Skip to main content

Chlorine-36

  • Chapter

Abstract

The chloride anion is an extraordinarily stable ionic species. Chloride is the thermodynamically favoured form of the element under virtually all terrestrial aqueous conditions. Furthermore, the negative charge of the chloride anion discourages adsorption onto silicate surfaces, which are also typically negatively charged. Due to this behaviour, chloride, once introduced to natural water, is usually advected at the same rate as the water and is not normally removed from the water by geochemical processes. These properties have led to extensive use of Cl as a hydrological tracer (see Herczeg and Edmunds, Chapter 2). The utility of the Cl-tracer has been greatly extended by the recognition that the element has a long-lived radioactive isotope: 36C1. With a half-life of 301 000 ± 4 000 years (Endt and Van der Leun, 1973; Bentley et al., 1986a), 36C1 can be used to date groundwater with subsurface residence times up to one million years, and also has a myriad of uses for tracing subsurface water at shorter time scales. Most of these applications have been realised within the past 20 years.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrews J.N., Edmunds W.M., Smedley P.L., Fontes J.-C, Fifield L.K. and Allan G.L. (1994) Chlorine-36 in groundwater as a palaeoclimatic indicator: the East Midlands Triassic sandstone aquifer (UK). Earth Planet. Sci. Lett. 122, 159–171.

    Article  CAS  Google Scholar 

  • Andrews J.N., Florkowski T., Lehmann B.E. and Loosli H.H. (1991) Underground production of radionuclides in the Milk River aquifer, Alberta, Canada. Appl. Ceochem. 6, 425–434.

    Article  CAS  Google Scholar 

  • Andrews J.N. and Fontes J.-C. (1992) Importance of the in situ production of 36C1,36Ar, and 14C in hydrology and hydrogeochemistry. Isotope Techniques in Water Resources Development 1991, pp. 245–269. IAEA, Vienna.

    Google Scholar 

  • Andrews J.N. and Fontes J.-C. (1993) Comment on ‘Chlorine 36 dating of very old groundwater, 3, Further results on the Great Artesian Basin, Australia’by T. Torgerson et al. Water Resour. Res. 29, 1871–1874.

    Article  CAS  Google Scholar 

  • Andrews J.N., Fontes J.-C, Michelot J.-L. and Elmore D. (1986) In-situ neutron flux, 36C1 production and groundwater evolution in crystalline rocks at Stripa, Sweden. Earth Planet. Sci. Lett. 77, 49–58.

    Article  CAS  Google Scholar 

  • Bagge E. and Willkom H. (1966) Geologic age determination with 36C1. Atomkernenergie 11, 176–184.

    CAS  Google Scholar 

  • Balderer W. and Synal H.-A. (1996) Application of the chlorine-36 method for the characterisation of the groundwater circulation in tectonic active areas: Examples from north western Anatolia/Turkey. Terra Nova 8, 324–333.

    Article  Google Scholar 

  • Balderer W. and Synal H.-A. (1997) Use of chlorine-36 as a tracer for the evolution of waters in geothermal and tectonically active areas in western Turkey. Nucl. Instrum. Meth. Phvs. Res. B123, 387–393.

    Article  CAS  Google Scholar 

  • Baltensperger U., Schwikowski M., Gäggeler H.W., Jost D.T., Beer J., Siegenthaler U., Wagenback D., Hofmann H.J. and Synal H.-A. (1993) Transfer of atmospheric constituents into an alpine snow field. Atmos. Environ. 27A, 1881–1890.

    CAS  Google Scholar 

  • Bard E., Hamelin B., Fairbanks R.G. and Zindler A. (1990) Calibration of the 14C timescale over the past 30,000 years using mass spectrometric U-Th ages from Barbados corals. Nature 345, 405–410.

    Article  CAS  Google Scholar 

  • Baumgartner A. and Reichel E. (1975) The World Water Balance: Mean Annual Global Continental and Maritime Precipitation. Elsevier, Amsterdam.

    Google Scholar 

  • Baumgartner S., Beer J., Masarik J., Wagner G., Meynadier L. and Synal H.-A. (1998) Geomagnetic modulation of the 36C1 flux in the GRIP ice core, Greenland. Science 279, 1330–1332.

    Article  CAS  Google Scholar 

  • Baumgartner S., Beer J., Suter M., Dittrich-Hannen B., Synal H.-A., Kubik P.W., Hammer C. and Johnsen S. (1997) Chlorine 36 fallout in the Summit Greenland ice core project. J. Geophys. Res. 102, 26659–26662.

    Article  CAS  Google Scholar 

  • Beasley T.M., Cecil L.D., Sharma P., Kubik P.W., Fehn U., Mann L.J. and Gove H.E. (1993) Chlorine-36 in the Snake River Plain aquifer at the Idaho National Engineering Laboratory: Origin and implications. Ground Water 31, 302–310

    Article  CAS  Google Scholar 

  • Beasley T.M., Elmore D., Kubik P.W. and Sharma P. (1992) Chlorine-36 releases from the Savannah River site nuclear fuel reprocessing facilities. Ground Water 30, 539–548.

    Article  CAS  Google Scholar 

  • Beer J., Baumgartner S., Dittrich-Hannen B., Hauenstein J., Kubik P., Lukasczyk C., Mende W., Stellmacher R. and Suter M. (1994) Solar variability traced by eosmogenic isotopes. In The Sun as a Variable Star: Solar and Stellar Irradiance Variations. eds J. M. Pap, C. Fröhlich, H. S. Hudson and S. K. Solanki, pp. 291–300. Cambridge University Press, Cambridge.

    Google Scholar 

  • Beer J., Siegenthaler U., Bonani G., Finkel R.C., Oeschger H., Suter M. and Wolfll W. (1988) Information on past solar activity and geomagnetism from 18Be in the Camp Century ice core. Nature 331, 675–679.

    Article  CAS  Google Scholar 

  • Bentley H.W. and Davis S.N. (1980) Feasibility of 36C1 dating of very old ground water. EOS, Trans. Am. Geophys.Union 61, 230.

    Google Scholar 

  • Bentley H.W., Phillips F.M. and Davis S.N. (1986a) Chlorine-36 in the terrestrial environment. In Handbook of Environmental Isotope Geochemistry. Vol. 2, eds. P. Fritz and J.-C. Fontes, pp. 427–480. Elsevier, Amsterdam.

    Google Scholar 

  • Bentley H.W., Phillips F.M., Davis S.N., Airey P.L., Calf G.E., Elmore D., Habermehl M.A. and Torgersen T. (1986b) Chlorine-36 dating of very old ground water: I. The Great Artesian Basin, Australia. Water Resour. Res. 22, 1991–2002.

    Article  CAS  Google Scholar 

  • Bentley H.W., Phillips F.M., Davis S.N., Gifford S., Elmore, E., Tubbs L.E. and Gove H.E. (1982) Thermonuclear 36C1 pulse in natural water. Nature 300, 737–740.

    Article  CAS  Google Scholar 

  • Biggar J.W. and Nielson D.R. (1962) Miscible displacement; II. Behaviour of tracers. Soil Sci. Soc. Am. Proc. 26, 125–128.

    Article  CAS  Google Scholar 

  • Bonner F.T., Roth E., Schaffer O.A. and Thompson S.O. (1961) Chlorine-36 and deuterium study of Great Basin lake waters. Geochim. Cosmochim. Acta 25, 261–266.

    Article  CAS  Google Scholar 

  • Bresler E. (1973) Anion exclusion and coupling effects in nonsteady transport through unsaturated soils. Soil Sci. Soc. Am. Proc. 37, 663–669.

    Article  CAS  Google Scholar 

  • Burbey T.J. (1984) Three-dimensional numerical simulation of tritium and chlorine-36 migration. Unpublished MS thesis, University of Nevada.

    Google Scholar 

  • Carlson C.A., Phillips F.M., Elmore D. and Bentley H.W. (1990) Chlorine-36 tracing of salinity sources in the Dry Valleys of Victoria Land, Antarctica. Geochim. Cosmochim. Acta. 54, 311–318.

    Article  CAS  Google Scholar 

  • Cecil L.D.W., Pittman J.R., Beasley T.M., Michel R.L., Kubik P.W., Sharma P., Fehn U. and Gove H.E. (1992) Water infiltration rates in the unsaturated zone at the Idaho National Engineering Laboratory estimated from chlorine-36 and tritium profiles, and neutron logging. In Proc. 7th Int. Symp. Water-Rock Interaction, eds. Y.K. Kharaka and A.S. Maest, pp. 709–714. A.A. Balkema, Rotterdam.

    Google Scholar 

  • Cecil L.D.W. and Vogt S. (1997) Identification of bomb-produced chlorine-36 in mid-latitude glacial ice of North America. Nucl. lustrum. Meth. Phys. Res. B123, 287–289.

    Article  Google Scholar 

  • Cecil L.D.W., Green J.R., Vogt S., Michel R. and Cottrell G. (1998) Isotopic composition of ice cores and meltwater from Upper Fremont Glacier and Galena Rock Glacier, Wyoming. Geografiska Annaler 80A, 287–292.

    Article  Google Scholar 

  • Charalambus S. (1971) Nuclear transmutation by negative stopped muons and the activity induced by the cosmic-ray muons. Nucl. Phys. A166, 145–161.

    Article  CAS  Google Scholar 

  • Clark I.D. and Fritz P. (1997) Environmental Isotopes in Hydrogeology. Lewis, Boca Raton, Florida.

    Google Scholar 

  • Conard N.J. (1986) Measurement of 36C1 in glacial ice from Greenland and Antartica. Unpubl. MS thesis, University of Rochester, New York.

    Google Scholar 

  • Conard N.J., Elmore D., Kubik P.W., Gove H.E., Tubbs L.E., Chrunyk B.A. and Wahlen M. (1986) The chemical preparation of AgCl for measuring 36C1 in polar ice with accelerator mass spectrometry. Radiocarbon 28, 556–560.

    CAS  Google Scholar 

  • Cook P.G., Jolly I.D., Leaney F.W., Walker G.R., Allan G.L., Fifield L.K. and Allison G.B. (1994) Unsaturated zone tritium and chlorine-36 profiles from southern Australia: Their use as tracers of soil water movement. Water Resour. Res. 30, 1709–1719.

    Article  Google Scholar 

  • Cook P.G. and Walker G. (1996) Evaluation of the use of 3H and 36C1 to estimate groundwater recharge in arid and semi-arid environments. In Isotopes in Water Resources Management, pp. 397–403. IAEA, Vienna.

    Google Scholar 

  • Cornett R.J., Andrews H.R., Chant L.A., Davies W.G., Greiner B.F., Imahori Y., Koslowsky V.T., Kotzer T., Milton J.C.D. and Milton G.M. (1997) Is 36C1 from weapons’ test fallout still cycling in the atmosphere? Nucl. Instrum. Meth. Phys. Res. B123, 378–381.

    Article  CAS  Google Scholar 

  • Cornett R.J., Cramer J., Andrews H.R., Chant L.A., Davies W., Greiner B.F., Imahori Y., Koslowsky V., McKay J., Milton G.M. and Milton J.C.D. (1996) In situ production of 36C1 in uranium ore: A hydrogeological assessment tool. Water Resour. Res. 32, 1511–1518.

    Article  CAS  Google Scholar 

  • Davie R.F., Kellett J.R., Fifield L.K., Evans W.R., Calf G.E., Bird J.R., Tropham S. and Ophel T.R. (1989) Chlorine-36 measurements in the Murray Basin: Preliminary results from the Victorian and South Australian Mallee region. BMR J. Aust. Geol. Geophys. 11, 261–272.

    CAS  Google Scholar 

  • Davis R.J. and Schaeffer O.A. (1955) Chlorine-36 in nature. Ann. N.Y. Acad. Sci. 62, 105–122.

    Article  Google Scholar 

  • Davis S.N. and Dewiest R.J.M. (1966) Hydrogeology. John Wiley and Sons, New York.

    Google Scholar 

  • Dowgiallo J., Nowicki Z., Beer J., Bonani G., Suter M., Synal H.A. and Wolfli W. (1990) 36C1 in ground water of the Mazowsze Basin (Poland). J. Hydrol. 18, 373–385.

    Article  Google Scholar 

  • Elmore D., Fulton B.R., Clover M.R., Marsden J.R., Gove H.E., Naylor H., Purser K.H., Kilius L.R., Beukens R.P. and Litherland A.E. (1979) Analysis of 36C1 in environmental water samples using an electrostatic accelerator. Nature 277, 22–25.

    Article  CAS  Google Scholar 

  • Elmore D., Ma X., Miller T., Mueller K., Perry M., Rickey F., Sharma P., Simms P., Lipschutz M. and Vogt S. (1996) Status and plans for the PRIME Lab AMS facility. Nucl. Instrum. Meth. Phys. Res. B123, 69–72.

    Google Scholar 

  • Elmore D. and Phillips F.M. (1987) Accelerator mass spectrometry for measurement of longlived radioisotopes. Science 236, 543–550.

    Article  CAS  Google Scholar 

  • Elmore D., Tubbs L.E., Newman D., Ma X.Z., Finkel R., Nishiizumi K., Beer J., Oeschgar H. and Andrea M. (1982) The 36C1 bomb pulse measured in a shallow ice core from Dye 3, Greenland. 300, 735–737.

    CAS  Google Scholar 

  • Elsasser W., Ney E.P. and Winckler J.R. (1956) Cosmic-ray intensity and geomagnetism. Nature 178, 1226–1227.

    Article  Google Scholar 

  • Endt P.M. and Van der Leun C. (1973) Energy levels of A = 21-44 nuclei. V. Nucl. Phys. A214, 1–625.

    Article  CAS  Google Scholar 

  • Eriksson E. (1960) The yearly circulation of chloride and sulphur in nature: Meteorological, geochemical and pedological implications, Part II. Tellus 12, 63–109.

    Article  Google Scholar 

  • Evans J.M., Stone J.O.H., Fifield L.K., Allan G.L. and Cresswell R.G. (1998) Cosmogenic chlorine-36 production in calcite by muons. Geochim. Cosmochim. Acta 62, 433–454.

    Article  Google Scholar 

  • Fabryka-Martin J.T. (1988) Production of radionuclides in the earth and their hydrogeologic significance, with emphasis on chlorine-36 and iodine-129. Unpublished PhD thesis, University of Arizona, Tucson.

    Google Scholar 

  • Fabryka-Martin J., Davis S.N. and Elmore D. (1987a) Applications of 129I and 36C1 to hydrology. Nucl. Instrum. Meth. Phys. Res. B29, 361–371.

    Article  Google Scholar 

  • Fabryka-Martin J.T., Davis S.N., Wirt L., Elmore D. and Kubik P.W. (1987b) Comparison of theoretical and measured deep subsurface production of chlorine-36. Geological Society of America, 1997 Annual Meeting, Abstracts with Programs 19, 658.

    Google Scholar 

  • Fabryka-Martin J., Davis S.N., Roman D., Airey P.L., Elmore D. and Kubik P.W. (1988) Iodine-129 and chlorine-36 in uranium ores; 2. Discussion of AMS measurements. Chem. Geol. 72, 7–16.

    CAS  Google Scholar 

  • Fabryka-Martin J., Whittemore D.O., Davis S.N., Kubik P.W. and Sharma P. (1991) Geochemistry of halogens in the Milk River aquifer, Alberta, Canada. Appl. Geochem. 6, 447–464.

    Article  CAS  Google Scholar 

  • Fabryka-Martin J.T., Wightman S.J., Murphy W.J., Wickham M.P., Caffee M.W., Nimz G.J., Southon J.R. and Sharma P. (1993) Distribution of chlorine-36 in the unsaturated zone at Yucca Mountain: An indicator of fast transport paths. In FOCUS ′93: Site Characteristics and Model Validation. pp. 58–68. American Nuclear Society, La Grange Park, Illinois.

    Google Scholar 

  • Fabryka-Martin J.T., Wolfsberg A.V., Dixon P.R., Levy S.S., Musgrave J.A. and Turin H.J. (1997) Summary report of chlorine-36 studies: Sampling, analysis, and simulation of chlorine-36 in the Exploratory Studies Facility. Report LA-13352-MS, Los Alamos National Laboratory, Los Alamos.

    Google Scholar 

  • Faure G. (1986) Principles of Isotope Geology, 2nd Ed., John Wiley and Sons, New York.

    Google Scholar 

  • Fehn U., Peters E.K., Tullai-Fitzpatrick S., Kubik P.W., Sharma P., Teng R.T.D., Gove H.E., and Elmore D. (1992) 129I and 36C1 concentrations in waters of the eastern Clear Lake area, California: Residence times and source ages of hydrothermal fluids. Geochim. Cosmochim. Acta 56, 2069–2079.

    Article  CAS  Google Scholar 

  • Feige Y., Oltman B.G. and Kastner J. (1968) Production rates of neutrons in soils due to natural radioactivity. J. Geophys. Res. 73, 3135–3142.

    Article  CAS  Google Scholar 

  • Fenske P.R. and Humphrey T.M. Jr. (1980) The Tatum Dome project, Lamar County, Mississippi. Report UC-11, U.S. Department of Energy, Nevada Operations Office, Las Vegas, Nevada.

    Google Scholar 

  • Ferronskii V.I., Polyakov V.A. and Karasev B.V. (1975) Cosmogenic radioactive isotopes in natural waters. Prir. hot. Gidrosfery (Russ.) 1975, 103–146, 261-274.

    Google Scholar 

  • Feth J.H. (1981) Chloride in natural continental water, U.S. Geolological Survey Water Supply Paper 2176, 36 pp.

    Google Scholar 

  • Fifield L.K., Allan G.L., Stone J.O.H. and Ophel T.R. (1994) The ANU AMS system and research program. Nucl. Instrum. Meth. Phys. Res. B92, 85–98.

    Article  CAS  Google Scholar 

  • Finkel R. and Suter M. (1993) AMS in the earth sciences: Technique and applications. Adv. Anal. Geochem. 1, 1–114.

    CAS  Google Scholar 

  • Finkel R.C. and Nishiizumi K. (1997) 10Be concentrations in the G1SP2 ice core from 3-40 ky. J. Geophys. Res. 102, 26, 699–26,706.

    Google Scholar 

  • Fontes J.-C. and Andrews J.N. (1993) Comment on Reinterpretation of 36C1 age data: physical processes hydraulic interconnections and age estimates in groundwater systems, by E. Mazor. Appl. Geochem. 8, 663–666.

    Article  CAS  Google Scholar 

  • Frank M., Schwarz B., Baumann S., Kubik P.W., Suter M. and Mangini A. (1997) A 200 kyr record of cosmogenic radionuclide production rate and geomagnetic field intensity from 10Be in globally stacked deep-sea sediments. Earth Planet. Sci. Lett. 149, 121–129.

    Article  CAS  Google Scholar 

  • Frape S.K. and Fritz P. (1982) The chemistry and isotopic composition of saline groundwaters from the Sudbury Basin, Ontario. Can. J. Earth Sci. 19, 645–661.

    Article  CAS  Google Scholar 

  • Freeze R.A. and Cherry J.A. (1979) Groundwater. Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Fritz S.J. and Eady CD. (1985) Hyperfiltration-induced precipitation of calcite. Geochim. Cosmochim. Acta 49, 761–768.

    Article  CAS  Google Scholar 

  • Fritz S.J. and Marine W.T. (1983) Experimental support for a predictive osmotic model of clay membranes. Geochim. Cosmochim. Acta 47, 1515–1522.

    Article  CAS  Google Scholar 

  • Fröhlich K., Ivanovich M., Hendry M.J., Andrews J.N., Davis S.N., Drimmie R.J., Fabryka-Martin J., Florkowski T., Fritz P., Lehmann B., Loosli H.H. and Nolte E. (1991) Application of isotopic methods to dating of very old groundwaters: Milk River aquifer, Alberta, Canada. Appl. Geochem. 6, 465–472.

    Article  Google Scholar 

  • Gascoyne M.D., Kamineni D.C. and Fabryka-Martin J. (1992) Chlorine-36 in groundwaters in the Lac du Bonnet granite, southeastern Manitoba. In Proc. 7th Int. Symp. Water-Rock Interaction, eds. Y.K. Kharaka and A.S. Maest, pp. 931–933, A.A. Balkema, Rotterdam.

    Google Scholar 

  • Gifford S., Bentley H. and Graham D.L. (1985) Chlorine isotopes as environmental tracers in Columbia River basalt groundwaters. In Hydrogeology of Rocks of Low Permeability, Proc. Int. Congress, pp. 417–429. Int. Assoc. Hydrogeologists, Tucson.

    Google Scholar 

  • Gifford S.K.I. (1987) Use of chloride and chlorine isotopes in the unsaturuted zone to characterize recharge at the Nevada Test Site. Unpublished MS thesis, University of Arizona, Tucson.

    Google Scholar 

  • Gosse J. and Phillips F.M. (1999) Terrestrial cosmogenic nuclides: Theory and application. Quat. Sci. Rev., submitted.

    Google Scholar 

  • Gove H.E. (1992) The history of AMS, its advantages over decay counting: Applications and prospects. In Radiocarbon After Four Decades. eds. R. E. Taylor, A. Long and R.J. Kra., pp. 214–229. Springer-Verlag, New York.

    Google Scholar 

  • Hainsworth L. (1994) Spatial and temporal variations in chlorine-36 deposition in the northern United States. Unpubl. PhD thesis. University of Maryland, College Park.

    Google Scholar 

  • Hanshaw B.B. and Coplen T.B. (1973) Ultrafiltration by a compacted clay membrane — II. Sodium ion exclusion at various ionic strengths. Geochim. Cosmochim. Acta 37, 2311–2327.

    Article  CAS  Google Scholar 

  • Hedenquist J.W., Goff F., Phillips F.M., Elmore D. and Stewart M.K. (1990) Groundwater dilution and residence times, and constraints on chloride source, in the Mokai geothermal system, from chemical, stable isotope, tritium, and 36C1 data. J. Geophys. Res. 95, 19 365–19 375.

    Article  Google Scholar 

  • Herczeg A.L., Leaney F.W.J., Stadter M.F., Allan G.L. and Fifield L.K. (1997) Chemical and isotopic indicators of point-source recharge to a karst aquifer, South Australia. J. Hydrol. 192, 271–299.

    Article  CAS  Google Scholar 

  • Herut B., Starinsky A., Katz A., Paul M., Boaretto E. and Berkovits I. (1992) 36C1 in chloride-rich rainwater, Israel. Earth Planet. Sci. Lett. 109, 179–183.

    Article  CAS  Google Scholar 

  • Hossain T. (1978) Measurement of the 36Ar(n,p)36Cl capture cross section. In Annual Report of the Nuclear Structure Research Laboratory, pp. 157–159. University of Rochester, Rochester, NY.

    Google Scholar 

  • Hudson G.B., Davisson M.L. and Moran J.E. (1998) Isotope measurements for innovative groundwater management. Lawrence Livermore National Laboratory, Isotope Sciences Division, Report UCRL-ID-130192, 29 pp.

    Google Scholar 

  • Huggle D., Blinov A., Stan-Sion C., Korschinek G., Scheffel C., Massonet S., Zerle L., Beer J., Parrat Y., Gaeggeler H., Hajdas W. and Nolte E. (1996) Production of cosmogenic 36C1 on atmospheric argon. Planet. Space Sci. 44, 147–151.

    Article  CAS  Google Scholar 

  • Jannik N.O. (1989) Lake history in the paleo-Owens River system, California, for the past 2.0 Myr based on 36C1 dating of evaporites from Searles Lake. Unpubl. PhD thesis, New Mexico Institute of Mining and Technology, Socorro.

    Google Scholar 

  • Jannik N.O., Phillips F.M., Smith G.I. and Elmore D. (1991) A36C1 chronology of lacustrine sedimentation in the Pleistocene Owens River Systems, Eastern California. Geol. Soc. Am. Bull. 103, 1146–1159.

    Article  CAS  Google Scholar 

  • Jasiulenis R., Lujanas V. and Styro B. (1969) Appearance rates of cosmic radioisotopes in spallation reactions on argon. Trudy, Instituta Ekspermintal’noi Meteorologii 25(2), 13–16.

    Google Scholar 

  • Jiang S.S., Hemmick T.K., Kubik P.W., Elmore D., Gove HE., Tullui S. and Hossain T.Z. (1990) Measurements of the 36Ar(n,p)36Cl cross section at thermal energies using the AMS technique. Nucl. Instrum. Meth. Phys. Res. B52, 608–611.

    Article  Google Scholar 

  • Jones L.M., Faure G., Taylor K.S and Corbato C.E. (1983) The origin of salts on Mount Erebus and along the coast of Ross Island, Antarctica. Chem. Geol. (Isot. Geosci. Sect.) 1, 57–64.

    CAS  Google Scholar 

  • Kaufman A., Magaritz M., Paul M., Hillaire-Marcel C., Hollus G., Boaretto E. and Taieb M. (1990) The 36C1 ages of the brines in the Magadi-Natron basin, East Africa. Geochim. Cosmochim. Acta 54, 2827–2834.

    Article  CAS  Google Scholar 

  • Kellett JR., Evans W.R., Allan G.L. and Fifield L.K. (1993) Reinterpretation of 36Cl age data: physical processes hydraulic interconnections and age estimates in groundwater systems-Discussion. Appl. Geochem. 8, 653–658.

    Article  CAS  Google Scholar 

  • Kenna B.T. and Kuroda P.K. (1960) The ratio of induced fission vs. spontaneous fission in pitchblende, and natural occurence of radiochlorine. J. Inorg. Nucl. Chem. 16, 1–7.

    Article  CAS  Google Scholar 

  • Keywood MD., Chivas A.R., Fifield L.K., Cresswell R.G. and Ayers G.P. (1997) The accession of chloride to the western half of the Australian continent. Aust. J. Soil Res. 35, 1177–1189

    Article  Google Scholar 

  • Keywood M.D., Fifield L.K., Chivas A.R. and Cresswell R.G. (1998) Fallout of chlorine 36 to the Earth’s surface in the southern hemisphere. J. Geophys. Res. 103, 8281–8286.

    Article  CAS  Google Scholar 

  • Kitagawa H. and van der Plicht J. (1998) Atmospheric radiocarbon calibration to 45 000 yr B.P.: Late glacial fluctuations and cosmogenic isotope production. Science 279, 1187–1190.

    Article  CAS  Google Scholar 

  • Knies D.L. (1994) Cosmogenic radionuclides in precipitation. Unpubl. PhD thesis, Purdue University, West Lafayette, Indiana.

    Google Scholar 

  • Kuhn M.W., Davis S.N. and Bentley H.W. (1984) Measurements of thermal neutrons in the subsurface. Geophys. Res. Lett. 11, 607–610.

    Article  CAS  Google Scholar 

  • Kuroda P.K., Edwards R.R., Robinson B.L., Jonte J.H. and Goolsby C. (1957) Chlorine-36 in pitchblende. Geochim. Cosmochim. Acta 11, 194–196.

    Article  CAS  Google Scholar 

  • Laj C., Mazaud A. and Duplessy J.-C. (1996) Geomagnetic intensity and 14C abundance in the atmosphere and ocean during the past 50 kyr. Geophys. Res. Lett. 23, 2045–2048.

    Article  CAS  Google Scholar 

  • Lal D. (1985) Carbon cycle variations during the past 50,000 years: atmospheric 14C/12C as an isotopic indicator. In The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present. eds. E.T. Sundquist, and W.S. Broecker, pp. 221–233. Am. Geophys. Union, Washington D. C.

    Chapter  Google Scholar 

  • Lal D. (1988) 10Be in polar ice: Data reflect changes in cosmic ray flux or polar meteorology. Geophys. Res. Lett. 14, 785–788.

    Article  Google Scholar 

  • Lal D. (1991) Cosmic-ray labeling of erosion surfaces: in situ production rates and erosion models. Earth Planet. Sci. Lett. 104, 424–439.

    Article  CAS  Google Scholar 

  • Lal D. and Peters B. (1967) Cosmic ray produced radioactivity on the earth. In Handbuch der Physik. Vol. 46, ed. K. Sitte, pp. 551–612. Springer-Verlag, Berlin.

    Google Scholar 

  • Lehmann B.E., Davis S.N. and Fabryka-Martin J.T. (1993) Atmospheric and subsurface sources of stable and radioactive nuclides used for groundwater dating. Water Resour. Res. 29, 2027–2040.

    Article  CAS  Google Scholar 

  • Lehmann B.E. and Purtschert R. (1997) Radioisotope dynamics—the origin and fate of nuclides in groundwater. Appl. Geochem. 12, 727–738.

    Article  CAS  Google Scholar 

  • Linsley R.K. Jr., Kohler MA. and Paulhus J.L.H. (1975) Hydrology for Engineers. McGraw-Hill, New York.

    Google Scholar 

  • Litherland A.E. (1980) Ultrasensitive mass spectrometry with accelerators. Annu. Rev. Nucl. Sci. 30, 437–473.

    Article  CAS  Google Scholar 

  • Liu B., Phillips F.M., Fabryka-Martin J.T., Fowler M.M. and Stone W.D. (1994) Cosmogenic 36C1 accumulation in unstable landforms, 1. Effects of the thermal neutron distribution. Water Resour. Res. 30, 3115–3125 (31, 1159).

    Article  CAS  Google Scholar 

  • Lockhart L.B., Baus R.A., Patterson R.L. and Saunders A.W. (1959) Fission product radioactivity in the air along the 80th meridian (west) during 1958. Publ. NRL-5390, U.S. Naval Research Lab, Washington, D.C., 23 pp.

    Google Scholar 

  • Lockhart L.B., Patterson R.L., Saunders A.W. and Black R.W. (1960) Fission product radioactivity in the air along the 80th meridian (west) during 1959. Publ. NRL-5528, U.S. Naval Research Lab, Washington, D.C., 17 pp.

    Google Scholar 

  • Lodemann M., Fritz P., Wolf M., Ivanovich M., Hansen B.T. and Nolte E. (1997) On the origin of saline fluids in the KTB (continental deep drilling project of Germany). Appl. Geochem. 12, 831–849.

    Article  CAS  Google Scholar 

  • Lujanas V. (1975) Rate of formation of cosmogenic isotopes. In Kosmogennye Radioizot., Mater. Resp. Semin. ed. B. I. Styro, pp. 17-25. Akad Nauk Lit. SSR, Inst. Fiz. Mat., Vilnius, USSR.

    Google Scholar 

  • Lyons W.B., Welch K.A. and Sharma P. (1998) Chlorine-36 in the waters of the McMurdo Dry Valley lakes, southern Victoria Land, Antarctica: Revisited. Geochim. Cosmochim. Acta 62, 185–192.

    Article  Google Scholar 

  • Machta L. (1965) Status of global radioactive fallout predictions. In Radioactive Fallout From Nuclear Weapons Tests. eds. A.W.J. Klement, pp. 369-391. U. S. Atomic Energy Commission (Nat. Tech. Infor. Service CONF-765).

    Google Scholar 

  • Magaritz M., Kaufman A., Paul M., Boaretto E. and Hollos G. (1990) A new method to determine regional evapotranspiration. Water Resour. Res. 26, 1759–1762.

    Article  Google Scholar 

  • Mazor E. (1992) Reinterpretation of 36C1 data: Physical processes, hydraulic interconnections, and age estimates in groundwater systems. Appl. Ceochem. 7, 351–360.

    Article  CAS  Google Scholar 

  • McHargue L.R., Damon P.E. and Donahue D.J. (1995) Enhanced cosmic-ray production of l0Be coincident with the Mono Lake and Laschamp geomagnetic excursions. Geophys. Res. Lett. 22, 659–662.

    Article  CAS  Google Scholar 

  • Meynadier L., Valet J.-P., Weeks R., Shackleton N.J. and Lee Hagee V. (1992) Relative geomagnetic intensity of the field during the last 140 ka. Earth Planet. Sci. Lett. 114, 39–57.

    Article  Google Scholar 

  • Milly P.C.D. (1996) Effects of thermal vapor diffusion on seasonal dynamics of water in the unsaturated zone. Water Resour. Res. 32, 509–518.

    Article  Google Scholar 

  • Milton G.C.D., Milton G.M., Andrews H.R., Chant L.A., Cornett R.J.J., Davies W.G., Greiner B.F., Imanori Y., Koslowsky V.T., Kotzer T., Kramer S.J. and McKay J.W. (1997a) A new interpretation of the distribution of bomb-produced chlorine-36 in the environment, with special reference to the Laurentian Great Lakes. Nucl. Instrum. Meth. Phys. Res. B123, 382–386.

    Article  CAS  Google Scholar 

  • Milton G.M., Kramer S.J., Kotzer T.G., Milton J.C.D., Andrews H.R., Chant L.A., Cornett R.J., Davies W.G., Greiner B.F., Imahori Y., Koslowsky V.T. and McKay J.W. (1997b) 36C1 — a potential paleodating tool. Nucl. Instrum. Meth. Phys. Res. B123, 371–377.

    Article  CAS  Google Scholar 

  • Murphy E.M., Ginn T.R. and Phillips J.L. (1996) Geochemical estimates of paleorecharge in the Pasco Basin: evaluation of the chloride mass balance technique. Water Resour. Res. 32, 2853–2868.

    Article  CAS  Google Scholar 

  • NADP (1998) National Atmospheric Deposition Program — Chloride Deposition Data. NADP/NTN Coordination Office, Illinois State Water Survey, 2204 Griffith Drive, Champaign, IL 61820.

    Google Scholar 

  • Nolte E., Krauthan P., Korschinek G., Maloszewski P., Fritz P. and Wolf M. (1991) Measurements and interpretations of 36C1 in groundwater, Milk River aquifer, Alberta, Canada. Appl. Geochem. 6, 435–445.

    Article  CAS  Google Scholar 

  • Norris A.E., Wolfsberg K., Gifford S.K., Bentley H.W. and Elmore D. (1987) Infiltration at Yucca Mountain traced by 36C1. Nucl. Instrum. Meth. Phys. Res. B29, 361–371.

    Article  Google Scholar 

  • Oeschger H., Houtermans J., Loosli H. and Wahlen M. (1969) The constancy of radiation from isotope studies in meteorites and on the Earth. In Proceedings of the 12th Nobel Symposium —Radiocarbon Variations and Absolute Chronology, ed. I.U. Olsson, pp. 471–496. Wiley, New York.

    Google Scholar 

  • Ogard A.E., Thompson J.L., Rundberg R.S., Wolfsberg K., Kubik P.W., Elmore D. and Bentley H.W. (1987) Migration in alluvium of chlorine-36 and tritium from an Underground nuclear weapons test. Proc. Int. Conf. on Chemistry and Migration Behaviour of Actinides and Fission Products in the Geosphere, Munich, Germany.

    Google Scholar 

  • Onufriev V.G. (1968) Formation of chlorine-36 in nature. Yad.-Geofiz., Geokhim. Izotop. Metody Geol. 1968, 364–369.

    Google Scholar 

  • Onufriev V.G. and Soifer V.N. (1968) Use of some cosmogenic isotopes for geochronological studies. Tr., Vses. Nauch.-lssled. Inst. Yad. Geofiz. Geokhim. 4, 331–340.

    Google Scholar 

  • Parker R.L. (1967) Composition of the earth’s crust. U.S. Geological Survey, Professional Paper 440-D.

    Google Scholar 

  • Parrat Y., Hajdas W., Baltensperger U., Synal H.-A., Kubik P.W., Suter M. and Gäggeler H.W. (1996a) Cross section measurements of proton induced reactions using a gas target. Nucl. Instrum. Meth. Phys. Res. B113, 470–473.

    Article  CAS  Google Scholar 

  • Parrat Y., Hajdas W., Baltensperger U., Synal H.-A., Kubik P.W., Gäggeler H.W. and Suter M. (1996b) Atmospheric production rates of 36C1. In Paul Scherrer Institut, Annual Report 1996, Annex IIIA, eds. U. Baltensperger and R. Lorenzen. Villigen, Switzerland.

    Google Scholar 

  • Paul M., Kaufman A., Magaritz M., Fink D., Henning W., Kaim R., Kutschera W. and Meirav O. (1986) A new 36C1 hydrological model and 36C1 systematics in the Jordan River/Dead Sea system. Nature 321, 511–515.

    Article  CAS  Google Scholar 

  • Pearson Jr. F.J., Balderer W., Loosli H.H., Lehmann B.E., Matter A., Peters T., Schmassmann H. and Gautschi A. (1991) Applied Isotope Hydrogeology: A Case Study in Northern Switzerland. Elsevier, New York.

    Google Scholar 

  • Peterson K.R. (1970) An empirical model for estimating worldwide deposition from atmospheric nuclear detonations. Health Phys. 18, 357–378.

    Article  CAS  Google Scholar 

  • Phillips F.M. (1993) Comment on Reinterpretation of 36C1 data: physical processes, hydraulic interconnections and age estimates in groundwater systems by E. Mazor. Appl. Geochem. 8, 643–647.

    Article  CAS  Google Scholar 

  • Phillips F.M. (1994) Environmental tracers for water movement in desert soils of the American Southwest. Soil Sci. Soc. Amer. J. 58, 15–24.

    Article  Google Scholar 

  • Phillips F.M., Bentley H.W., Davis S.N., Elmore D. and Swannick G.B. (1986) Chlorine-36 dating of very old ground water II: Milk River aquifer, Alberta. Water Resour. Res. 22, 2003–2016.

    Article  CAS  Google Scholar 

  • Phillips F.M., Davis S.N. and Kubik P. (1990a) A proposal to use chlorine-36 for monitoring the movement of radionuclides from nuclear explosions. Ground Water Monit. Rev. 10(3), 106–113.

    Article  CAS  Google Scholar 

  • Phillips F.M., Goff F., Vautaz F., Bentley H.W., Elmore D. and Gove H.E. (1984a) 36C1 as a tracer in geothermal systems: Example from Valles caldera. Geophys. Res. Lett. 11, 1227–1230.

    Article  CAS  Google Scholar 

  • Phillips F.M., Knowlton R.G. and Bentley H.W. (1990b) Comment on An alternative view on the origin of chemical and isotopic patterns in groundwater from the Milk River aquifer, Canada by J. M. Hendry and F. W. Schwartz. Water Resour. Res. 26, 1693–1698.

    CAS  Google Scholar 

  • Phillips F.M., Mattick J.L., Duval T.A., Elmore D. and Kubik P.W. (1988) Chlorine-36 and tritium from nuclear weapons fallout as tracers for long-term liquid and vapor movement in desert soils. Water Resour. Res. 24, 1877–1891.

    Article  CAS  Google Scholar 

  • Phillips F.M. and Plummer M.A. (1996) CHLOE: A program for interpreting in-situ cosmogenic nuclide data for surface exposure dating and erosion studies. Radiocarbon 38, 98–99.

    Google Scholar 

  • Phillips F.M., Rogers D.B., Dreiss S.J., Jannik N.O. and Elmore D. (1995) Chlorine-36 in Great Basin waters: Revisited. Water Resour. Res. 31, 3195–3204.

    Article  CAS  Google Scholar 

  • Phillips F.M., Trotman K.N., Bentley H.W. and Davis S.N. (1984b) The bomb-36Cl pulse as a tracer for soil water movement near Socorro, New Mexico. In Selected Papers on Water Quality and Pollution in New Mexico. ed. W.J. Stone, pp. 271-280. New Mexico Bureau of Mines and Mineral Resources Hydrologic Report 7.

    Google Scholar 

  • Phillips F.M., Zreda M.G., Ku T.-L., Luo S., Huang Q., Elmore D., Kubik P.W. and Sharma P. (1993) 28OTh/234U and 36C1 dating of evaporite deposits from the western Qaidam Basin, China: Implications for glacial-period dust export from Central Asia. Geol. Soc. Am. Bull. 105, 1606–1616.

    Article  CAS  Google Scholar 

  • Phillips F.M., Zreda M.G., Flinsch M.R., Elmore D. and Sharma P. (1996) A reevaluation of cosmogenic 36C1 production rates in terrestrial rocks. Geophys. Res. Lett. 23, 949–952.

    Article  CAS  Google Scholar 

  • Pillsbury A.F. (1981) The salinity of rivers. Scientific American 245(1), 55–56.

    Article  Google Scholar 

  • Pine J. and Morrison P. (1952) The neutron source strength of granitic rock. Physics Review 86, 606.

    CAS  Google Scholar 

  • Plummer M.A. (1996) Secular variation of cosmogenic nuclide production from chlorine-36 in fossil pack rat middens. Unpublished MS thesis, New Mexico Institute of Mining and Technology, Socorro.

    Google Scholar 

  • Plummer M.A., Phillips F.M., Fabryka-Martin J., Turin H.J., Wigand P.E. and Sharma P. (1997) Chlorine-36 in fossil rat urine: an archive of cosmogenic nuclide deposition over the past 40,000 years. Science 277, 538–541.

    Article  CAS  Google Scholar 

  • Prych E.A. (1995) Using chloride and chlorine-36 as soil-water tracers to estimate deep percolation at selected locations on the U.S. Department of Energy Hanford Site, Washington. U.S. Geological Survey, Open-File Rept. 94-514.

    Google Scholar 

  • Prych E.A. (1996) Estimating deep percolation of precipitation at the U.S. Department of Energy Hanford site using two chloride-tracer methods. In Joint U.S. Geological Survey, U.S. Nuclear Regulatory Commission Workshop on Research Related to Low-Level Radioactive Waste Disposal, eds. P. R. Stevens and T. J. Nicholson, pp. 103-107. U.S. Geological Survey, Water-Resources Investigations Report 95-4015.

    Google Scholar 

  • Purdy C.B. (1991) Isotopic and chemical tracer studies of ground water in the Aquia Formation, southern Maryland, including 36C1, 14C, 18O, and 3H. Unpubl. PhD thesis, University of Maryland, College Park.

    Google Scholar 

  • Purdy C.B., Helz G.R., Mignerey A.C., Kubik P.W., Elmore D., Sharma P. and Hemmick T. (1996) Aquia aquifer dissolved Cl-and 36C1/C1: implications for flow velocities. Water Resour.Res. 32, 1163–1172.

    Article  CAS  Google Scholar 

  • Rao S.M. and Sridharan A. (1984) Mechanism of sulfate adsorption by kaolinite. Clays. Clay Miner. 32, 414–418.

    Article  CAS  Google Scholar 

  • Rao U. and Fehn U. (1997) The distribution of 129I around West Valley, an inactive nuclear fuel reprocessing facility in western New York. Nucl. lnstrum. Meth. Phys. Res. B123, 361–366.

    Article  CAS  Google Scholar 

  • Rao U., Fehn U., Teng R.T.D. and Goff F. (1996) Sources of chloride in hydrothermal fluids from the Valles caldera, New Mexico: a 36C1 study. J. Volcanol. Geotherm. Res. 72, 59–70.

    Article  CAS  Google Scholar 

  • Rawson D., Boardman C. and Jaffe-Chazan N. (1964) The environment created by a nuclear explosion in salt. Lawrence Radiation Laboratory, University of California, Berkeley, Publ. PNE-107F.

    Book  Google Scholar 

  • Reedy R.C., Arnold J.R. and Lal. D. (1983) Cosmic-ray record in solar system matter. Science 219, 127–135.

    Article  CAS  Google Scholar 

  • Roberts M.L., Bench G.S., Brown T.A., Caffee M.W., Finkel R.C., Freeman S.P.H.T., Hainsworth L.J., Kashgarian M., McAnich J.E., Proctor I.D., Southron J.R. and Vogel J.S. (1996) The LLNL AMS facility. Nucl. lnstrum. Meth. Phys. Res. B123, 57–61.

    Article  Google Scholar 

  • Roman D. and Airey P.L. (1981) The application of environmental chlorine-36 to hydrology — I. Liquid scintillation counting. Int. J. Appl. Rad. hot. 32, 287–290.

    Article  CAS  Google Scholar 

  • Ronzani C. and Tamers M.A. (1966) Low-level chlorine-36 detection with liquid scintillation techniques. Radiochim. Acta 6, 206–210.

    CAS  Google Scholar 

  • Rose T.P., Denneally J.M., Smith D.K., Davisson M.L., Hudson G.B. and Rego J.A.H. (1997) Chemical and isotopic data for groundwater in southern Nevada. Report UCRL-ID-12800, Lawrence Livermore National Laboratory, Livermore, California, 36 pp.

    Book  Google Scholar 

  • Scanion B.R. (1992) Evaluation of liquid and vapor water flow in desert soils based on chlorine-36 and tritium tracers and nonisothermal flow simulations. Water Resour. Res. 28, 285–298.

    Article  Google Scholar 

  • Scanion B.R., Tyler S.W. and Wierenga P.J. (1997) Hydrologic issues in arid, unsaturated systems and implications for contaminant transport. Rev. Geophys. 35, 461–490.

    Article  Google Scholar 

  • Scanion B.R., Wang F.P. and Richter B.C. (1991) Field studies and numerical modeling of unsaturated flow in the Chihuahuan Desert, Texas. University of Texas, Austin, Texas Bureau Econ. Geol. Rept. Geol. Invest. 199, 56 pp.

    Google Scholar 

  • Schaeffer O.A., Thompson S.O. and Lark N.L. (1960) Chlorine-36 radioactivity in rain. J. Geophys. Res. 65, 4013–4016.

    Article  CAS  Google Scholar 

  • Simpson H.J. and Herczeg A.L. (1994) Delivery of marine chloride in precipitation and removal by rivers in the Murray-Darling Basin, Australia. J. Hydrol. 154, 323–350

    Article  Google Scholar 

  • Sinclair D.E. and Manuel O.K. (1974) Argon-36 from neutron capture on chlorine in nature. Zeitschrift fiter Naturforschung, Teil A 29, 488–492.

    CAS  Google Scholar 

  • Solomon D.K., Poreda R.J., Schiff S.L. and Cherry J.A. (1992) Tritium and helium-3 as groundwater age tracers in the Borden aquifer. Water Resour. Res. 28, 741–756.

    Article  CAS  Google Scholar 

  • Sposito G. (1989) The Chemistry of Soils. Oxford University Press, Oxford.

    Google Scholar 

  • Stone J., Evans J., Fifield K., Cresswell R. and Allan G. (1996a) Cosmogenic chlorine-36 production rates from calcium and potassium. Radiocarbon 38, 172.

    Google Scholar 

  • Stone J.O., Allan G.L., Fifield L.K. and Cresswell R.G. (1996b) Cosmogenic chlorine-36 from calcium spallation. Geochim. Cosmochim. Acta 60, 679–692.

    Article  CAS  Google Scholar 

  • Stuiver M., Braziunas T.F., Becker B. and Kromer B. (1991) Climatic, solar, oceanic, and geomagnetic influences on late-glacial and Holocene atmospheric 14C/12C change. Quat. Res. 35, 1–24.

    Article  CAS  Google Scholar 

  • Summerfield M.A. and Hulton N.J. (1994) Natural controls of fluvial denudation rates in major world drainage basins. J. Geophys. Res. 99, 13871–13883.

    Article  Google Scholar 

  • Swanson T. (1996) Determination of 36C1 production rates from the deglaciation history of Whidbey and Fidalgo Islands, Washington (abstr.). Radiocarbon 38, 172.

    Google Scholar 

  • Synal H.-A., Beer J., Bonani G., Suter M. and Wölfli W. (1990) Atmospheric transport of bomb-produced 36C1. Nucl. Instrum. Meth. Phys. Res. B52, 483

    CAS  Google Scholar 

  • Synal H.-A., Beer J., Bonani G., Lukasczyk C. and Suter M. (1994) 36C1 measurements at the Zurich AMS facility. Nucl. Meth. Phys. Res. 92B, 79–84.

    Article  Google Scholar 

  • Synal H.-A., Bonani G., Döbeli M., Ender R.M., Gartenmann P., Kubik P.W., Schnabel C. and Suter M. (1996) Status report of the PSI/ETH AMS facility. Nucl. Instrum. Meth. Phys. Res. B123, 62–68.

    Google Scholar 

  • Synal H.-A., Beer J., Delmas R. and Robert J. (1997) Concentration of bomb produced 36C1 in polar ice from the Vostok Polar Station (Antarctica). In Paul Scherrer Institut, Annual Report 1997, Annex IIIA, eds. U. Baltensperger and R. Lorenzen, pp. 32.

    Google Scholar 

  • Tamers M.A., Ronzani C. and Scharpenseel H.W. (1969) Naturally occuring chlorine-36. Atompraxis 15, 433–437.

    CAS  Google Scholar 

  • Thompson L.G., Yao T., Davis M.E., Henderson K.A., Mosley-Thompson E., Lin P.N., Beer J., Synal H.-A., Cole-Dai J. and Bolzan J.F. (1997) Tropical climate instability: the last glacial cycle from a Qinghai-Tibetan ice core. Science 276, 1821–1825.

    Article  CAS  Google Scholar 

  • Thouveny N., Creer K.M. and Williamson D. (1993) Geomagnetic moment variations in the last 70 000 years, impact on production of cosmogenic isotopes. Global Planet. Change 7, 157–172.

    Article  Google Scholar 

  • Torgersen T., Habermehl M.A., Phillips F.M., Elmore D., Kubik P., Jones B.G., Hemmick T. and Gove H.E. (1991) Chlorine-36 dating of very old groundwater: III. Further studies in the Great Artesian Basin, Australia. Water Resour. Res. 27, 3201–3214.

    Article  CAS  Google Scholar 

  • Torgersen T. and Phillips F.M. (1993) Reply to Comment on Chlorine 36 dating of very old groundwater, 3, Further results on the Great Artesian Basin, Australia by T. Torgerson et al. by J.N. Andrews and J.-C. Fontes. Water Resour. Res. 29, 1875–1877.

    Article  CAS  Google Scholar 

  • Trotman K.N. (1983) Thermonuclear 36C1 in arid soil. Unpublished MS thesis, University of Arizona, Tucson.

    Google Scholar 

  • Tyler S.W., Chapman J.B., Conrad S.H., Hammermeister D.P., Blout D.O., Miller J.J., Sully M.J. and Ginanni J.M. (1996) Soil-water flux in the southern Great Basin, United States: temporal and spatial variations over the last 120 000 years. Water Resour. Res. 32, 1481–1499.

    Article  CAS  Google Scholar 

  • Tyler S.W. and Walker G.R. (1994) Root zone effects on tracer migration in arid zones. Soil Sci. Soc. Amer. J. 58, 25–31.

    Article  Google Scholar 

  • Wakatsuki T. and Rasyidin A. (1992) Rates of weathering and soil formation. Geoderma 52, 251–263.

    Article  Google Scholar 

  • Walker G.R., Jolly I.D., Stadter M.H., Leaney F.W., Davie R.F., Fifield L.K., Ophel T.R. and Bird J.R. (1991) Evaluation of the use of chlorine-36 in recharge studies. In Isotope Techniques in Water Resources Development 1991, pp. 19–29. IAEA, Vienna.

    Google Scholar 

  • White A.F., Blum A.E., Schulz M.X., Vivit D.V., Stonestrom D.A., Larsen M., Murphy S.F. and Eberl D. (1998) Chemical weathering in a tropical watershed, Luquillo Mountains, Puerto Rico: I. Long-term versus short-term weathering fluxes. Geochim. Cosmochim. Acta 62, 209–226.

    Article  CAS  Google Scholar 

  • Yechieli Y., Ronen D. and Kaufman A. (1996) The source and age of groundwater brines in the Dead Sea area, as deduced from 36Cl and 14C. Geochim. Cosmochim. Acta 60, 1909–1916.

    Article  CAS  Google Scholar 

  • Zerle L., Faestermann T., Knie K., Korschinek G. and Nolte E. (1997) The 4lCa bomb pulse and atmospheric transport of radionuclides. J. Geophys. Res. 102, 19517–19527.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Phillips, F.M. (2000). Chlorine-36. In: Cook, P.G., Herczeg, A.L. (eds) Environmental Tracers in Subsurface Hydrology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4557-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4557-6_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7057-4

  • Online ISBN: 978-1-4615-4557-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics