Skip to main content

Fabrication and Manipulation

  • Chapter
Near-Field Nano-Optics

Part of the book series: Lasers, Photonics, and Electro-Optics ((LPEO))

  • 468 Accesses

Abstract

Nonlinear optical phenomena can be induced by utilizing the high optical energy density of the evanescent field, which can lead to the processing of nanometric areas of material surfaces, the fabrication of nanometric optical functional devices, and nanometric photolithography. As an example of realizing photonic devices with nanometric dimensions, experiments on high-density optical storage using the I-mode NOM have been carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. J. Mamin, L. S. Fan, S. Hoen, and D. Rugar, Tip-based storage using micromechanical cantilevers, Sensors Actuators A 48: 215–219 (1996).

    Article  Google Scholar 

  2. B. D. Terris, H. J. Mamin, and D. Rugar, Near-field optical data storage, Appl. Phys. Lett. 68: 141–143 (1996).

    Article  Google Scholar 

  3. E. Betzig, J. K. Trautmann, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, and C.-H. Chang, Near-field magneto-optics and high density data storage, Appl. Phys. Lett. 61: 142–144, (1992).

    Article  Google Scholar 

  4. S. Hosaka, T. Shintani, Y. Maruyama, K. Nakamura, A. Kikukawa, and R. Imura, Nanometer recording using a scanning near-field optical microscope with a laser diode, in Proceedings Symposium on Optical Memory 1994—Technical digest, Waseda, Tokyo, 1994, pp. 21–22.

    Google Scholar 

  5. S. Hosaka, T. Shintani, M. Miyamoto, A. Hirotsune, M. Terao, M. Yoshida, K. Fujita, and S. Krammer, Nanometer-sized phase-change recording using a scanning near-field optical microscope with a laser diode, Jpn. J. Appl. Phys. 35: 443–447 (1996).

    Article  Google Scholar 

  6. S. Jiang, J. Ichihashi, H. Monobe, M. Fujihira, and M. Ohtsu, Highly localized photochemical processes in LB films of photochromic material by using a photon scanning tunneling microscope, Opt. Commun. 106: 173–177 (1994).

    Article  Google Scholar 

  7. R. Micheletto, H. Fukuda, and M. Ohtsu, A simple method for the two-dimensional, ordered array of small latex particles, Langmuir 11: 3333–3336 (1995).

    Article  Google Scholar 

  8. W. Tang, V. Temesvary, R. Miller, A. Desai, Y.-C. Tai, and D. K. Miu, Silicon micromachined electromagnetic microactuators for rigid disk drives, IEEE Trans. Magnetics 31: 2964–2966 (1995).

    Article  Google Scholar 

  9. E. L. Raab, M. G. Prentiss, A. E. Cable, S. Chu, and D. E. Pritehard, Trapping of neutral sodium atoms with radiation pressure, Phys. Rev. Lett. 59: 2631–2634 (1987).

    Article  Google Scholar 

  10. M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Observation of Bose-Einstein condensation in a dilute atomic vapor, Science 269: 198–201 (1995).

    Article  Google Scholar 

  11. H. Hori, S. Jiang, M. Ohtsu, and H. Ohsawa, A nanometric-resolution photon scanning tunneling microscope and proposal of single atom manipulation, Technical Digest of the 18th International Quantum Electronics Conference, Vienna, June 1992, pp. 48–49.

    Google Scholar 

  12. J. P. Gordon and A. Ashkin, Motion of atoms in a radiation trap, Phys. Rev. A 21: 1606–1617 (1980).

    Article  Google Scholar 

  13. M. Kozuma, S. Jiang, T. Pangaribuan, M. Ohtsu, and H. Hori, Analysis and experimental evaluation of a localized evanescent field by using Yukawa potential, Tech. Digest Quantum Electron. Laser Sci. 16: 227–228 (1995).

    Google Scholar 

  14. J. P. Dowling and J. Gea-Banacloche, Atomic quantum dots, in Technical Digest of the 19th International Quantum Electronics Conference, Washington D.C., May 1994, pp. 185–186.

    Google Scholar 

  15. V. V. Klimov and V. S. Letokhov, New atom trap configurations in the near field of laser radiation, Opt. Commun. 121: 130–136 (1995).

    Article  Google Scholar 

  16. M. Ohtsu, K. Nakagawa, M. Kourogi, and W. Wang, Frequency control of semiconductor lasers, J. Appl. Phys. 73: R1–R17 (1993).

    Article  Google Scholar 

  17. S. Marksteiner, C. M. Savage, P. Zoller, and S. L. Rolston, Coherent atomic waveguides from hollow optical fibers: Quantized atomic motion, Phys. Rev. A 50: 2680–2690 (1994).

    Article  Google Scholar 

  18. H. Ito, K. Sakaki, T. Nakata, W. Jhe, and M. Ohtsu, Optical potential for atom guidance in a cylindrical-core hollow fiber, Opt. Commun. 115: 57–64 (1995).

    Article  Google Scholar 

  19. W. Jhe, M. Ohtsu, H. Hori, and S. R. Friberg, Atomic waveguide using evanescent waves near optical fibers, Jpn. J. Appl. Phys. 33: L1680–L1682 (1994).

    Article  Google Scholar 

  20. D. J. Harris and C. M. Savage, Atomic gravitational cavities from optical fibers, Phys. Rev. A 51: 3967–3971 (1995).

    Article  Google Scholar 

  21. W. Jhe, QED level shifts of atoms between two mirrors, Phys. Rev. A 43: 5795–5803 (1991).

    Article  Google Scholar 

  22. K. Sangster, E. A. Hinds, S. M. Barnett, and E. Riis, Measurement of the Aharonov-Casher phase in an atomic system, Phys. Rev. Lett. 71: 3641–3644 (1993).

    Article  Google Scholar 

  23. H. Ito, K. Sakaki, T. Nakata, W. Jhe, and M. Ohtsu, Optical guidance of neutral atoms using evanescent waves in a cylindrical-core hollow fiber: Theoretical approach, Ultramicroscopy 61: 91–97 (1995).

    Article  Google Scholar 

  24. D. Marcuse, Theory of Dielectric Optical Waveguides, 2nd ed., Academic Press, New York, 1991.

    Google Scholar 

  25. M. A. Ol’Shanii, Yu. B. Ovchinnikov, and V. S. Lethokov, Laser guiding of atoms in a hollow optical fiber, Opt. Commun. 98: 77–79 (1993).

    Article  Google Scholar 

  26. C. I. Sukenik, M. G. Boshier, D. Cho, V. Sandoghdar, and E. A. Hinds, Measurement of the Casimir-Polder force, Phys. Rev. Lett. 70: 560–563 (1993).

    Article  Google Scholar 

  27. W. Jhe and J. W. Kim, Atomic energy-level shifts near a dielectric microsphere, Phys. Rev. A 51: 1150–1153 (1995).

    Article  Google Scholar 

  28. E. Merzbacher, Quantum Mechanics, 2nd. ed., Wiley, New York, 1970.

    Google Scholar 

  29. [ntSpecial issue, Appl. Phys. B 54(5) (1992).

    Google Scholar 

  30. M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, Laser-guided atoms in hollow-core optical fibers, Phys. Rev. Lett. 75: 3253–3256 (1995).

    Article  Google Scholar 

  31. H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers, Phys. Rev. Lett. 76: 4500–4503 (1996).

    Article  Google Scholar 

  32. T. P. Dinneen, C. D. Wallace, K.-Y. N. Tan, and P. L. Gould, Use of trapped atoms to measure absolute photoionization cross sections, Opt. Lett. 17: 1706–1708 (1992).

    Article  Google Scholar 

  33. V. S. Letokhov, Laser Photoionization Spectroscopy, Academic Press, New York, 1987.

    Google Scholar 

  34. N. F. Ramsey, Molecular Beams, Oxford University Press, Oxford, 1956.

    Google Scholar 

  35. H. Ito, T. Nakata, K. Sakaki, W. Jhe, and M. Ohtsu, Spectroscopy of atoms guided by evanescent waves in cylindrical-core hollow fibers in Technical Digest, Workshop on Atom Optics and Atom Interferometry, Cairns, Australia, July 1996, paper PW1.

    Google Scholar 

  36. R. W. McGowan, D. M. Giltner, and S. A. Lee, Light force cooling, focusing and nanometer-scale deposition of aluminum atoms, Opt. Lett. 20: 2535–2537 (1995).

    Article  Google Scholar 

  37. H. Ito, K. Sakaki, T. Nakata, W. Jhe, and M. Ohtsu, Atomic funnel with evanescent waves, in Technical Digest, Quantum Electronics and Laser Science Conference, Anaheim, 1996, pp. 91–92.

    Google Scholar 

  38. H. S. Lee, B. W. Stewart, K. Choi, and H. Fenichel, Holographic nondiverging hollow beam, Phys. Rev. A 49: 4922–4927 (1994).

    Article  Google Scholar 

  39. S. Friebel, R. Deutschmann, M. Schffer, G. Wokurka, and W. Ertmer, Transverse confinement of atoms in a gravitational cavity by a doughnut beam, in Technical Digest, Quantum Electronics and Laser Science Conference, Baltimore, 1995, p. 196.

    Google Scholar 

  40. J. Soding, R. Grimm, and Yu. B. Ovchinnikov, Gravitational laser trap for atoms with evanescentwave cooling, Opt. Commun. 119: 652–662 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ohtsu, M., Hori, H. (1999). Fabrication and Manipulation. In: Near-Field Nano-Optics. Lasers, Photonics, and Electro-Optics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4835-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4835-5_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7192-2

  • Online ISBN: 978-1-4615-4835-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics