Skip to main content

Fabrication of Probes

  • Chapter

Part of the book series: Lasers, Photonics, and Electro-Optics ((LPEO))

Abstract

As described in Section 3.1, the probe is the most essential component governing the performance of the NOM. Since the size of the probe tip is of the order of nanometers, special advanced fabrication processes have had to be developed. Fabrication methods such as pulling heated glass capillaries [1] and sharpening quartz rods or optical fibers by chemical etching have been used [2, 3]. However, neither sufficiently high reproducibility nor an apex diameter small enough for resolving the nanometric-scale structure of samples has been obtained. Further, tailoring the profile of the probe for higher transmission efficiency is not possible. To solve these problems, a selective etching method widely used in semiconductor very large-scale integrated chip fabrication has been applied to sharpen a single-mode fiber using buffered hydrofluoric (HF) acid as an etching agent [4]. Sections 4.1 and 4.2 describe the processes of sharpening the fiber and coating a metallic film to fabricate a protruded probe, respectively. Section 4.3 reviews the fabrication and performance of other novel fiber probes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Liberman, S. Harush, A. Lewis, and R. Kopelman, A light source smaller than the optical wavelength, Science, 247: 59–61 (1990).

    Article  Google Scholar 

  2. D. W. Pohl, W. Denk, and M. Lanz, Optical stethoscopy: Image recording with resolution λ/20, Appl. Phys. Lett. 44: 651–653 (1984).

    Article  Google Scholar 

  3. H. Pagnia, J. Radojewski, and N. Sotnik, Operation conditions of an optical STM, Optik 86: 87–90 (1990).

    Google Scholar 

  4. T. Pangaribuan, K. Yamada, S. Jiang, H. Ohsawa, and M. Ohtsu, Reproducible fabrication technique of nanometric tip diameter fiber probe for photon scanning tunneling microscope, Jpn. J. Appl Phys. 31: L1302–L1304 (1992).

    Article  Google Scholar 

  5. D. T. Burns, A. Townshend, and A. G. Catchpole, Inorganic Reaction Chemistry: Systematic Chemical Separation, Ellis Horwood, West Sussex, England, 1980.

    Google Scholar 

  6. F. L. Galeener, Planar rings in vitreous silica, J. Non-Crystalline Solids 49: 53–62 (1982).

    Article  Google Scholar 

  7. M. Kawachi, T. Edahiro, and H. Toba, Microlens formation on VAD single-mode fiber ends, Electron. Lett. 17: 71–72 (1982).

    Article  Google Scholar 

  8. T. Pangaribuan, S. Jiang, and M. Ohtsu, Two-step etching method for fabrication of fibre probe for photon scanning tunneling microscope, Electron. Lett. 29: 1978–1979 (1993).

    Article  Google Scholar 

  9. S. Mononobe and M. Ohtsu, Fabrication of a pencil-shaped fiber probe for near-filed optics by selective chemical etching, J. Lightwave Technol. 14: 2231–2235 (1996).

    Article  Google Scholar 

  10. K. M. Takahashi, Meniscus shapes on small diameter fibers, J. Colloid Interface Sci. 134: 181–187 (1990).

    Article  Google Scholar 

  11. P. Tomanek, Fiber tips for reflection scanning near-field optical microscopy, in Near Field Optics, D. W. Pohl and D. Courjon, eds., Kluwer, Dordrecht, 1993, pp. 295–302.

    Chapter  Google Scholar 

  12. E. Betzig, A. Lewis, A. Harootunian, M. Issacson, and E. Kratschmer, Near-field scanning optical microscopy(NSOM); development and biological applications, Biophys. J. 49: 269–279 (1986).

    Article  Google Scholar 

  13. R. Uma Maheswari, S. Mononobe, and M. Ohtsu, Control of apex shape of the fiber probe employed in photon scanning tunneling microscope by a multi-step etching method, J. Lightwave Technol. 13: 2308–2313 (1995).

    Article  Google Scholar 

  14. A. S. Tenney and M. Ghezzo, Etch rates of doped oxides in solutions of buffered HF, J. Electrochem Sci. 120: 1091–1095 (1973).

    Article  Google Scholar 

  15. J. S. Judge, A study of the dissolution of SiO2 in acidic fluoride solutions, J. Electrochem. Soc. 118: 1772–1775 (1971).

    Article  Google Scholar 

  16. G. A. C. M. Spiering, Wet chemical etching of silicate glasses in hydrofluoric acid based solutions, J. Mat. Sci. 28: 6261–6273 (1993).

    Article  Google Scholar 

  17. H. Kikuyama, M. Waki, M. Miyashita, T. Yabune, N. Miki, J. Takano, and T. Ohmi, A study of the dissolution state and the SiO2 etching reaction for HF solutions of extremely low concentration, J. Electrochem. Soc. 141: 366–374 (1994).

    Article  Google Scholar 

  18. S. Verhaverbeke, I. Teerlinck, C. Vinckier, G. Steven, R. Cartuyvels, and H. M. Heyns, The etching mechanisms of SiO2 in hydrofluoric acid, J. Electrochem. Soc. 141: 2852–2857 (1994).

    Article  Google Scholar 

  19. S. Iijima and T. Ichihashi, Structural instability of ultrafine particles of metals, Phys. Rev. Lett. 56: 616–619 (1986).

    Article  Google Scholar 

  20. T. Saiki, S. Mononobe, and M. Ohtsu, Tailoring of a high-transmission fiber probe for photon scanning tunneling microscope, Appl. Phys. Lett. 68: 2612–2614 (1996).

    Article  Google Scholar 

  21. E. L. Buckland, P. J. Moyer, and M. A. Paesler, Resolution in collection-mode scanning optical microscopy, J. Appl. Phys. 73: 1018–1028 (1993).

    Article  Google Scholar 

  22. G. A. Valaskovic, M. Holton, and G. H. Morrison, Parameter control, characterization, and optimization in the fabrication of optical fiber near-field optics, Appl. Opt. 34: 1215–1228 ( 1995).

    Google Scholar 

  23. S. Mononobe, M. Naya, T. Saiki, and M. Ohtsu, Reproducible fabrication of a fiber probe with a nanometric protrusion for near-field optics, Appl. Opt. 36: 1496–1500 (1997).

    Article  Google Scholar 

  24. T. Matsumoto and M. Ohtsu, Fabrication of a fiber probe with a nanometric protrusion for near-field optical microscopy by a novel technique of three-dimensional nanophotolithography, J. Lightwave Technol. 14: 2224–2230 (1996).

    Article  Google Scholar 

  25. R. Kopelman, W. Tan, Z.-Y. Shi, and D. Birnbaum, Near field optical and excition imaging, spectroscopy and chemical sensors, in Near Field Optics, D. W. Pohl and D. Courjon, eds., Kluwer, Dordrecht, 1993, pp. 17–24.

    Chapter  Google Scholar 

  26. H.-U. Danzebrink and U. C. Fisher, The concept of an optoelectronic probe for near field microscopy, in Near Field Optics, D. W. Pohl and D. Courjon, eds., Kluwer, Dordrecht, 1993, pp. 303–308.

    Chapter  Google Scholar 

  27. W. Tan, Z.-Y. Shi, and R. Kopelman, Development of submicron chemical fiber optic sensors, Anal. Chem. 64: 2985–2990 (1992).

    Article  Google Scholar 

  28. K. Kurihara, K. Watanabe, and M. Ohtsu, Photon scanning tunneling microscopy with light-emitting probes, in Conference Proceedings of the Eleventh International Conference on Optical Fiber Sensors, Sapporo, Japan, May 1996, pp. 694–697.

    Google Scholar 

  29. D. Meschede, W. Jhe, and E. A. Hinds, Radiative properties of atoms near a conducting plane: An old problem in a new light, Phys. Rev. A 41: 1587–1596 (1990).

    Article  Google Scholar 

  30. S. Kawata, Y. Inoue, and T. Sugiura, Near-field scanning optical microscope with a laser trapped probe, Jpn. J. Appl. Phys. 33: L1724–L1727 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ohtsu, M., Hori, H. (1999). Fabrication of Probes. In: Near-Field Nano-Optics. Lasers, Photonics, and Electro-Optics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4835-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4835-5_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7192-2

  • Online ISBN: 978-1-4615-4835-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics