Skip to main content

Allogeneic Peripheral Blood Stem Cell Transplantation for Hematologic Diseases

  • Chapter

Part of the book series: Cancer Treatment and Research ((CTAR,volume 101))

Abstract

Circulating hematopoietic stem cells have emerged as an alternative to bone marrow (BM) stem cells for allografting. For many years the reconstitutive potential of circulating stem cells was questioned; peripheral blood stem cells (PBSC) were even characterized a waste product (1). The preclinical experience with allogeneic, sex-mismatched PBSC transplantations in canine littermates, has clearly shown that blood-derived stem cells reconstitute hematopoiesis completely and permanently (2,3) including long-lasting evidence of donor chimerism (4). The first reported case of allogeneic PBSC transplantation in a patient with acute lymphoblastic leukemia was published in 1989 by Kessinger et al. (5) showing clear evidence of trilineage engraftment. This was followed in 1994 and 1995, by various reports of successful allogeneic PBSC transplantations using PBSC from rhG-CSF mobilized donors (6–9).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Micklem HS, Anderson N, Ross E. Limited potential of circulating haemopoietic stem cells. Nature 1975; 256: 41–43.

    Article  PubMed  CAS  Google Scholar 

  2. Epstein RB, Graham TC, Buckner CD et al. Allogeneic marrow engraftment by cross circulation in lethally irradiated dogs. Blood 1966;28: 692–707.

    PubMed  CAS  Google Scholar 

  3. Körbling M, Fliedner TM, Calvo W, Ross WM, Nothdurft W, Steinbach I. Albumin density gradient purification of canine hemopoietic blood stem cells (HBSC): Long-term allogeneic engraftment without GVH-reaction. Exp Hemat 1979;7: 277–288.

    PubMed  Google Scholar 

  4. Carbonell F, Calvo W, Fliedner TM, et al. Cytogenetic studies in dogs after total body irradiation and allogeneic transfusion with cryopreserved blood mononuclear cells: Observations in long-term chimeras. International Journal of Cell Cloning 1984;2: 81–88.

    Article  PubMed  CAS  Google Scholar 

  5. Kessinger A, Smith DM, Strandjord SE, Landmark JD, Dooley DC, Law P, Coccia PF, Warkentin PI, Weisenburger DD, Armitage JO. Allogeneic transplantation of blood-derived, T cell-depleted hemopoietic stem cells after myeloablative treatment in a patient with acute lymphoblastic leukemia. Bone Marrow Transplant 1989;4: 643–646.

    PubMed  CAS  Google Scholar 

  6. Körbling M, Przepiorka D, Huh YO, et al. Allogeneic blood stem cell transplantation for refractory leukemia and lymphoma: Potential advantage of blood over marrow allografts. Blood 1995;85: 1659–1665.

    PubMed  Google Scholar 

  7. Schmitz N, Dreger P, Suttorp M, et al. Primary transplantation of allogeneic peripheral blood progenitor cells mobilized by filgrastim; granulocyte colony-stimulating factor). Blood 1995;85: 1666–1672.

    PubMed  CAS  Google Scholar 

  8. Bensinger WI, Weaver CH, Appelbaum FR, et al. Transplantation of allogeneic peripheral blood stem cells mobilized by recombinant human granulocyte colony-stimulating factor. Blood 1995;85: 1655–1658.

    PubMed  CAS  Google Scholar 

  9. Azevedo WM, Aranha FJP, Gouvea JV, et al. Allogeneic transplantation with blood stem cells mobilized by rhG-CSF for hematological malignancies. Bone Marrow Transplant 1995; 16: 647–653.

    PubMed  CAS  Google Scholar 

  10. Körbling M, Huh YO, Durett A, et al. Allogeneic blood stem cell transplantation: Peripheralization and yield of donor-derived primitive hematopoietic progenitor cells (CD34+ Thy-1 dim) and lymphoid subsets, and possible predictors of engraftment and GVHD. Blood 1995;86: 2842–2848.

    PubMed  Google Scholar 

  11. Link H, Arseniev L, Bähre O, et al. Combined transplantation of allogeneic bone marrow and CD34+ blood cells. Blood 1995;86: 2500–2508.

    PubMed  CAS  Google Scholar 

  12. Molineux G, Pojda Z, Hampson IN, Lord BI, Dexter TM. Transplantation potential of peripheral blood stem cells induced by granulocyte colony-stimulating factor. Blood 1990; 76: 2153–2158.

    PubMed  CAS  Google Scholar 

  13. Bensinger WI, Price TH, Dale DC, et al. The effects of daily recombinant human granulocyte colony-stimulatingfactor administration on normal granulocyte donors undergoing leukapheresis. Blood 1993; 81: 1883–1888.

    PubMed  CAS  Google Scholar 

  14. Caspar CB, Seger RA, Burger J, Gmur J. Effective stimulation of donors for granulocyte transfusions with recombinant methionyl granulocyte colony-stimulating factor. Blood 1993;81: 2866–2871.

    PubMed  CAS  Google Scholar 

  15. Prosper F, Verfaillie CM. Mobilization and homing of peripheral blood progenitors is related to reversible down regulation of a4bl integrin expression and function. Journal of Clinical Investigation 1998; 101: 2456–2467.

    Article  PubMed  CAS  Google Scholar 

  16. Lebsack ME, McKenna HJ, Hoek JA, Hanna R, Feng A, Marashovsky E, Hayes FA. Safety of FLT3 ligand in healthy volunteers. Blood 1997; 90: (Suppl.1) 170a.

    Google Scholar 

  17. Ali SM, Brown RA, Adkins DR, Todd G, Haug JS, Goodnough LT, DiPersio JF. Analysis of lymphocyte subsets and peripheral blood progenitor cells in apheresis products from normal donors mobilized with either G-CSF or concurrent G-CSF and GM-CSF. Blood 1997; 90: (Suppl.1) 564a.

    Google Scholar 

  18. Weaver CH, Longin K, Buckner CD, Bensinger W. Lymphocyte content in peripheral blood mononuclear cells collected after administration of recombinant human granulocyte colony-stimulating factor. Bone Marrow Transplant 1994; 13: 411–415.

    PubMed  CAS  Google Scholar 

  19. Prosper F, Stroncek D, Verfaillie CM. Mobilization of LTC-IC in normal donors treated with G-CSF: phenotypic analysis of mobilized PBSC. Blood 1995; 86: (Suppl.1): 464a.

    Google Scholar 

  20. Fujisaki T, Otsuka T, Harada M, Ohno Y, Niho Y. Granulocyte colony-stimulating factor mobilizes primitive hematopoietic stem cells in normal individuals. Bone Marrow Transplant 1995; 16: 57–62.

    PubMed  CAS  Google Scholar 

  21. Tjønnfjord GE, Steen R, Evensen SA, Thorsby E, Egeland T. Characterization of CD34+ peripheral blood cells from healthy adults mobilized by recombinant human granulocyte-stimulating factor. Blood 1994; 84: 2795–2801.

    PubMed  Google Scholar 

  22. Grigg AP, Roberts A.W, Raunow H, et al. Optimizing dose and scheduling of filgrastim (granulocyte colony-stimulating factor) for mobilization and collection of peripheral blood progenitor cells in normal volunteers. Blood 1995; 86: 4437–4445.

    PubMed  CAS  Google Scholar 

  23. Tanaka R, Matsudaira T, Tanaka I, et al. Kinetics and characteristics of peripheral blood progenitor cells mobilized by G-CSF in normal healthy volunteers. Blood 1994; 84: (Suppl.1) 541a.

    Google Scholar 

  24. Dreger P, Haferlach T, Eckstein V, et al. Filgrastim-mobilized peripheral blood progenitor cells for allogeneic transplantation: Safety, kinetics and mobilization, and composition of the graft. British Journal of Haematology 1994; 87: 609.

    Article  PubMed  CAS  Google Scholar 

  25. Stroncek D, Clay M, Jaszcz W, Mills B, Oldham F, McCullough J. Longer than 5 days of G-CSF mobilization of normal individuals results in lower CD34+ cell counts. Blood 1994; 84: (Suppl.1): 541a.

    Google Scholar 

  26. Höglund M, Smedmyr B, Simonsson B, Tötterman T, Bengtsson M. Dose-dependent mobilisation of haematopoietic progenitor cells in healthy volunteers receiving glycosylated rHuG-CSF. Bone Marrow Transplant 1996; 18: 19–27.

    PubMed  Google Scholar 

  27. Stroncek D, Clay M, Lennon S, Smith J, McCullough J. Collection of two blood progenitor cell components from healthy donors. Blood 1996; 88: (Suppl. 1): 396a.

    Google Scholar 

  28. Waller CF, Bertz H, Wenger MK, et al. Mobilization of peripheral blood progenitor cells for allogeneic transplantation: efficacy and toxicity of a high-dose rhG-CSF regimen. Bone Marrow Transplant 1996; 18: 279–283.

    PubMed  CAS  Google Scholar 

  29. Anderlini P, Przepiorka D, Seong D, et al. Factors affecting mobilization of CD34+ cells in normal donors treated with filgrastim. Transfusion 1997;37: 507–512.

    Article  PubMed  CAS  Google Scholar 

  30. Anderlini P, Przepiorka D, Champlin R, Körbling M. Biologic and clinical effects of granulocyte colony-stimulating factor in normal individuals. Blood 1996; 88: 2819–2825.

    PubMed  CAS  Google Scholar 

  31. Anderlini P, Przepiorka D, Seong D, et al. Clinical toxicity and laboratory effects of granulocyte-colony-stimulating factor (filgrastim) mobilization and blood stem cell apheresis from normal donors, and analysis of charges for the procedures. Transfusion 1996; 36: 590–595.

    Article  PubMed  CAS  Google Scholar 

  32. Becker PS, Wagle M, Matous S, et al. Spontaneous splenic rupture following administration of granulocyte colony-stimulating factor (G-CSF): occurrence in an allogeneic donor of peripheral blood stem cells. Biology of Blood and Marrow Transplantation 1997; 3: 45–49.

    PubMed  CAS  Google Scholar 

  33. Bonilla MA, Dale D, Zeidler C, et al. Long-term safety of treatment with recombinant human granulocyte colony-stimulating factor (r-metHuG-CSF) in patients with severe congenital neutropenias. British Journal of Haematology 1994; 88: 723–730.

    Article  PubMed  CAS  Google Scholar 

  34. Sakamaki S, Matsunaga T, Hirayama Y, Kuga T, Niitsu Y. Haematological study of healthy volunteers 5 years after G-CSF. Lancet 1995;346: 1432–1433 (letter).

    Article  PubMed  CAS  Google Scholar 

  35. Hasenclever D, Sextro M. Safety of alloPBSCT donors: biometrical considerations on monitoring long term risks. Bone Marrow Transplant 1996; 17: (Suppl 2) S28–S30.

    PubMed  Google Scholar 

  36. Gilman P, Jackson D, Guild H. Congenital agranulocytosis: prolonged survival and terminal acute leukemia. Blood 1970; 36: 576–585.

    PubMed  CAS  Google Scholar 

  37. de Planque MM, Bacigalupo A, Würsch A, et al. Long-term follow-up of severe aplastic anemia patients treated with antithymocyte globulin. British Journal of Haematology 1989; 73: 121–126.

    Article  PubMed  Google Scholar 

  38. Russell N, Gratwohl A, Schmitz N. The place of blood stem cells in allogeneic transplantation. British Journal of Haematology 1996; 93: 747–753.

    Article  Google Scholar 

  39. Lane T. Allogeneic marrow reconstitution using peripheral blood stem cells: the dawn of a new era. Transfusion 1996; 36: 585–589.

    Article  PubMed  CAS  Google Scholar 

  40. Körbling M, Przepiorka D, Gajewski J, Champlin RE, Chan KW. With first successful allogeneic transplantations of apheresis-derived hematopoietic progenitor cells reported, can the recruitment of volunteer matched, unrelated stem cell donors be expanded substantially? Blood 1995;86: 1235 (letter).

    Google Scholar 

  41. Anderlini P, Körbling M, Dale D, et al. Allogeneic blood stem cell transplantation: considerations for donors. Blood 1997; 90: 903–908.

    PubMed  CAS  Google Scholar 

  42. Standards for Blood Banks and Transfusion Services (18th Edition), 1997; edited by J.E. Menitove, American Association of Blood Banks Publications, Bethesda, MD.

    Google Scholar 

  43. Standards for Hematopoietic Progenitor Cell Collection, Processing & Transplantation. Foundation for the Accreditation of Hematopoietic Cell Therapy (FAHCT). 1996 First Edition-North America.

    Google Scholar 

  44. Stroncek D, Clay M, Lennon S, Smith J, Jaszcz W, McCullough J. Neutropenia following the collection of granulocyte colony-stimulating factor mobilized blood progenitor cell components is due to the collection of progenitor cells. Blood 1996; 88: (Suppl.1) 396a.

    Google Scholar 

  45. Malachowski ME, Comenzo RL, Hillyer CD, Tiegerman KO, Berkman EM. Large-volume leukapheresis for peripheral blood stem cell collection in patients with hematologic malignancies. Transfusion 1992; 32: 732–735.

    Article  PubMed  CAS  Google Scholar 

  46. Comenzo RI, Malachowski ME, Miller KB, et al. Engraftment with peripheral blood stem cells collected by large-volume leukapheresis for patients with lymphoma. Transfusion 1992; 32: 729–731.

    Article  PubMed  CAS  Google Scholar 

  47. Passos-Coelho JL, Braine HG, Wright SK, et al. Large volume leukapheresis using regional citrate anticoagulation to collect peripheral blood progenitor cells. Journal of Hematotherapy 1995; 4: 11–19.

    Article  PubMed  CAS  Google Scholar 

  48. Hillyer CD, Tiegerman KO, Berkman EM. Increase in circulating colony-forming units-granulocyte-macrophage during large-volume leukapheresis: evaluation of a new cell separator. Transfusion 1991; 31: 327–332.

    Article  PubMed  CAS  Google Scholar 

  49. Körbling M, Mirza N, Fischer H, Gee A, Giralt S. Circulating blood as a source of hematopoietic stem cells for allogeneic transplantation in 112 HLA-identical patients with advanced hematologic malignancies and solid tumors. Transfusion (submitted for publication).

    Google Scholar 

  50. Anderlini P, Lauppe J, Przepiorka D, Seong D, Champlin R, Körbling M. Peripheral blood stem cell apheresis in normal donors: feasibility and yield of second collections. British Journal of Haematology 1997; 96(2): 415–417.

    Article  PubMed  CAS  Google Scholar 

  51. Körbling M, Anderlini P, Durett A, et al. Delayed effects of rhG-CSF mobilization treatment and apheresis on circulating CD34+ and CD34+Thy-ldim CD38-progenitor cells, and lymphoid subsets in normal stem cell donors for allogeneic transplantation. Bone Marrow Transplant 1996; 18(6): 1073–1079.

    PubMed  Google Scholar 

  52. Martinez C, Urbano-Ispizua A, Rozman C, et al. Effects of G-CSF administration and peripheral blood progenitor cell collection in 20 healthy donors. Ann Hematol 1996; 72: 269–272.

    Article  PubMed  CAS  Google Scholar 

  53. Shpall EJ, Jones RB, Bearman SI, et al. Transplantation of enriched CD34-positive autologous marrow into breast cancer patients following high-dose chemotherapy: Influence of CD34-positive peripheral-blood progenitors and growth factors on engraftment. Journal Clin Oncol 1994; 12: 28–36.

    CAS  Google Scholar 

  54. Mavroudis D, Read E, Cottier-Fox M, et al. CD34+ cell dose predicts survival, posttransplant morbidity, and rate of hematologic recovery after allogeneic marrow transplants for hematologic malignancies. Blood 1996;88: 3223–3229.

    PubMed  CAS  Google Scholar 

  55. Kanold J, Rapatel C, Berger M, et al. Use of G-CSF alone to mobilize peripheral blood stem cells for collection from children. Br J Haematology 1994;88: 633–635.

    Article  CAS  Google Scholar 

  56. Takaue Y, Kawano Y, Abe T, et al. Collection and transplantation of peripheral blood stem cells in very smallchildren weighing 20 kg or less. Blood 1995;86: 372–380.

    PubMed  CAS  Google Scholar 

  57. Körbling M, Chan KW, Anderlini P, et al. Allogeneic peripheral blood stem cell transplantation using normal patient-related pediatric donors. Bone Marrow Transplantation 1996;18: 885–890.

    PubMed  Google Scholar 

  58. Przepiorka D, Van Vlasselaer P, Huynh L, et al. Rapid debulking and CD34 enrichment of filgrastim-mobilized peripheral blood stem cells by semiautomated density gradient centrifugation in a closed system. Journal of Hematotherapy 1996;5: 497–502.

    Article  PubMed  CAS  Google Scholar 

  59. Wagner JE, Donnenberg AD, Noga SJ, et al. Bone marrow graft engineering by counter-flow centrifugal elutriation: results of a phase I-II clinical trial. Blood 1990;75: 1370–1377.

    PubMed  CAS  Google Scholar 

  60. Sasaki DT, Tichenor EH, Lopez F, et al. Development of a clinically acceptable high-speed flow cytometer for the isolation of transplantable human hematopoietic stem cells. Journal of Hematotherapy 1995;4: 503–514.

    Article  PubMed  CAS  Google Scholar 

  61. Kaufman CL, Colson YL, Wren SM, Watkins S, Simmons RL, Ildstad ST. Phenotypic characterization of a novel bone marrow-derived cell that facilitates engraftment of allogeneic bone marrow stem cells. Blood 1994;84: 2436–2446.

    PubMed  CAS  Google Scholar 

  62. Bonini C, Ferrari G, Verzeletti S, et al. HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia. Science 1997;276: 1719–1724.

    Article  PubMed  CAS  Google Scholar 

  63. Przepiorka D, Anderlini P, Ippoliti C, et al. Allogeneic blood stem cell transplantation in advanced hematologic cancers. Bone Marrow Transplant 1997;19: 455–460.

    Article  PubMed  CAS  Google Scholar 

  64. Bensinger WI, Clift R, Martin P, et al. Allogeneic peripheral blood stem cell transplantation in patients with advanced hematologic malignancies: a retrospective comparison with marrow transplantation. Blood 1996;88: 2794–2800.

    PubMed  CAS  Google Scholar 

  65. Körbling M, Mirza N, Przepiorka D, Anderlini P, Chan KW, Champlin R. Clinical outcome in 112 patients following HLA-identical allogeneic peripheral blood stem cell (PBSC) transplantation. Blood 1997;90: (Suppl.1) 224a–225a.

    Google Scholar 

  66. Rosenfeld C, Collins R, Pineiro L, Agura E, Nemunaitis J. Allogeneic blood cell transplantation without posttransplant colony-stimulating factors in patients with hematopoietic neoplasm: a phase II study. J Clin Oncol; 14: 1314–1319, 1996.

    PubMed  CAS  Google Scholar 

  67. Russell JA, Brown C, Brown T, et al. Allogeneic blood cell transplants for haematological malignancy: preliminary comparison of outcomes with bone marrow transplantation. Bone Marrow Transplant 1996;17: 703–708.

    PubMed  CAS  Google Scholar 

  68. Ottinger HD, Beelen DW, Scheulen B, Schaefer UW, Grosse-Wilde H. Improved immune reconstitution after allotransplantation of peripheral blood stem cells instead of bone marrow. Blood 1996;88: 2775–2779.

    PubMed  CAS  Google Scholar 

  69. Bacigalupo A, Van Lint MT, Valbonesi M, et al. Thiotepa cyclophosphamide followed by granulocye colony-stimulating factor mobilized allogeneic peripheral blood cells in adults with advanced leukemia. Blood 1996;88: 353–357.

    PubMed  CAS  Google Scholar 

  70. Bearman SI, Appelbaum FR, Buckner CD et al. Regimen related toxicity in patients undergoing bone marrow transplantation. J Clin Oncol 1988;6: 1562–1568.

    PubMed  CAS  Google Scholar 

  71. Verdonck LF, Dekker AW, de Gast GC, van Kempen ML, Lokhorst HM, Nieuwenhuis HK. Allogeneic bone marrow transplantation with a fixed low number of T-cells in the marrow graft. Blood 1994;83: 3090–3096.

    PubMed  CAS  Google Scholar 

  72. Pan L, Delmonte J Jr, Jalonen CK, Ferrara JLM. Pretreatment of donor mice with granulocyte colony-stimulating factor polarizes donor T lymphocytes toward type-2 cytokine production and reduces severity of experimental graft versus host disease. Blood 1995;86: 4422–4429.

    PubMed  CAS  Google Scholar 

  73. Zeng D, Dejbakhsh-Jones S, Strober S. Granulocyte colony-stimulating factor reduces the capacity of blood mononuclear cells to induce graft-versus-host disease: impact on blood progenitor cell transplantation. Blood 1997;90: 453–463.

    PubMed  CAS  Google Scholar 

  74. Kusnierz-Glaz CR, Still BJ, Amano M, et al. Granulocyte colony-stimulating factor-induced comobilization of CD4-CD8-T-cells and hematopoietic progenitor cells (CD34+) in the blood of normal donors. Blood 1997;89: 2586–2595.

    PubMed  CAS  Google Scholar 

  75. Storb R, Prentice RL, Sullivan KM, et al. Predictive factors in chronic graft-versus-host disease in patients with aplastic anemia treated by marrow transplantation from HLA-identical siblings. Ann Intern Med 1983;98: 461–466.

    PubMed  CAS  Google Scholar 

  76. Anderlini P, Przepiorka D, Khouri I, et al. Chronic graft-versus-host disease after allogeneic marrow or blood stem cell transplantation. Blood 1995;86: (Suppl.1) 109a.

    Google Scholar 

  77. Storek J, Gooley T, Siadak M, et al. Allogeneic peripheral blood stem cell transplantation may be associated with a high risk of chronic graft-versus-host disease. Blood 1997;90: 4705–4709.

    PubMed  CAS  Google Scholar 

  78. Ringden O. Allogeneic peripheral blood stem cells from unrelated donors for transplantation. Bone Marrow Transplant 1997;19(Suppl.1): S72.

    Google Scholar 

  79. Kolb HJ, Schattenberg A, Goldman JM, et al. Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. European Group for Blood and Marrow Transplantation Working Party Chronic Leukemia. Blood 1995;86: 2041–2050.

    PubMed  CAS  Google Scholar 

  80. Tricot G, Vesole DH, Jagannath S, Hilton J, Munshi N, Barlogie B. Graft-versus-myeloma effect: proof of principle. Blood 1996;87: 1196–1198.

    PubMed  CAS  Google Scholar 

  81. Eibl B, Schwaighofer H, Nachbaur D, et al. Evidence for a graft-versus-tumor effect in a patient treated with marrow ablative chemotherapy and allogeneic bone marrow transplantation for breast cancer. Blood 1996;88: 1501–1508.

    PubMed  CAS  Google Scholar 

  82. Ueno NT, Rondon G, Mirza NQ, et al. Allogeneic peripheral blood progenitor cell transplantation for poor-risk patients with metastatic breast cancer. J Clin Oncol 1998;16: 986–993.

    PubMed  CAS  Google Scholar 

  83. Link H, Arseniev L, Bähre O, Kadar JG, Diedrich H, Poliwoda H. Transplantation of allogeneic CD34+ cells. Blood 1996;87: 4903–4909.

    PubMed  CAS  Google Scholar 

  84. Bensinger WI, Buckner CD, Shannon-Dorcy K, et al. Transplantation of allogeneic CD34+ peripheral blood stem cells in patients with advanced hematologic malignancy. Blood 1996; 88(11): 4132–4138.

    PubMed  CAS  Google Scholar 

  85. Urbano-Ispizua A, Rozman C, Martinez C, et al. Rapid engraftment without significant graft-versus-host disease after allogeneic transplantation of CD34+ selected cells from peripheral blood. Blood 1997;89: 3967–3973.

    PubMed  CAS  Google Scholar 

  86. Sykes M, Szot GL, Swenson KA, Pearson DA. Induction of high levels of allogeneic hematopoietic reconstitution and donor-specific tolerance without myelosuppressive conditioning. Nature Medicine 1997;3: 783–787.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Körbling, M. (1999). Allogeneic Peripheral Blood Stem Cell Transplantation for Hematologic Diseases. In: Burt, R.K., Brush, M.M. (eds) Advances in Allogeneic Hematopoietic Stem Cell Transplantation. Cancer Treatment and Research, vol 101. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4987-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4987-1_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7264-6

  • Online ISBN: 978-1-4615-4987-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics