Skip to main content

Chelate Sensor Method for Mercury

  • Chapter

Abstract

Our chelate sensor method for detecting mercury is based on the high affinity of thiol-containing ligands for the mercuric ion. The method combines the simple ELISA-format with the selective complexation of mercuric ions by dithiocarbamate chelators. The first assay uses a sandwich chelate formed by a ligand immobilized on the well of an ELISA plate, mercuric ion of the analyzed sample, and another ligand bound to the reporter enzyme. Our second assay utilizes competition between the binding of mercuric ions and an organomercury-conjugate to a chelating conjugate. Specifically, it involves a chelator doped on the solid surface and a mercury-containing enzyme-tracer. Both assays were further characterized by testing them under several conditions that might be encountered during some practical applications of the assay. Finally, they were tested with river water and human saliva to yield a good correlation with spike levels.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bloom, N. S.; Crecelius, E. A. (1983). Determination of mercury in seawater at subnannogram per liter levels. Mar. Chem. 14, 49–59.

    Article  CAS  Google Scholar 

  • Bloom, N. S.; Fitzgerald, W. F. (1988). Determination of volatile mercury species at the picogram level by lowtemperature gas chromatography with cold vapor atomic fluorescence detection. Analitica Chimica Acta, 208, 151–161.

    Article  CAS  Google Scholar 

  • Bond, A. M.; Scholz, F. (1991). Calculation of thermodynamic data from voltammetry of solid lead and mercury dithiocarbamate complexes mechanically attached to a graphite electrode. J. Phys. Chem., 95, 7460–7465.

    Article  CAS  Google Scholar 

  • Dumarey, R.; Temmerman, E.; Dams, T.; Hoste, J. (1985). The accuracy of vapor injection calibration method for determination of mercury by amalgamation/cold vapor atomic fluorescence spectrometry. Analytica Chimica Acta, 170, 337–340.

    Article  CAS  Google Scholar 

  • Falnoga, I.; Mrhar, A.; Karba, R.; Stegnar, P.; Skreblin, M.; Tusek-Znidaric, M. (1994). Mercury toxicokinetics in wistar rats exposed to elemental mercury vapour-modeling and computer simulation. Arch. Toxicol., 68, 406–415.

    Article  PubMed  CAS  Google Scholar 

  • Gee, S.J.; Miyamoto, T.; Goodrow, M. H.; Buster, D.; Hammock, B. D. (1988). Development of an enzymelinked immunosorbent assay for the analysis of the thiocarbamate herbicide molinate. J. Agric. Food Chem. 36, 836–870.

    Article  Google Scholar 

  • Gill, G. A.; Bruland, K. W. (1990). Mercury Speciation in surface freshwater systems in California and other areas. Env. Sci. Tech. 24, 1892–1400.

    Google Scholar 

  • Gill, G. A.; Fitzgerald, W. F. (1987). Picomolar mercury measurements in seawater and other materials using stannous chloride reduction and two stage-gold amalgamation with gas phase detection. Mar. Chem., 20, 227–243.

    Article  CAS  Google Scholar 

  • Guo, T.; Baasner, J.; Gradl, M.; Kistner, A. (1996). Determination of mercury in saliva with a flow-injection system. Anal. Chim. Acta 320, 171–176.

    Article  CAS  Google Scholar 

  • Gustin, M. S.; Taylor, G. E.; Leonard, T. L. (1994). High levels of mercury contamination in multiple media of the Carson River Drainage Basin of Nevada — Implications for risk assessment. Env. Health Persp., 102, 772–779.

    Article  CAS  Google Scholar 

  • Hammock, B. D.; Szurdoki, F.; Kido, H. (1995). Enzyme amplified, complex linked, competitive and non-competitive assays for the detection of metal ions. U.S. Patent, 5, 459, 040.

    Google Scholar 

  • Hultman, P.; Johansson, U.; Turley, S.J.; Lindh, U.; Eneström, S.; Pollard, K. M. (1994). Adverse immunological effects and autoimmunity induced by dental amalgam and allow in mice. FASEB J., 8, 1183–1190.

    PubMed  CAS  Google Scholar 

  • Janjic, J.; Kiurski, J. (1994). Non-flame atomic fluorescence as a method for mercury traces determination. Wat. Res., 28, 233–235.

    Article  CAS  Google Scholar 

  • Keeler, G.; Glinsorn, G.; Pirrone, N. (1995). Particulate mercury in the atmosphere: Its significance, transport, transformation, and sources. Water Air Soil Poll., 80, 159–168.

    Article  CAS  Google Scholar 

  • Klaassen C. S.; Amdur, M. O.; Doull, J. Eds. (1986). Casarett and Doull’ Toxicology. The Basic Science of Poisons. 3rd ed.; Macmillan Publishing Co.: New York, NY.

    Google Scholar 

  • Lansens, P.; Meuleman, C; Baeyens, W. (1990). Long-term stability of methylmercury standard solutions in distilled, deionized water. Anal. Chim. Acta, 229, 281–285.

    Article  CAS  Google Scholar 

  • Lau, O.-W.; Ho, S.-Y. (1993). Simultaneous determination of traces of iron, cobalt, nickel, copper, mercury and lead in water by energy-dispersive X-ray fluorescence spectrometry after preconcentration as their piperazino-l, 4-bis(dithiocarbamate) complexes. Anal. Chim. Acta, 280, 269–277.

    Article  CAS  Google Scholar 

  • Lind, B.; Body, R.; Friberg, L. (1993). Mercury speciation in blood and brain tissue from monkeys-interlabora-tory comparison of Magos method with other spectroscopic methods, using alkylation and gas chromatography separation as well as RNAA in combination with Westoo’ extraction methods. Fresenius J. Anal. Chem., 345, 314–317.

    Article  CAS  Google Scholar 

  • Miller, J. R.; Rowland, J.; Lechler, P. J.; Desilets, M.; Hsu, L. (1996). Dispersal of mercury contaminated sediments by geomorphic processes, Sixmile Canyon, Nevada, USA: Implications to site characterization and remediation of fluvial environments. Water Air Soil Poll., 86, 373–388.

    Article  CAS  Google Scholar 

  • Rodbard, D. (1981). In Ligand Assay; Langan, J.; Clapp, J. J., Eds.. Masson Publishing: New York; 45–99.

    Google Scholar 

  • Skerfving, S. (1991). In Advances in Mercury Toxicology; Suzuki, T.; Imura, N.; Clarkson, T. W., Eds.; Rochester Series on Environmental Toxicology; Plenum Press: New York, NY; 411–425.

    Google Scholar 

  • Suzuki, T.; Imura, N.; Clarkson, T. W., Eds. (1991). Advances in Mercury Toxicology; Rochester Series on Environmental Toxicology; Plenum Press: New York, NY.

    Google Scholar 

  • Szurdoki, F.; Kido, H.; Hammock, B. D. (1995). Development of rapid mercury assays. Synthesis of sulfur-and mercury-containing conjugates. Bioconjugate Chem., 6, 145–149.

    Article  CAS  Google Scholar 

  • Valentine, W. M.; Amarnath, V.; Graham, D. G.; Anthony, D. C. (1992). Covalent cross-linking of proteins by carbon disulfide. Chem. Res. Toxicol., 5, 254–262.

    Article  PubMed  CAS  Google Scholar 

  • Voller, A.; Bidwell, D. E.; Bartlett, A. (1976). Enzyme Immunoassays in Diagnostic Medicine: theory and practice. Bull. W.H.O., 53, 55–64.

    PubMed  CAS  Google Scholar 

  • Wylie, D. E.; Lu, D.; Carlson, L. D.; Carlson, R.; Babacan, K. F.; Schuster, S. M.; Wagner, F. W. (1992). Monoclonal antibodies specific for mercuric ions. Proc. Natl. Acad. Sci. USA, 89, 4104–4108.

    Article  PubMed  CAS  Google Scholar 

  • Zalups, R. K; Lash, L. H. (1994). Advances in understanding the renal transport and toxicity of mercury. J. Toxicol. Environ. Health, 42, 1–44.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kido, H., Szurdoki, F., Gustin, M.S., Hammock, B.D. (1999). Chelate Sensor Method for Mercury. In: Sarkar, B. (eds) Metals and Genetics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4723-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4723-5_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7140-3

  • Online ISBN: 978-1-4615-4723-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics