Skip to main content

Neurotransmitter Receptor Changes in the Hippocampus and Cerebral Cortex in Normal Aging

  • Chapter
Cerebral Cortex

Part of the book series: Cerebral Cortex ((CECO,volume 14))

Abstract

As humans grow older, they all experience changes in their basic physiological systems. Although some of these changes can be debilitating or fatal, the quality of life during aging depends to a great extent on the functional status of the central nervous system. Over the past three decades, increasingly well-controlled and well-documented studies in humans and experimental animals have shown a variety of cognitive changes, including impairments in both memory and executive system function. In contrast to age-related dementias like Alzheimer’s disease, these impairments are relatively mild, though they increase in severity with age and can become quite troublesome (see Moss and Albert, this volume). It seems likely that these changes in cognitive function result from changes localized in the cerebral cortex (including the hippocampal formation and other parts of the limbic system) or related parts of the forebrain (thalamus, basal ganglia, amygdala, basal fore-brain). Investigations of the forebrain in both aged humans and experimental animals have uncovered a variety of age-related biological changes, including the appearance of amyloid plaques (e.g. Selkoe et al., 1987), loss of neurons (e.g. Brody, 1955; Brizzee et al., 1980), loss of myelin (e.g., Kemper, 1994), loss of synapses (e.g. Geinisman et al., 1992), decreases in neurotransmitter levels (e.g. Wenk et al., 1989), loss of neurotransmitter receptors (e.g. Wagster et al., 1990), alterations in mitochondrial energy metabolism (e.g. Wallace, 1995), and changes in neuro-physiological responsivity (e.g. Barnes, 1994; Tanila et al., 1997).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amaral, D. G., 1993, Morphological analysis of the brains of behaviorally characterized aged nonhuman primates, Neurobiol. Aging 14:671–672.

    Article  PubMed  CAS  Google Scholar 

  • Anke, M. M., Kulkulka, K. M., McAvoy, K. J., and Rolcosz, N. C., 1992, Regional distribution and kinetics of three sites on the GABAA receptor: Lack of effect of portacaval shunting, J. Cereb. Blood Flow Metab. 12:334–346.

    Article  Google Scholar 

  • Araujo, D. M., Lapchak, P. A., Meaney, M. J., Collier, B., and Quirion, R., 1990, Effects of aging on nicotinic and muscarinic autoreceptor function in the rat brain: Relationship to presynaptic cholinergic markers and binding sites, J. Neurosci. 10:3069–3078.

    PubMed  CAS  Google Scholar 

  • Aubert, I., Rowe, W., Meaney, M. J., Gauthier, S., and Quirion, R., 1995, Cholinergic markers in aged cognitively impaired Long-Evans rats, Neuroscience 67:277–292.

    Article  PubMed  CAS  Google Scholar 

  • Barnes, C. A., 1994, Normal aging: Regionally specific changes in hippocampal synaptic transmission, Trends Neurosci. 17(1):13–18.

    Article  PubMed  CAS  Google Scholar 

  • Bartus, R. T., Dean, R. L., and Fleming, D. L., 1979, Aging in the rhesus monkey: Effects on visual discrimination learning and reversal learning, J. Gerontol. 34:209–219.

    PubMed  CAS  Google Scholar 

  • Bartus, R. T., Dean, R. L., Beer, B., and Lippa, A. S., 1982, The cholinergic hypothesis of geriatric memory dysfunction, Science 217:408–417.

    Article  PubMed  CAS  Google Scholar 

  • Biegon, A., Hanau, M., Greenberger, V., and Segal, M., 1989, Aging and brain cholinergic muscarinic receptor subtypes: An autoradiographic study in the rat, Neurobiol. Aging 10:305–310.

    Article  PubMed  CAS  Google Scholar 

  • Bhatnagar, M., Cintra, A., Chadi, G., Lindberg, J., Oitzl, M., De Kloet, E. R., Moller, A., Agnati, L. F., and Fuxe, K., 1997, Neurochemical changes in the hippocampus of the brown Norway rat during aging, Neurobiol. Aging 18:319–327.

    Article  PubMed  CAS  Google Scholar 

  • Blake, M. J., Appel, N. M., Joseph, J. A., Stagg, C. A., Anson, M., De Souza, E. B., and Roth, G. S., 1991, Muscarinic acetylcholine receptor subtype mRNA expression and ligand binding in the aged rat forebrain, Neurobiol. Aging 12:193–199.

    Article  PubMed  CAS  Google Scholar 

  • Biggio, G., and Costa, E., 1988, Chloride channels and their modulation by neurotransmitters and drugs, in: Advances in Biochemical Psychopharmacology, Vol. 45, Raven, New York.

    Google Scholar 

  • Birtsch, C., Wevers, A., Traber, J., Maelicke, A., Bloch, W., and Schroder, H., 1997, Expression of α4-1 and α5 nicotinic cholinoceptor mRNA in the aging rat cerebral cortex, Neurobiol. Aging 18:335–342.

    Article  PubMed  CAS  Google Scholar 

  • Brizzee, K. R., Ordy, J. M., and Bartus, R., 1980, Localization of cellular changes within multimodal sensory regions in aged monkey brain: Possible implications for age-related cognitive loss, Neurobiol. Aging 1:45–52.

    Article  PubMed  CAS  Google Scholar 

  • Brody, H., 1955, Organization of cerebral cortex. III. A study of aging in the human cerebral cortex, J. Comp. Neurol. 102:511–556.

    Article  PubMed  CAS  Google Scholar 

  • Collingridge, G. L., and Bliss, T. V. P., 1987, NMDA receptors: their role in long-term potentiation, Trends Neurosci. 10:288–293.

    Article  CAS  Google Scholar 

  • Corda, M. G., Giorgi, O., Longoni, B., Ongini, E., Pesce, G., Cruciani, R., and Biggio, G., 1989, Functional coupling of GABAA receptors and benzodiazepine recognition site subtypes in the spinal cord of the rat, Eur. J. Pharmacol. 169:205–213.

    Article  PubMed  CAS  Google Scholar 

  • Costa, E., and Guidotti, A., 1979, Molecular mechanism in the receptor action of benzodiazepines, Annu. Rev. Pharmacol. Toxicol. 19:531–545.

    Article  PubMed  CAS  Google Scholar 

  • Flood, D. G., and Coleman, P. D., 1988, Neuron numbers and sizes in aging brain: Comparisons of human, monkey, and rodent data, Neurobiol. Aging 9:453–463.

    Article  PubMed  CAS  Google Scholar 

  • Flynn, D. D., and Mash, D. C., 1986, Characterization of L-[3H]nicotine binding in human cerebral cortex: Comparison between Alzheimer’s disease and the normal, J. Neurochem. 47:1948–1954.

    Article  PubMed  CAS  Google Scholar 

  • Gazzaley, A. H., Siegel, S. J., Kordower, J. H., Mufson, E. J., and Morrison, J. H., 1996, Circuit-specific alterations of N-methyl-D-aspartate receptor subunit 1 in the dentate gyrus of aged monkeys, Proc. Natl. Acad. Sci. USA 93:3121–3125.

    Article  PubMed  CAS  Google Scholar 

  • Gazzaley, A. H., Thakker, M. M., Hof, P. R., and Morrison, J. H., 1997, Preserved number of entorhinal cortex layer II neurons in aged macaque monkeys, Neurobiol. Aging 18:549–554.

    Article  PubMed  CAS  Google Scholar 

  • Geinisman, Y., DeToledo-Morrell, L., Morrell, F., Persina, I. S., and Rossi, M., 1992, Age-related loss of axospinous synapses formed by two afferent systems in the rat dentate gyrus as revealed by the unbiased sterological dissector technique, Hippocampus 2:432–444.

    Google Scholar 

  • Gutierrez, A., Khan, Z. U., Morris, S. J., and De Blas, A. L., 1994, Age-related decrease of GABAA receptor subunits and glutamic acid decarboxylase in the rat inferior colliculus, J. Neurosci. 14:7469–7477.

    PubMed  CAS  Google Scholar 

  • Hammer, R., Berrie, C. P., Birdsall, N. J. M., Burgen, A. S. V., and Holme, E. C., 1980, Pirenzepine distinguishes between different subclasses of muscarinic receptors, Nature 283:90–92.

    Article  PubMed  CAS  Google Scholar 

  • Haug, H., 1985, Are neurons of the human cerebral cortex really lost during aging? A morphometric examination, in: Senile Dementia of the Alzheimer Type (J. Traber and W. H. Gispen, eds.), Springer-Verlag, Berlin, pp. 150–163.

    Chapter  Google Scholar 

  • Hyman, B. T., Van Hoesen, G. W., and Damasio, A. R., 1984, Cell-specific pathology isolates the hippocampal formation in Alzheimer’s disease, Science 223:121–122.

    Article  Google Scholar 

  • Keen, M., and MacDermot, J., 1993, Analysis of receptors by radioligand binding, in: Receptor Autoradiography Principles and Practice, (J. Wharton and J. M. Polak, eds.), Oxford University Press, London, pp. 23–55.

    Google Scholar 

  • Joseph, J. A., Cutler, R., and Roth, G. S., 1993, Changes in G protein-mediated signal transduction in aging and Alzheimer’s disease, Ann. NY Acad. Sci. 695:42–45.

    Article  PubMed  CAS  Google Scholar 

  • Kemper, T. L., Moss, M. B., Rosene, D. L., and Killiany, R. J., 1997, Age-related neuronal loss in the nucleus centralis superior of the rhesus monkey, Acta Neuropathol. 94:124–130.

    Article  PubMed  CAS  Google Scholar 

  • Kemper, T. L., 1994, Neuroanatomical and neuropathological changes during aging and dementia, in: Clinical Neurology and Aging (M. L. Albert and J. E. Knoefel, eds.), Oxford University Press, New York, pp. 3–67.

    Google Scholar 

  • Leuba, G., and Kraftsik, R., 1994, Changes in volume, surface estimate, three-dimensional shape and total number of neurons of the human primary visual cortex from midgestation until old age, Anat. Embryol. 190:351–366.

    Article  PubMed  CAS  Google Scholar 

  • Lidow, M. S., Goldman-Rakic, P. S., Gallager, D. W., and Rakic, P., 1989, Quantitative autoradiographic mapping of serotonin 5-HT1 and 5-HT2 receptors and uptake sites in the neocortex of the rhesus monkey, J. Comp. Neurol. 280:27–42.

    Article  PubMed  CAS  Google Scholar 

  • Magnusson, K. R., 1995, Differential effects of aging on binding sites of activated NMDA receptor complex in mice, Mech. Aging Develop. 84:227–243.

    Article  CAS  Google Scholar 

  • Milbrandt, J. C., Albin, R. L., Turgeon, S. M., and Caspary, D. M., 1996, GABAA receptor binding in the aging rat inferior colliculus, Neuroscience 73:449–458.

    Article  PubMed  CAS  Google Scholar 

  • Milbrandt, J. C., Hunter, C., and Caspary, D. M., 1997, Alterations of GABAA receptor subunit mRNA levels in the aging Fischer 344 rat inferior colliculus, J. Comp. Neurol. 379:455–465.

    Article  PubMed  CAS  Google Scholar 

  • Monaghan, D. T., Nguyen, L., and Cotman, C. W., 1986, The distribution of [3H]kainate binding sites in primate hippocampus is similar to the distribution of both Ca2+-sensitive and Ca2 +-insensitive [3H]kainate binding sites in rat hippocampus, Neurochem. Res. 11:1073–1082.

    Article  PubMed  CAS  Google Scholar 

  • Morrison, J. H., and Hof, P. R., 1997, Life and death of neurons in the aging brain, Science 278:412–419.

    Article  PubMed  CAS  Google Scholar 

  • Peters, A., Morrison, J. H., Rosene, D. L., and Hyman, B. T., 1998, Are neurons lost from the cerebral cortex during normal aging? Cereb. Cortex, 8:295–300.

    Article  PubMed  CAS  Google Scholar 

  • Peters, A., Rosene, D. L., Moss, M. B., Kemper, T. L., Abraham, C. R., Tigges, J., and Albert, M. S., 1996, Neurobiological bases of age-related cognitive decline in the rhesus monkey, J. Neuropathol. Exp. Neurol. 55:861–874.

    PubMed  CAS  Google Scholar 

  • Rabow, L. E., Russek, S. J., and Farb, D. H., 1995, From ion currents to genomic analysis: Recent advances in GABAA receptor research, Synapse 21:189–274.

    Article  PubMed  CAS  Google Scholar 

  • Rapp, P. R., and Gallagher, M., 1996, Preserved neuron number in the hippocampus of aged rats with spatial learning deficits, Proc. Natl. Acad Sci. USA 93:9926–9930.

    Article  PubMed  CAS  Google Scholar 

  • Rosene, D. L., 1993, Comparing age-related changes in the basal forebrain and hippocampus of the rhesus monkey, Neurobiol. Aging 14:669–670.

    Article  PubMed  CAS  Google Scholar 

  • Rosenthal, H. E., 1967, A graphic method for the determination and presentation of binding parameters in a complex system, Anal. Biochem. 20:525–532.

    Article  PubMed  CAS  Google Scholar 

  • Ruano, D., Cano, J., Machado, A., and Vitorica, J., 1991, Pharmacological characterization of GABAA/-benzodiazepine receptor in rat hippocampus during aging, J. Pharmacol. Exp. Ther. 256:902–908.

    PubMed  CAS  Google Scholar 

  • Ruano, D., Machado, A., and Vitorica, J., 1993, Absence of modifications of the pharmacological properties of the GABAA receptor complex during aging, as assessed in 3-and 24-month-old rat cerebral cortex, Eur. J. Pharmacol. 246:81–87.

    Article  PubMed  CAS  Google Scholar 

  • Sandberg, K., and J. T. Coyle 1985, Characterization of [3H]hemicholinium-3 binding associated with neuronal choline uptake sites in rat brain membranes, Brain Res. 348:321–330.

    Article  PubMed  CAS  Google Scholar 

  • Selkoe, D. J., Bell, D. S., Podlisny, M. B., Price, D. L., and Cork, L. C., 1987, Conservation of brain amyloid proteins in aged mammals and humans with Alzheimer’s disease, Science 235:873–877.

    Article  PubMed  CAS  Google Scholar 

  • Shimada, A., Mukhin, A., Ingram, D. K., and London, E. D., 1997, N-methyl-D-aspartate receptor binding in brains of rats at different ages, Neurobiol. Aging 18:329–333.

    Article  PubMed  CAS  Google Scholar 

  • Smith, T. D., Gallagher, M., and Leslie, F. M., 1995, Cholinergic binding sites in rat brain: Analysis by age and cognitive status, Neurobiol. Aging 16:161–173.

    Article  PubMed  CAS  Google Scholar 

  • Stroessner-Johnson, H. M., Rapp, P. R., and Amaral, D. G., 1992, Cholinergic cell loss and hypertrophy in the medial septal nucleus of the behaviorally characterized aged rhesus monkey, J. Neurosci. 12:1936–1944.

    PubMed  CAS  Google Scholar 

  • Subramaniam, S., and McGonigle, P., 1991, Quantitative autoradiographic characterization of the binding of (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine ([3H]MK-801) in rat brain: Regional effects of polyamines, J. Pharm. Exp. then 256:811–819.

    CAS  Google Scholar 

  • Tanila, H., Sipila, P., Shapiro, M., and Eichenbaum, H., 1997, Brain Aging: Impaired coding of novel environmental cues, J. Neurosci. 17:5167–5174.

    PubMed  CAS  Google Scholar 

  • Tigges, J., Gordon, T. P., McClure, H. M., Hall, E. C., Peters, A., 1988, Survival rate and life span of rhesus monkeys at the Yerkes Regional Primate Research Center, Am. J. Primatol. 15:263–273.

    Article  Google Scholar 

  • Tigges, J., Herndon, J. G., and Peters, A., 1990, Neuronal population of area 4 during the life span of the rhesus monkey, Neurobiol. Aging 11:201–208.

    Article  PubMed  CAS  Google Scholar 

  • Vannucchi, M. G., and Goldman-Rakic, P. S., 1991, Age-dependent decrease in the affinity of muscarinic M1 receptors in neocortex of rhesus monkeys, Proc. Natl. Acad. Sci. USA 88:11475–11479.

    Article  PubMed  CAS  Google Scholar 

  • Vogt, B. A., and Burns, D. L., 1988, Experimental localization of muscarinic receptor subtypes to cingulate cortical afferents and neurons, J. Neurosci. 8:643–652.

    PubMed  CAS  Google Scholar 

  • Voytko, M. L., Sukhov, R. R., Walker, L. C., Breckler, S. J., Price, D. L., Koliatsos, V. E., 1995, Neuronal number and size are preserved in the nucleus basalis of aged rhesus monkeys, Dementia 6:131–141.

    PubMed  CAS  Google Scholar 

  • Wagster, M. V., Whitehouse, P. J., Walker, L. C., Kellar, K. J., and Price, D. L., 1990, Laminar organization of age-related loss of cholinergic receptors in temporal neocortex of rhesus monkey, J. Neurosci. 51:2879–2885.

    Google Scholar 

  • Wallace, D. C., 1995, Mitochondrial DNA mutations, in: Human Disease and Aging: Molecular Aspects of Aging (K. Esser and G. M. Martin, eds.), Wiley, New York, pp. 163–177.

    Google Scholar 

  • Wang, S.-Z., Shu, S.-Z., Joseph, J. A., and El Fakahany, E. E., 1992, Comparison of the level of mRNA encoding m1 and m2 muscarinic receptors in brains of young and aged arts, Neurosci. Lett. 145:149–152.

    Article  PubMed  CAS  Google Scholar 

  • Wenk, G. L., Pierce, D. J., Struble, R. G., Price, D. L., and Cork, L. C., 1989, Age-related changes in multiple neurotransmitter systems in the monkey brain, Neurobiol. Aging 10:11–19.

    Article  PubMed  CAS  Google Scholar 

  • West, M. J., 1993, New stereological methods for counting neurons, Neurobiol. Aging 14:275–285.

    Article  PubMed  CAS  Google Scholar 

  • Young, S. W., III, and Kuhar, M. J., 1979a, A new method for receptor autoradiography: [3H]opioid receptors in rat brain, Brain Res. 179:255–270.

    Article  PubMed  CAS  Google Scholar 

  • Young, S. W., III, and Kuhar, M. J., 1979b, Autoradiographic localization of benzodiazepine receptors in the brains of humans and animals, Nature 280:393–395.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rosene, D.L., Nicholson, T.J. (1999). Neurotransmitter Receptor Changes in the Hippocampus and Cerebral Cortex in Normal Aging. In: Peters, A., Morrison, J.H. (eds) Cerebral Cortex. Cerebral Cortex, vol 14. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4885-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4885-0_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7216-5

  • Online ISBN: 978-1-4615-4885-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics