmer MB, Voice R, et al. A ligand for the c-kit proto-oncogene (MGF) stimulates lymphoid progenitor cells in vitro. Exp. Hematol. 19: 749–754.

    Google Scholar 

  38. Briddell RA, Bruno E, Cooper RJ, et al. Effect of c-kit ligand on in vitro human megakaryocytopoiesis. Blood 78: 2854–2859, 1991.

    PubMed  CAS  Google Scholar 

  39. Avraham H, Vannier E, Cowley S, et al. Effects of the stem cell factor, c-kit ligand, on human megakaryocyte cells. Blood 79: 365–371, 1992.

    PubMed  CAS  Google Scholar 

  40. de Vries P, Brasel KA, Eisenman JR, et al. The effect of recombinant mast cell growth factor on purified hematopoietic stem cells. J. Exp. Med. 173: 1205–1211, 1991.

    Article  PubMed  Google Scholar 

  41. Williams N, Bertoncello I, Kavnoudias H, Zsebo K, McNiece I. Recombinant rat stem cell factor stimulates the amplification and differentiation of fractionated mouse stem cell populations.Blood 79: 58–64, 1992.

    PubMed  CAS  Google Scholar 

  42. Briddell RA, Broudy VC, Bruno E, et al. Further phenotypic characterization and isolation of human hematopoietic progenitor cells using a monoclonal antibody to the c-kit receptor. Blood 79: 3159–3167, 1992.

    PubMed  CAS  Google Scholar 

  43. Ogawa M, Matsuzaki Y, Nishikawa S, et al. Expression and function of c-kit in hematopoietic progenitor cells. J. Exp. Med. 174: 63–71, 1991.

    Article  PubMed  CAS  Google Scholar 

  44. Lynch DH, Jacobs C, DuPont D, et al. Pharmacokinetic parameters of recombinant mast cell growth factor (rMGF). Lymphokine Cytokine Res 1992;11: 233–236.

    PubMed  CAS  Google Scholar 

  45. Andrews RG, Knitter GH, Bartelmez SH, et al. Recombinant human stem cell factor, a c-kit ligand, stimulates hematopoiesis in nonhuman primates. Blood 1991;78: 1975–1980.

    PubMed  CAS  Google Scholar 

  46. Andrews RG, Bensinger WI, Knitter GH, et al. The ligand for c-kit ligand, stem cell factor, stimulates the circulation of cells that engraft lethally irradiated baboons. Blood 1992; 80: 2715–2720..

    PubMed  CAS  Google Scholar 

  47. Briddell RA, Hartley CA, Smith KA, McNiece IK (1993). Recombinant rat stem cell factor synergizes with recombinant human granulocyte-colony stimulating factor in vivo in mice to mobilize peripheral blood progenitor cells which have enhanced repopulating ability. Blood 1993; 82: 1720–1723.

    PubMed  CAS  Google Scholar 

  48. Crawford J, Lau D, Erwin R, et al. A phase I trial of recombinant methionyl human stem cell factor (SCF) in patients (pts) with advanced non-small cell lung carcinoma (NSCLS). Proc Am Soc Clin Oncol 1993; 12: 135a.

    Google Scholar 

  49. Demetri G, Costa J, Hayes D, et al. A phase I trial of recombinant methionyl human stem cell factor (SCF) in patients with advanced breast carcinoma pre-and post chemotherapy (chemo) with cyclophosphamide © and doxorubicin (A). Proc Am Soc Clin Oncol 1993; 12: 142a.

    Google Scholar 

  50. Costa JJ, Demetri GD, Harrist TJ, et al. Recombinant human stem cell factor (kit ligand) promotes human mast cell and melanocyte hyperplasia and functional activation in vivo. J Exp Med 1996; 183: 2681–2686.

    Article  PubMed  CAS  Google Scholar 

  51. Glaspy JA, Shpall EJ, LeMaistre CF, et al. Peripheral blood progenitor cell mobilization using stem cell factor in combination with filgrastim in breast cancer patients. Blood 1997; 90: 2939–2951.

    PubMed  CAS  Google Scholar 

  52. Shpall EJ, Wheeler CA, Turner SA, et al. A randomized phase 3 study of PBPC mobilization by stem cell factor (SCF, STEMGEN) and filgrastim in patients with high-risk breast cancer. Blood 1997; 90(suppl l): 591a.

    Google Scholar 

  53. Rosnet O, Marchetto S, deLapeyriere O, et al. Murine Flt3, a gene encoding a novel tyrosine kinase receptor of the PDGFR/CSF1R family. Oncogene 1991; 6: 1641–1650.

    PubMed  CAS  Google Scholar 

  54. Matthews W, Jordan CT, Wiegand GW, et al. A receptor tyrosine kinase specific to haematopoietic stem and progenitor cell-enriched populations. Cell 1991; 65: 1143–1152.

    Article  PubMed  CAS  Google Scholar 

  55. Small D, Levenstein M, Kim E, et al. STK-1, the human homolog of Flk-2/Flt-3, is selectively expressed in CD34+ human bone marrow cells and is involved in the proliferation of early progenitor/stem cells. Proc Natl Acad Sci USA 1994; 91: 459–463.

    Article  PubMed  CAS  Google Scholar 

  56. Lymann SD, James L, Vanden Bos T, et al. Molecular cloning of a ligand for the flt3/flk-2 tyrosine kinase receptor: a proliferative factor for primitive hematopoietic cells. Cell 1993; 75: 1157–1167.

    Article  Google Scholar 

  57. Hannum C, Culpepper J, Campbell D, et al. Ligand for FLT3/FLK2 receptor tyrosine kinase regulates growth of haematopoietic stem cells and is encoded by variant RNAs. Nature 1994; 368: 643–648.

    Article  PubMed  CAS  Google Scholar 

  58. Lyman SD, James L, Johnson L, et al. Cloning of the human homologue of the murine flt3 ligand: a growth factor for early hematopoietic progenitor cells. Blood 1994; 83: 2795.

    PubMed  CAS  Google Scholar 

  59. Lyman SD, James L, Escobar S, et al. Identification of soluble and membrane-bound isoforms of the murine flt3 ligand generated by alternative splicing of mRNAs. Oncogene 1995; 10: 149–157.

    PubMed  CAS  Google Scholar 

  60. Lyman SD, Jacobsen SE. c-kit ligand and flt3 ligand: stem/progenitor cells factors with overlapping yet distinct activities. Blood 1998; 91: 1101–1134.

    PubMed  CAS  Google Scholar 

  61. Hjertson M, Sundstrom C, Lyman SD, et al. Stem cell factor, but not flt3 ligand, induces differentiation and activation of human mast cells. Exp Hematol 1996; 24: 748.–754.

    PubMed  Google Scholar 

  62. Brasel K, McKenna HJ, Morrissey PJ, et al. Hematologic effects of flt3 ligand in vivo in mice. Blood 1996; 88: 2004–2012.

    PubMed  CAS  Google Scholar 

  63. Brasel K, McKenna HJ, Charrier K, et al. Flt3 ligand synergises with granulocyte-macrophage colony-stimulating factor or granulocyte colony-stimulating factor to mobilize hematopoietic progenitor cells into the peripheral blood of mice. Blood 1997; 90: 3781–3788.

    PubMed  CAS  Google Scholar 

  64. Molineux G, McCrea C, Yan XQ, McNiece I. Flt-3 ligand synergises with G-CSF to increase neutrophil numbers and to mobilize peripheral blood stem cells with long-term repopulating potential. Blood 1997; 89: 3998–4004

    PubMed  CAS  Google Scholar 

  65. Lebsack ME, McKenna HJ, Hoek JA, et al. Safety of FLT3 ligand in healthy volunteers. Blood 1997; 90(suppl 1): 170a.

    Google Scholar 

  66. Maraskovsky E, Roux E, Teepe M, et al. Flt3 ligand increases peripheral blood dendritic cells in healthy volunteers. Blood 1997; 90suppl 1): 581a.

    Google Scholar 

  67. Wendling F, Varlet P, Charon M, Tambourin P. MPLV: a retrovirus complex inducing an acute myeloproliferative leukemic disorder in adult mice. Virology 1986; 149: 242–246.

    Article  PubMed  CAS  Google Scholar 

  68. Souyri M, Vigon I, Penciolelli JF, et al. A putative truncated cytokine receptor gene transduced by the myeloproliferative leukemia virus immortalizes hematopoietic progenitor cells. Cell 1990; 63: 1137–1147.

    Article  PubMed  CAS  Google Scholar 

  69. Vigon I, Mornon JP, Cocault L, et al. Molecular cloning and characterization of MPL, the human homolog of the v-mpl oncogene: identification of a member of the hematopoietic growth factor receptor superfamily. Proc Natl Acad Sci USA 1992; 89: 5640–5644.

    Article  PubMed  CAS  Google Scholar 

  70. deSauvage FJ, Hass PE, Spencer SD, et al. Stimulation of megakaryocytopoiesis and thrombopoiesis by the c-mpl ligand. Nature 1994; 369: 533–538.

    Article  PubMed  Google Scholar 

  71. Hunt P, Li YS, Nichol JL, et al. Purification and biological characterization of plasma-derived megakaryocyte growth and development factor. Blood 1995; 86: 540–547.

    PubMed  CAS  Google Scholar 

  72. Lok S, Kaushansky K, Holly RD, et al. Cloning and expression of murine thrombopoietin cDNA and stimulation of platelet production in vivo. Nature 1994; 369: 565–568.

    Article  PubMed  CAS  Google Scholar 

  73. Ogami K, Shimada Y, Sohma Y, et al. The sequence of a rat cDNA encoding thrombopoietin. Gene 1995; 158: 309–310.

    Article  PubMed  CAS  Google Scholar 

  74. Foster DC, Sprecher CA, Grant FJ, et al. Human thrombopoietin: gene structure, cDNA sequence, expression, and chromosomal localization. Proc Natl Acad Sci USA 1994;91: 13023–13027.

    Article  PubMed  CAS  Google Scholar 

  75. Hokom MM, Lacey D, Kinstler OB, et al. Pegylated megakaryocyte growth and development factor abrogates the lethal thrombocytopenia associated with carboplatin and irradiation in mice. Blood 1995; 86: 4486–4492.

    PubMed  CAS  Google Scholar 

  76. Nichol JL, Hokom MM, Hornkohl A, et al. Megakaryocyte growth and development factor. Analysis of in vitro effects on human megakaryocytopoiesis and endogenous serum levels during chemotherapy-induced thrombocytopenia. J Clin Invest 1995; 95: 2973–2978.

    Article  PubMed  CAS  Google Scholar 

  77. Choi ES, Nichol JL, Hokom MM, et al. Platelets generated in vitro from proplatelet-displaying human megakaryocytes are functional. Blood 1995; 85: 402–413.

    PubMed  CAS  Google Scholar 

  78. Choi ES, Hokom MM, Chen JL, et al. The role of megakaryocyte growth and development factor in terminal stages of thrombopoiesis. Br J Haemtol 1996; 95: 227–233.

    Article  CAS  Google Scholar 

  79. Kaushansky K, Lin N, Grossman A, et al. Thrombopoietin expands erythroid, granulocyte-macrophage, and megakaryocyte progenitor cells in normal and myelosuppressed mice. Exp Hematol 1996; 24: 265–269.

    PubMed  CAS  Google Scholar 

  80. Farese AM, Hunt P, Boone T, MacVittie TJ. Recombinant human megakaryocyte growth and development factor stimulates thrombocytopoiesis in normal human primates. Blood 1995; 86: 54–59.

    PubMed  CAS  Google Scholar 

  81. Molineux G, Hartley C, McElroy P, et al. Megakaryocyte growth and development factor accelerates platelet recovery in peripheral blood progenitor cell transplant recipients. Blood 1996;88: 366–376.

    PubMed  CAS  Google Scholar 

  82. Harker LA, Marzec UM, Hunt P, et al. Dose-response effects of pegylated human megakaryocyte growth and development factor on platelet production and function in nonhuman primates. Blood 1996; 88: 511–521.

    PubMed  CAS  Google Scholar 

  83. Basser RL, Rasko JE, Clarke K, et al. Thrombopoietic effects of pegylated recombinant human megakaryocyte growth and development factor (PEG-rHuMGDF) in patients with advanced cancer. Lancet 1996; 348: 1279–1281.

    Article  PubMed  CAS  Google Scholar 

  84. Begley G, Basser R, Clarke K, et al. Randomized, double-blind, placebo-controlled phase I trial of PEG-ylated megakaryocyte growth and development factor (PEG-rHuMGDF) administered to patients with advanced cancer before and after chemotherapy. Proc Annu Meet Am Soc Clin Oncol 1996; 15: 719.

    Google Scholar 

  85. Vadhan-Raj S, Verschraegen C, McGarry L, et al. Recombinant human thrombopoietin (rhTPO) attenuates high-dose carboplatin (C)-induced thrombocytopenia in patients with gynecologic malignancies. Blood 1997; 89: 580a.

    Google Scholar 

  86. Gajewski J, Korbling M, Donato M, et al. Recombinant human thrombopoietin (rhTPO) for mobilization of peripheral blood progenitor cells (PBPC) for autologous transplantation in breast cancer: Preliminary results of a phase I trial. Blood 1997; 89: 221a.

    Google Scholar 

  87. Beveridge R, Schuster M, Waller E, et al. Randomized, double-blind, placebo-controlled trial of pegylated recombinant human megakaryocyte growth and development factor (PEG-rHuMGDF) in breast cancer patients (pts) following autologous bone marrow transplantation (ABMT). Blood 1997; 89: 580a.

    Google Scholar 

  88. Bolwell B, Vredenburgh J, Overmoyer B, et al. Safety and biologic effect of pegylated recombinant human megakaryocyte growth and development factor (PEG-rHuMGDF) in breast cancer patients following autologous peripheral blood progenitor cell transplantation (PBPC). Blood 1997; 89: 171a.

    Google Scholar 

  89. Glaspy J, Vredenburgh J, Demetri GD, et al. Effects of PEGylated recombinant human megakaryocyte growth and development factor (PEG-rHuMGDF) before high dose chemotherapy (HDC) with peripheral blood progenitor cell (PBPC) support. Blood 1997; 89: 580a.

    Google Scholar 

  90. Kuter D, McCullough J, Romo J, et al. Treatment of platelet (PLT) donors with pegylated recombinant human megakaryocyte growth and development factor (PEG-rHuMGDF) increases circulating PLT counts (CTS) and PLT apheresis yields and increases platelet increments in recipients of PLT transfusions.

    Google Scholar 

  91. Haylock DN, To LB, Dowse TL, et al. Ex vivo expansion and maturation of peripheral blood CD34+ cells into the myeloid lineage. Blood 1992; 80: 1405–1412.

    PubMed  CAS  Google Scholar 

  92. Brugger W, Mocklin W, Heimfeld S, et al. Ex vivo expansion of enriched peripheral blood CD34+ progenitor cells by stem cell factor, interleukin-lB (IL-1B), IL-6, IL-3, Interferon-gamma, and erythropoietin. Blood 1993;81: 2579–2584.

    PubMed  CAS  Google Scholar 

  93. Alcorn MJ, Holyoake TL, Richmond L, et al. CD34-positive cells isolated from cryopreserved peripheral blood progenitor cells can be expanded ex vivo and used for transplantation with little or no toxicity. J Clin Oncol 1996; 14: 1839–1847.

    PubMed  CAS  Google Scholar 

  94. Williams SF, Lee WJ, Bender JG, et al. Selection and expansion of peripheral blood CD34+ cells in autologous stem cell transplantation for breast cancer. Blood 1996;87: 1687–1691.

    PubMed  CAS  Google Scholar 

  95. Stoney GB, Briddell RA, Kern BP, et al. Clinical scale ex vivo expansion of myeloid progenitor cells and megakaryocytes under GMP conditions. Exp. Hematol. 1996; 24(9): 1043.

    Google Scholar 

  96. Briddell R, Kern BP, Zilm KL, et al. Purification of CD34+ cells is essential for optimal ex vivo expansion of umbilical cord blood cells. J. Hematotherapy 1997; 6: 145–150.

    Article  CAS  Google Scholar 

  97. Andrews RG, Briddell RA, Gough M, McNiece IK. Expansion of G-CSF mobilized CD34+ peripheral blood cells (PBC) for 10 days in G-CSF, MGDF and SCF prior to transplantation decreased post-transplant neutropenia in baboons. Blood 1997; 90:10(suppl 1), 92a.

    Google Scholar 

  98. Shpall EJ, Briddell R, Hami L, et al. Transplantation of leukemia patients receiving high dose chemotherapy with ex vivo expanded cord blood cells. ABMT meeting, Miami FL, April, 1998.

    Google Scholar 

  99. Gluckman E, Rocha V, Boyer-Chammard A et al. Outcome of cord-blood transplantation from related and unrelated donors. Eurocord Transplant Group and the European Blood and Marrow Transplantation Group. N Engl J Med 1997 Aug7;337(6): 373–381.

    Article  PubMed  CAS  Google Scholar 

  100. Bodine DM, McDonagh KT, Donahue RE, Nienhuis AW. Gene insertion into hematopoietic stem cells. Exp. Hematol] 1992; 20: 125–1

    Google Scholar 

  101. Yan X-Q, Lacey D, Fletcher F, et al. Chronic exposure to retroviral vector encoded MGDF (mpl-ligand) induces lineage-specific growth and differentiation of megakaryocytes in mice. Blood 1995; 86(11): 4025–4033.

    PubMed  CAS  Google Scholar 

  102. Lusky BD, Zsebo KM, Williams DA. Pre-stimulation of murine bone marrow with steelfactorincreasesretroviral-mediatedgenetransferintolong-lived hematopoietic stem cells. Blood 1991; 78(suppl. 1): 256a.

    Google Scholar 

  103. Orlic D, Girard LJ, Jordan CT, et al. The level of mRNA encoding the amphotropic retrovirus receptor in mouse and human hematopoietic stem cells is low and correlates with the efficiency of retrovirus transduction. Proc Natl Acad Sci USA 1996;93: 11097–11102.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

McNiece, I.K. (1999). New Cytokines and their Clinical Application. In: Burt, R.K., Brush, M.M. (eds) Advances in Allogeneic Hematopoietic Stem Cell Transplantation. Cancer Treatment and Research, vol 101. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4987-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4987-1_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7264-6

  • Online ISBN: 978-1-4615-4987-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics