Skip to main content

Abstract

A large fraction of gases dissolved in surface and groundwater, mainly N2, O2 and the noble gases He, Ne, Ar, Kr and Xe, originate from the atmosphere. Whenever water comes into contact with the atmosphere, or other phases such as natural gas, oil and solid organic matter, gases are exchanged and gas concentrations of the individual phases record some characteristics of these processes. Even in the absence of a separate gas phase, dissolved gas concentrations in a water parcel may change as a result of molecular diffusion, and mixing on a variety of space and time scales. However, in many cases the impacts of most of these processes on the dissolved gas concentrations are small and the dominating processes may be reconstructed from the measured concentrations of the dissolved gases. This chapter deals with atmospheric noble gases dissolved in groundwater, which reliably record information on certain physical processes due to the lack of chemical reactions which affect them. As has been shown in studies performed over the past 40 years, atmospheric noble gases dissolved in groundwater yield valuable information on palaeoclimate, in particular temperature at the time of recharge, dynamics of groundwater flow, and denitrification and oxygen consumption rates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aeschbach-Hertig W., Peeters F., Beyerle U. and Kipfer R. (1999) Interpretation of dissolved atmospheric noble gases in natural waters. Water Resour. Res., in press.

    Google Scholar 

  • Amundson R.G. and Davidson E.A. (1990) Carbon dioxide and nitrogenous gases in the soil atmosphere. J. Geochem. Explor. 28, 13–41.

    Article  Google Scholar 

  • Andrews J.N. and Lee D.J. (1979) Inert gases in groundwater from the Bunter Sandstone of England as indicators of age and palaeoclimatic trends. J. Hydrol. 41, 233–252.

    Article  CAS  Google Scholar 

  • Andrews J.N. (1992) Mechanisms for noble gas dissolution by groundwaters. Isotopes of Noble Gases as Tracers in Environmental Studies, pp.87–110. IAEA, Vienna.

    Google Scholar 

  • Andrews J.N., Fontes J.C., Aranyossy J.F., Dodo A., Edmunds W.M., Joseph A. and Travi Y. (1994) The evolution of alkaline groundwaters in the continental intercalaire aquifer of the Irhazer Plain, Niger. Water Resour. Res. 30, 45–61.

    Article  CAS  Google Scholar 

  • Ballentine C.J. and Hall C.M. (1999) Determining palaeotemperature and other variables using noble gas concentrations in water. Geochim. Cosmochim. Acta, in press.

    Google Scholar 

  • Bath A.H., Edmunds W.M. and Andrews J.N. (1978) Palaeoclimatic trends deduced from the hydrochemistry of a Triassic sandstone aquifer, United Kingdom. Isotope Hydrology, Vol. 2, pp.545–566. IAEA, Vienna.

    Google Scholar 

  • Battino R. and Clever H.L. (1979a) Helium, Neon-Gas Solubilities. Solubility Data Series, International Union of Pure and Applied Chemistry. Pergamon Press, Oxford.

    Google Scholar 

  • Battino R. and Clever H.L. (1979b) Argon-Gas Solubilities. Solubility Data Series, International Union of Pure and Applied Chemistry. Pergamon Press, Oxford.

    Google Scholar 

  • Bear J. and Verruijt A. (1987) Modeling Groundwater Flow and Pollution. D. Reidel, Dordrecht, 414 pp.

    Book  Google Scholar 

  • Benson B.B. and Krause D. Jr. (1976) Empirical laws for dilute aqueous solutions of nonpolar gases. J. Chem. Phys. 64, 689–709.

    Article  CAS  Google Scholar 

  • Bentley H.W., Phillips F.M. and Davis S.N. (1986) Chlorine-36 in the terrestrial environment. In Handbook of Environmental Isotope Geochemistry, Vol. 2, eds. P. Fritz and J.-C. Fontes, pp.427–480. Elsevier, Amsterdam.

    Google Scholar 

  • Beyerle U., Purtschert R., Aeschbach-Hertig W., Imboden D.M., Loosli H.H., Wieler R. and Kipfer R. (1998) Climate and groundwater recharge during the last glaciation in an icecovered region. Science 282, 731–734.

    Article  CAS  Google Scholar 

  • Blavoux B., Dray M., Fehri A., Olive P., Groening M., Sonntag C., Hauquin J.P., Pelissier G. and Pouchan P. (1993) Palaeoclimatic and hydrodynamic approach to the Aquitaine Basin deep aquifer (France) by means of environmental isotopes and noble gases. Isotope Techniques in the Study of Past and Current Environmental Changes in the Hydrosphere and the Atmosphere, pp.293–305. IAEA, Vienna.

    Google Scholar 

  • Blicher-Mathiesen G., McCarty G.W. and Nielson L.P. (1998) Denitrification and degassing in groundwater estimated from dissolved dinitrogen and argon. J. Hydrol. 208, 16–24.

    Article  CAS  Google Scholar 

  • Bosch A. and Mazor E. (1988) Natural gas association with water and oil as depicted by atmospheric noble gases: case studies from the southeastern Mediterranean Coastal Plain. Earth Planet. Sci. Lett. 87, 338–346.

    Article  CAS  Google Scholar 

  • Brook G.A., Folkoff M.E. and Box E.O. (1983) A world model of soil carbon dioxide. Earth Surf. Process. Landforms 8, 79–88.

    Article  CAS  Google Scholar 

  • Clark J.F., Stute M., Schlosser P., Drenkard S. and Bonani G. (1997) An isotope study of the Floridan Aquifer in southeastern Georgia: implications for groundwater flow and palaeoclimate. Water Resour. Res. 33, 281–290.

    Article  CAS  Google Scholar 

  • Clark J.F., Davisson M.L., Hudson G.B. and Macfarlane P.A. (1998) Noble gases, stable isotopes, and radiocarbon as tracers of flow in the Dakota Aquifer, Colorado and Kansas. J. Hydrol. 211, 151–167.

    Article  CAS  Google Scholar 

  • Clever H.L. ed. (1979) Krypton, Xenon and Radon-Gas Solubilities, Solubility Data Series, Vol. 2, International Union of Pure and Applied Chemistry. Pergamon Press, Oxford.

    Google Scholar 

  • Crank J. (1980) The Mathematics of Diffusion. Oxford University Press, New York, 424 pp.

    Google Scholar 

  • Davidson M.R. and Airey P.L. (1982) The effect of dispersion on the establishment of a palaeoclimatic record from groundwater. J. Hydrol., 58, 131–147.

    Article  Google Scholar 

  • Deák J., Stute M., Rudolph J. and Sonntag C. (1987) Determination of the flow regime of Quaternary and Pliocene layers in the Great Hungarian Plain (Hungary) by D, 18O, 14C, and noble gas measurements. Isotope Techniques in Water Resources Development, pp.335–350. IAEA, Vienna.

    Google Scholar 

  • Dennis F., Andrews J.N., Parker A., Poole J. and Wolf M. (1997) Isotopic and noble gas study of chalk groundwater in the London Basin, England. Appl. Geochem. 12, 763–773.

    Article  CAS  Google Scholar 

  • Domenico P.A. and Schwartz F.W. (1990) Physical and Chemical Hydrogeology. John Wiley and Sons, New York, 824 pp.

    Google Scholar 

  • Edmunds W.M., Fellman E., Baba Goni I., McNeill G.W. and Harkness D.D. (1998) Groundwater, palaeoclimate and palaeorecharge in the southwest Chad Basin, Borno State, Nigeria. Isotope Techniques in Studying Past and Ccurrent Environmental Changes in the Hydrosphere and Atmosphere, pp.693–707. IAEA, Vienna.

    Google Scholar 

  • Fairbanks R.G. (1989) A 17 000-year glacio-eustatic sea level record; influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342, 637–642.

    Article  Google Scholar 

  • Fairbanks R.G. and Matthews R.K. (1978) The marine oxygen isotope record in Pleistocene coral, Barbados, West Indies. Quat. Res. 10, 181–196.

    Article  CAS  Google Scholar 

  • Fontes J.-C. and Gamier J.M. (1979) Determination of the initial !4C activity of the total dissolved carbon—a review of the existing models and a new approach. Water Resour. Res. 15, 399–413.

    Article  Google Scholar 

  • Fontes J.-C, Andrews J.N., Edmunds W.M., Guerre A. and Travi Y. (1991) Palaeorecharge by the Niger River (Mali) deduced from groundwater geochemistry. Water Resour. Res. 27, 199–214.

    Article  CAS  Google Scholar 

  • Franson M.A.H. (1992) Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington, DC.

    Google Scholar 

  • Freeze R.A. and Cherry J.A. (1979) Groundwater. Prentice-Hall, Englewood Cliffs, 604 pp.

    Google Scholar 

  • Fuchs G., Roether W. and Schlosser P. (1987) Excess 3He in the ocean surface layer. J. Geophys. Res. 92(C6), 6559–6568.

    Article  CAS  Google Scholar 

  • Grootes P.M., Stuiver M., White J.W.C., Johnsen S. and Jouzel J. (1993) Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature 366, 552–554.

    Article  CAS  Google Scholar 

  • Heaton T.H.E. (1981) Dissolved gases: some applications to groundwater research. Trans. Geol. Soc. S. Afr. 84, 91–97.

    Google Scholar 

  • Heaton T.H.E. and Vogel J.C. (1981) ‘Excess air’in groundwater. J. Hydrol. 50, 201–216.

    Article  CAS  Google Scholar 

  • Heaton T.H.E., Talma A.S. and Vogel J.C., (1983) Origin and history of nitrate in confined groundwater in the Western Kalahari. J. Hydrol. 62, 243–262.

    Article  CAS  Google Scholar 

  • Heaton T.H.E., Talma A.S. and Vogel J.C. (1986) Dissolved gas palaeotemperatures and 18O variations derived from groundwater near Uitenhage, South Africa. Quat. Res. 25, 79–88.

    Article  CAS  Google Scholar 

  • Heaton T.H.E. (1984) Rates and sources of 4He accumulation in groundwater. Hydrol. Sci. J. 29, 29–47.

    Article  CAS  Google Scholar 

  • Herzberg O. and Mazor E. (1979) Hydrological applications of noble gases and temperatures measurements in underground water systems: examples from Israel. J. Hydrol. 41, 217–231.

    Article  CAS  Google Scholar 

  • Hofer M. and Imboden D.M. (1998) Simultaneous determination of CFC-11, CFC-12, N2, and Ar in water. Anal. Chem. 70, 724–729.

    Article  CAS  Google Scholar 

  • Jähne B., Heinz G. and Dietrich W. (1987) Measurements of the diffusion coefficients of sparingly soluble gases in water. J. Geophys. Res. 92(C10), 10767–10776.

    Article  Google Scholar 

  • Jenkins W.J. and Clarke W.B. (1976) The distribution of 3He in the western Atlantic Ocean. Deep Sea Res. 23, 481–494.

    CAS  Google Scholar 

  • Kappelmeyer O. (1968) Beiträge zur Erschliessung von Thermalwässern und natürlichen Dampfvorkommen. Ceol. Jahrbuch 85, 708–808.

    Google Scholar 

  • Levich V.G. (1962) Physicochemical Hydromechanics. Prentice Hall, Englewood Cliffs, 700 pp.

    Google Scholar 

  • Lide D.R. ed. (1994) Handbook of Chemistry and Physics. CRC Press, Boca Raton.

    Google Scholar 

  • Lehmann B.E., Oeschger H., Loosli H.H., Hurst G.S., Allman S.L., Chen C.H., Kramer S.D., Payne M.G., Phillips R.C., Willis R.D. and Thonnard N. (1985) Counting 81Kr atoms for analysis of groundwater. J. Geophys. Res. 90(B13), 11547–11551.

    Article  CAS  Google Scholar 

  • Lehmann B.E., Davis S.N. and Fabryka-Martin J.T. (1993) Atmospheric and subsurface sources of stable and radioactive nuclides used for groundwater dating. Water Resour. Res. 29, 2027–2040.

    Article  CAS  Google Scholar 

  • Mazor E. (1972) Palaeotemperatures and other hydrological parameters deduced from noble gases dissolved in groundwaters, Jordan Rift Valley Israel. Geochim. Cosmochim. Acta 36, 1321–1336.

    Article  CAS  Google Scholar 

  • Mazor E. (1997) Chemical and Isotopic Groundwater Hydrology; the Applied Approach. Marcel Dekker, New York, 413 pp.

    Google Scholar 

  • Meese D., Alley R., Gow T., Grootes P.M., Mayewski P., Ram M., Taylor K., Waddington E. and Zielinski G. (1994) Preliminary depth-age scale of the GISP2 ice core. CRREL Special Report 94-1.

    Google Scholar 

  • Oana S. (1957) Bestimmung des Argons im besonderen Hinblick auf gelöste Gases in natürlichen Wässern. J. Earth Sci. (Nagoya Univ.) 5, 103–124.

    CAS  Google Scholar 

  • Ozima M. and Podosek F.A. (1983) Noble Gas Geochemistry. Cambridge University Press, Cambridge, 367 pp.

    Google Scholar 

  • Pearson Jr. F.J. Fisher D.W. and Plummer L.N. (1978) Correction of ground-water chemistry and carbon isotopic composition for effects of CO2 outgassing. Geochim. Cosmochim. Acta 42, 1799–1807.

    Article  CAS  Google Scholar 

  • Pearson Jr. F.J. and White D.E. (1967) Carbon-14 ages and flow rates of water in the Carrizo Sand, Atascosa County, Texas. Water Resour. Res. 3, 251–261.

    Article  CAS  Google Scholar 

  • Phillips F.M. (1981) Noble gases in ground water as palaeoclimatic indicators. Unpubl. PhD thesis, University of Arizona.

    Google Scholar 

  • Phillips F.M., Tansey M.K. and Peeters L.A. (1989) An isotopic investigation of groundwater in the central San Juan Basin, New Mexico: carbon 14 dating as a basis for numerical flow modeling. Water Resour. Res. 25, 2259–2273.

    Article  CAS  Google Scholar 

  • Plummer L.N., Prestemon E.C. and Parkhurst D.L. (1991) An interactive code (NETPATH) for modeling net geochemical reactions along a flow path. U.S. Geological Survey, Water-Resources Investigation Report 91-4078.

    Google Scholar 

  • Poole J.C., McNeill G.W., Langman S.R. and Dennis F. (1997) Analysis of noble gases in water using a quadrupole mass spectrometer in static mode. Appl. Geochem. 12, 707–714.

    Article  CAS  Google Scholar 

  • Rind D. (1987) Components of the ice age circulation. J. Geophys. Res. — Atmos. 92, 4241–4281.

    Article  Google Scholar 

  • Rudolph J. (1981) Edelgastemperaturen und Heliumalter 14C-datierter Paläowässer. Unpubl. thesis, University of Heidelberg.

    Google Scholar 

  • Rudolph J., Rath H.K. and Sonntag C. (1984) Noble gases and stable isotopes in 14C-dated palaeowaters from central Europe and the Sahara. Isotope Hydrology, pp.467–477. IAEA, Vienna.

    Google Scholar 

  • Schachtschabel P., Blume H.P., Hartge K.H. and Schwertmann U. (1982) Lehrbuch der Bodenkunde, Enke, Stuttgart.

    Google Scholar 

  • Severinghaus J.P., Bender M.L., Keeling R.F. and Broecker W.S. (1996) Fractionation of soil gases by diffusion of water vapor, gravitational settling, and thermal diffusion. Geochim. Cosmoschim. Acta 60, 1005–1018.

    Article  CAS  Google Scholar 

  • Smith G.D., Newhall F., Robinson L.H. and Swanson D. (1964) Soil temperature regimestheir characteristics and predictability. US Department of Agriculture, Soil Conservation Service. Rep. SCS-TP-144.

    Google Scholar 

  • Smith S.P. and Kennedy B.M. (1983) The solubility of noble gases in water and in NaCl brine. Geochim. Cosmochim. Acta 47, 503–515.

    Article  CAS  Google Scholar 

  • Sowers T., Bender M., Labeyrie L., Martinson D., Jouzel J., Raynaud D., Pichon J.J. and Korotkevich Y. (1993) 135 000 Year Vostok-SPECMAP common temporal framework. Palaeoceanography 8, 737–766.

    Article  Google Scholar 

  • Stuiver M., Grootes P.M. and Braziunas T.F. (1995) The GISP2 δ18O climate record of the past 16,500 years and the role of the sun, ocean, and volcanoes. Quat. Res. 44, 341–354.

    Article  CAS  Google Scholar 

  • Stute M. (1989) Edelgase im Grundwasser-Bestimmung von Paläotemperaturen und Untersuchung der Dynamik von Grundwasserfließsystemen. Unpubl. PhD thesis, University of Heidelberg.

    Google Scholar 

  • Stute M. and Deák J. (1989) Environmental isotope study (14C, 13C, 18O, D, noble gases) on deep groundwater circulation systems in Hungary with reference to palaeoclimate. Radiocarbon 31, 902–918.

    Google Scholar 

  • Stute M. and Sonntag C. (1992) Palaeotemperatures derived from noble gases dissolved in groundwater and relation to soil temperature. Isotopes of Noble Gases as Tracers in Environmental Studies, pp.111–122. IAEA, Vienna.

    Google Scholar 

  • Stute M. and Schlosser P. (1993) Principles and applications of the noble gas palaeothermometer. In Climate Change in Continental Isotopic Records, eds. P.K. Swart, K.C. Lohmann, J. McKenzie and S. Savin, pp.89-100. American Geophysical Union, Geophysical Monograph 78.

    Google Scholar 

  • Stute M, Schlosser P., Clark J.F. and Broecker W.S. (1992) Palaeotemperatures in the southwestern United States derived from noble gas measurements in groundwater. Science 256, 1000–1003.

    Article  CAS  Google Scholar 

  • Stute M., Forster M., Frischkorn H., Serejo A., Clark J.F. Schlosser P., Broecker W.S. and Bonani G. (1995a) Cooling of tropical Brazil (5°C) during the last glacial maximum. Science 269, 379–383.

    Article  CAS  Google Scholar 

  • Stute M., Clark J.F., Schlosser P., Broecker W.S. and Bonani G. (1995b) A high altitude continental palaeotemperature record derived from noble gases dissolved in groundwater from the San Juan Basin, New Mexico. Quat. Res. 43, 209–220.

    Article  CAS  Google Scholar 

  • Stute M. and Talma S. (1998) Glacial temperatures and moisture transport regimes reconstructed from noble gases and O-18, Stampriet aquifer, Namibia. Isotope Techniques in Studying Past and Current Environmental Changes in the Hydrosphere and the Atmosphere, pp.307–318. IAEA, Vienna.

    Google Scholar 

  • Suckow A. and Sonntag C. (1993) The influence of salt on the noble gas thermometer. Isotope Techniques in Studying Past and Current Environmental Changes in the Hydrosphere and the Atmosphere, pp.307–318. IAEA, Vienna.

    Google Scholar 

  • Sugisaki R. (1961) Measurements of effective flow velocity of ground water by means of dissolved gases. Am. J. Sci. 259, 144–153.

    Article  CAS  Google Scholar 

  • Tamers M.A. (1967) Radiocarbon ages of groundwater in an arid zone unconfined aquifer. In Isotope Techniques in the Hydrologic Cycle, ed. G.E. Stout, Geophys. pp. 143-152, American Geophysical Union, Geophysical Monograph 11.

    Google Scholar 

  • Top Z., Eismont W.C. and Clarke W.B. (1987) Helium isotope effect and solubility of helium and neon in distilled water and seawater. Deep Sea Res. 34, 1139–1148.

    Article  CAS  Google Scholar 

  • Toy T.J., Kuhaida Jr. A.J. and Munson B.E. (1978) The prediction of mean monthly soil temperature from mean monthly air temperature. Soil Sci. 126, 181–189.

    Article  Google Scholar 

  • Tredoux G. and Kirchner J. (1981) The evolution of the chemical composition of artesian water in the Auob sandstone (Namibia/South West Africa). Trans. Geol. Soc. S. Afr. 84, 169–175.

    Google Scholar 

  • U.S. Standard Atmosphere (1976) National Oceanic Administration, National Aeronautics and Space Administration, and the United States Air Force, Washington, DC.

    Google Scholar 

  • Vogel J.C., (1967) Investigation of groundwater flow with radiocarbon. Isotope Hydrology, pp.235–237. IAEA, Vienna.

    Google Scholar 

  • Vogel J.C., Talma A.S. and Heaton T.H.E. (1981) Gaseous nitrogen as evidence for denitrification in groundwater. J. Hydrol. 50, 191–200.

    Article  CAS  Google Scholar 

  • Weiss R.F. (1970) The solubility of nitrogen, oxygen and argon in water and seawater. Deep Sea Res. 17, 721–735.

    CAS  Google Scholar 

  • Weiss R.F. (1971) Solubility of helium and neon in water and seawater. J. Chem. Eng. Data, 16, 235–241.

    Article  CAS  Google Scholar 

  • Weiss R.F. (1968) Piggyback samplers for dissolved gas studies on sealed water samples. Deep Sea Res. 15, 695–699.

    Google Scholar 

  • Weiss R.F. and Price B.A. (1989) Dead Sea gas solubilities. Earth Planet. Sci. Lett. 92, 7–10.

    Article  CAS  Google Scholar 

  • Wilson G.B. and McNeill G.W. (1997) Noble gas recharge temperatures and the excess air component. Appl. Geochem. 12, 747–762.

    Article  CAS  Google Scholar 

  • Wilson G.B., Andrews J.N. and Bath A.H. (1990) Dissolved gas evidence for denitrification in the Lincolnshire limestone groundwaters, Eastern England. J. Hydrol. 113, 51–60.

    Article  CAS  Google Scholar 

  • Winograd I.J. and Robertson F.N. (1982) Deep oxygenated ground water: anomaly or common occurrence? Science 216, 1227–1230.

    Article  CAS  Google Scholar 

  • Zanker A. (1977) Inorganic gases in petroleum. Hydrocarbon Processing 56, 255–256.

    CAS  Google Scholar 

  • Zuber A., Weise S.M., Osenbrück K., Grabczak J. and Ciezkowski W. (1995) Age and recharge area of thermal waters in Ladek Spa (Sudeten, Poland) deduced from environmental isotope and noble gas data. J. Hydrol. 167, 327–349.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stute, M., Schlosser, P. (2000). Atmospheric Noble Gases. In: Cook, P.G., Herczeg, A.L. (eds) Environmental Tracers in Subsurface Hydrology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4557-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4557-6_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7057-4

  • Online ISBN: 978-1-4615-4557-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics