Skip to main content

Progesterone receptors in breast cancer

  • Chapter
Genes, Oncogenes, and Hormones

Part of the book series: Cancer Treatment and Research ((CTAR,volume 61))

  • 80 Accesses

Abstract

Steroid hormone receptors are members of a gene family of liganddependent transcriptional activators that also includes receptors for vitamin D, thyroid hormone, retinoic acid, and a number of transcriptional activators with as yet unknown ligands. Cloning of receptor genes and mutagenesis studies have revealed that steroid receptors are modular proteins organized into the functional domains shown in Figure 1. A highly conserved DNA binding domain (region C) located in the central portion of the molecule contains two zinc finger structures. The carboxyl terminal region (E) harbors domains for steroid binding and receptor dimerization. The amino terminus (A/B) is highly variable, both with respect to amino acid sequence and length, and is important for maximal transcriptional activity [14]. The progesterone receptor (PR) in breast cancer cells and in several normal reproductive tissues is produced as two steroid-binding proteins of different lengths, termed PR-A and PR-B [5, 6]. The two proteins arise from a single gene either by initiation of translation at two different start sites within the same RNA transcript or from separate mRNAs produced by the use of alternate promoters [79]. PR-A is a truncated version of PR-B, missing 165 amino acids present in the N terminus of PR-B (Figure 1). The two PR forms, therefore, are identical in sequence in their hormone and DNA binding domains. In human breast cancer cells, PR-A and PR-B have apparent molecular weights of ≈94,000 and ≈120,000 respectively [6]. This property of the progesterone receptor is unique among the sex steroid and glucocorticoid receptors. Receptors for estrogen (ER), androgens (AR), and glucocorticoids (GR) are all synthesized as single-sized proteins. The functional role of PR-A and PR-B are not known. They have been reported to exhibit some differences in target gene specificities, suggesting that expression of two PR forms from the same gene may provide a mechanism to expand functional diversity [10].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Evans, R.M. (1988) The steroid and thyroid hormone receptor superfamily. Science 240:889–895.

    Article  PubMed  CAS  Google Scholar 

  2. Giguére, V., Yang, N., Segui, P., Evans, R.M. (1988) Identification of a new class of steroid hormone receptors. Nature 331:91–94.

    Article  PubMed  Google Scholar 

  3. Umesono, K., Evans, R.M. (1989) Determinants of target gene specificity for steroid/ thyroid hormone receptors. Cell 57:1139–1146.

    Article  PubMed  CAS  Google Scholar 

  4. Forman, B.M., Samuels, H.H. (1990) Interactions among a subfamily of nuclear hormone receptors: The regulatory zipper model. Mol. Endocrinol. 4:1293–1301.

    Article  PubMed  CAS  Google Scholar 

  5. Birnbaumer, M., Schrader, W.T., O’Malley, B.W. (1983) Assessment of structural similarities in chick oviduct progesterone receptor subunits by partial proteolysis of photoaffinity-labeled proteins. J. Biol. Chem. 258:7331–7337.

    PubMed  CAS  Google Scholar 

  6. Horwitz, K.B., Francis, M.D., Wei, L.L. (1985) Hormone-dependent covalent modification and processing of human progesterone receptors in the nucleus. DNA 4:451–460.

    Article  PubMed  CAS  Google Scholar 

  7. Conneely, O.M., Maxwell, B.L., Toft, D.O., Schrader, W.T., O’Malley, B.W. (1987) The A and B forms of the chicken progesterone receptor arise by alternate initiation of translation of a unique mRNA. Biochem. Biophys. Res. Commun. 149:493–501.

    Article  PubMed  CAS  Google Scholar 

  8. Kastner, P., Krust, A., Turcotte, B., Stropp, U., Tora, L., Gronemeyer, H., Chambon, P. (1990) Two distinct estrogen-regulated promoters generate transcripts encoding the two functionally different human progesterone receptor forms A and B. EMBO J. 9:1603–1614.

    PubMed  CAS  Google Scholar 

  9. Jeltsch, J.-M., Turcotte, B., Gamier, J.-M., Lerouge, T., Krozowski, Z., Gronemeyer, H., Chambon, P. (1990) Characterization of multiple mRNAs originating from the chicken progesterone receptor gene. J. Biol. Chem. 265:3967–3974.

    PubMed  CAS  Google Scholar 

  10. Tora, L., Gronemeyer, H., Turcotte, B., Gaub, M.-P., Chambon, P. (1988) The N-terminal region of the chicken progesterone receptor specifies target gene activation. Nature 333:185–188.

    Article  PubMed  CAS  Google Scholar 

  11. Beato, M. (1989) Gene regulation by steroid hormones. Cell 56:335–344.

    Article  PubMed  CAS  Google Scholar 

  12. Nordeen, S.K., Kühnel, B., Lawler-Heavner, J., Barber, D.A., Edwards, D.P. (1989) A quantitative comparision of dual control of a hormone response element by progestins and glucocorticoids in the same cell line. Mol. Endocrinol. 3:1270–1278.

    Article  PubMed  CAS  Google Scholar 

  13. El-Ashry, D., Onate, S.A., Nordeen, S.K., Edwards, D.P. (1989) Human progesterone receptor complexed with the antagonist RU 486 binds to hormone response elements in a structurally altered form. Mol. Endocrinol. 3:1545–1558.

    Article  PubMed  CAS  Google Scholar 

  14. Fawell, S.E., White, R., Hoare, S., Sydenham, M., Page, M., Parker, M. (1990) Inhibition of estrogen-receptor-DNA binding by the ‘pure’ antiestrogen ICI 164,384 appears to be mediated by impaired receptor dimerization. Proc. Natl. Acad. Sci. U.S.A. 87:6883–6887.

    Article  PubMed  CAS  Google Scholar 

  15. Meyer, M.-E., Pornon, A., Ji, J., Bocquel, M.-T., Chambon, P., Gronemeyer, H. (1990) Agonist and antagonist activities of RU 486 on the functions of human progesterone receptor. EMBO J. 9:3923–3932.

    PubMed  CAS  Google Scholar 

  16. Dickson, R.B., Thompson, E.W., Lippman, M.E. (1990) Regulation of proliferation, invasion and growth factor synthesis in breast cancer by steroids. J. Steroid Biochem. Molec. Biol. 37:305–316.

    Article  PubMed  CAS  Google Scholar 

  17. Joyeux, C., Rochefort, H., Chalbos, D. (1989) Progestin increases gene transcription and messenger ribonucleic acid stability of fatty acid synthetase in breast cancer cells. Mol. Endocrinol. 4:681–686.

    Article  Google Scholar 

  18. Chalbos, D., Joyeux, C., Escot, C., Galtier, F., Rochefort, H. (1990) Progestin-induced fatty acid synthetase in breast cancer. Ann. N. Y. Acad. Sci. 595:67–73.

    Article  PubMed  CAS  Google Scholar 

  19. Ewing, T.M., Murphy, L.J., Ng, M.-L., Pang, G.Y.N., Lee, C.S.L., Watts, C.K.W., Sutherland, R.L. (1989) Regulation of epidermal growth factor receptor by progestins and glucocorticoids in human breast cancer cell lines. Int. J. Cancer 44:744–752.

    Article  PubMed  CAS  Google Scholar 

  20. Cato, A.C.B., Miksicek, R., Schütz, G., Arnemann, J., Beato, M. (1986) The hormone regulatory element of mouse mammary tumour virus mediates progesterone induction. EMBO J. 5:2237–2240.

    PubMed  CAS  Google Scholar 

  21. Reddel, R.R., Alexander, I.E., Koga, M., Shine, J., Sutherland, R.L. (1988) Genetic instability and the development of steroid hormone insensitivity in cultured T47D human breast cancer cells. Cancer Res. 48:4340–4347.

    PubMed  CAS  Google Scholar 

  22. Poulin, R., Dufour, J.-M., Labrie, F. (1989) Progestin inhibition of estrogen-dependent proliferation in ZR-75-1 human breast cancer cells: Antagonism by insulin. Breast Canc. Res. Treat. 13:265–276.

    Article  CAS  Google Scholar 

  23. Sutherland, R.L., Hall, R.E., Pang, G.Y.N., Musgrove, E.A., Clarke, C.L. (1988) Effect of medroxyprogesterone acetate on proliferation and cell cycle kinetics of human mammary carcinoma cells. Cancer Res. 48:5084–5091.

    PubMed  CAS  Google Scholar 

  24. Hissom, J.R., Moore, M.R. (1987) Progestin effects on growth in the human breast cancer cell line T47D — possible therapeutic implications. Biochem. Biophys. Res. Commun. 145:706–711.

    Article  PubMed  CAS  Google Scholar 

  25. Manni, A., Badger, B., Wright, C., Ahmed, S.R., Demers, L.M. (1987) Effects of progestins on growth of experimental breast cancer in culture: Interaction with estradiol and prolactin and involvement of the polyamine pathway. Cancer Res. 47:3066–3071.

    PubMed  CAS  Google Scholar 

  26. Murphy, L.C., Dotzlaw, H. (1989) Endogenous growth factor expression in T47D, human breast cancer cells, associated with reduced sensitivity to antiproliferative effects of progestins and antiestrogens. Cancer Res. 49:599–604.

    PubMed  CAS  Google Scholar 

  27. Sedlacek, S.M. (1988) An overview of megestrol acetate for the treatment of advanced breast cancer. Semin. Oncol. 15:3–13.

    PubMed  CAS  Google Scholar 

  28. Horwitz, K.B., Zava, D.T., Thilagar, A.K., Jensen, E.M., McGuire, W.L. (1978) Steroid receptor analyses of nine human breast cancer cell lines. Cancer Res. 38:2434–2437.

    PubMed  CAS  Google Scholar 

  29. Logeat, F., Hai, M.T.V., Fournier, A., Legrain, P., Buttin, G., Milgrom, E. (1983) Monoclonal antibodies to rabbit progesterone receptor: Crossreaction with other mammalian progesterone receptors. Proc. Natl. Acad. Sci. U.S.A. 80:6456–6459.

    Article  PubMed  CAS  Google Scholar 

  30. Sullivan, W.P., Beito, T.G., Proper, J., Krco, C.J., Toft, D.O. (1986) Preparation of monoclonal antibodies to the avian progesterone receptor. Endocrinology 119:1549–1557.

    Article  PubMed  CAS  Google Scholar 

  31. Clarke, C.L., Zaino, R.J., Feil, P.D., Miller, J.V., Steck, M.E., Ohlsson-Wilhelm, B.M., Satyaswaroop, P.G. (1987) Monoclonal antibodies to human progesterone receptor: Characterization by biochemical and immunohistochemical techniques. Endocrinology 121:1123–1132.

    Article  PubMed  CAS  Google Scholar 

  32. Estes, P.A., Suba, E.J., Lawler-Heavner, J., Elashry-Stowers, D., Wei, L.L., Toft, D.O., Sullivan, W.P., Horwitz, K.B., Edwards, D.P. (1987) Immunologie analysis of human breast cancer progesterone receptors. 1. Immunoaffinity purification of transformed receptors and production of monoclonal antibodies. Biochemistry 26:6250–6262.

    CAS  Google Scholar 

  33. Greene, G.L., Harris, K., Bova, R., Kinders, R., Moore, B., Nolan, C. (1988) Purification of T47D human progesterone receptor and immunochemical characterization with monoclonal antibodies. Mol. Endocrinol. 2:714–726.

    Article  PubMed  CAS  Google Scholar 

  34. Schuh, S., Yonemoto, W., Brugge, J., Bauer, V.J., Riehl, R.M., Sullivan, W.P., Toft, D.O. (1985) A 90,000-dalton binding protein common to both steroid receptors and the Rous sarcoma virus transforming protein, pp60v-src. J. Biol. Chem. 260:14292–14296.

    PubMed  CAS  Google Scholar 

  35. Catelli, M.G., Binart, N., Jung-Testas, I., Renoir, J.M., Baulieu, E.E., Feramisco, J.R., Welch, W.J. (1985) The common 90-kd protein component of non-transformed ‘8S’ steroid receptors is a heat-shock protein. EMBO J. 4:3131–3135.

    PubMed  CAS  Google Scholar 

  36. Renoir, J.-M., Buchou, T., Baulieu, E.-E. (1986) Involvement of a non-hormone-binding 90-kilodalton protein in the nontransformed 8S form of the rabbit uterus progesterone receptor. Biochemistry 25:6405–6413.

    Article  PubMed  CAS  Google Scholar 

  37. Joab, I., Radanyi, C., Renoir, M., Buchou, T., Catelli, M.-G., Binart, N., Mester, J., Baulieu, E.-E. (1984) Common non-hormone binding component in non-transformed chick oviduct receptors of four steroid hormones. Nature 308:850–853.

    Article  PubMed  CAS  Google Scholar 

  38. Sanchez, E.R., Toft, D.O., Schlesinger, Pratt, W.B. (1985) Evidence that the 90-kDa phosphoprotein associated with the untransformed L-cell glucocorticoid receptor is a murine heat shock protein. J. Biol. Chem. 260:12398–12401.

    PubMed  CAS  Google Scholar 

  39. Pratt, W.B., Sanchez, E.R., Bresnick, E.H., Meshinchi, S., Scherrer, L.C., Dalman, F.C., Welsh, M.J. (1989) Interaction of the glucocorticoid receptor with the Mr 90,000 heat shock protein: An evolving model of ligand-mediated receptor transformation and translocation. Cancer Res. 49:2222s–2229s.

    PubMed  CAS  Google Scholar 

  40. Pratt, W.B. (1990) At the cutting edge. Interaction of hsp90 with steroid receptors: Organizing some diverse observations and presenting the newest concepts. Mol. Cell. Endocrinol. 74:C69–C76.

    Article  PubMed  CAS  Google Scholar 

  41. Edwards, D.P., Estes, P.A., El-Ashry, D., Suba, E., Lawler-Heavner, J. (1987) Immunoaffinity purification and structural analysis of human breast cancer progesterone receptors. In: Ceriani, R.L., ed. Immunological Approaches to the Diagnosis and Therapy of Breast Cancer Plenum, New York, pp. 157–168.

    Google Scholar 

  42. Kost, S.L., Smith, D.F., Sullivan, W.P., Welch, W.J., Toft, D.O. (1989) Binding of heat shock proteins to the avian progesterone receptor. Mol. Cell. Biol. 9:3829–3838.

    PubMed  CAS  Google Scholar 

  43. Sanchez, E.R., Faber, L.E., Henzel, W.J., Pratt, W.B. (1990) The 56-59-kilodalton protein identified in untransformed steroid receptor complexes is a unique protein that exists in cytosol in a complex with both the 70-and 90-kilodalton heat shock proteins. Biochemistry 29:5145–5152.

    Article  PubMed  CAS  Google Scholar 

  44. Renoir, J.-M., Radanyi, C., Faber, L.E., Baulieu, E.-E. (1990) The non-DNA-binding heterooligomeric form of mammalian steroid hormone receptors contains a hsp90-bound 59-kilodalton protein. J. Biol. Chem. 265:10740–10745.

    PubMed  CAS  Google Scholar 

  45. Sanchez, E.R., Hirst, M., Scherrer, L.C., Tang, H.-Y., Welsh, M.J., Harmon, J.M., Simons, S.S. Jr., Ringold, G.M., Pratt, W.B. (1990) Hormone-free mouse glucocorticoid receptors overexpressed in Chinese hamster ovary cells are localized to the nucleus and are associated with both hsp70 and hsp90. J. Biol. Chem. 265:20123–20130.

    PubMed  CAS  Google Scholar 

  46. Sanchez, E.R. (1990) Hsp-56: A novel heat shock protein associated with untransformed steroid receptor complexes. J. Biol. Chem. 265:22067–22070.

    PubMed  CAS  Google Scholar 

  47. Smith, D.F., Faber, L.E., Toft, D.O. (1990) Purification of unactivated progesterone receptor and identification of novel receptor-associated proteins. J. Biol. Chem. 265:3996–4003.

    PubMed  CAS  Google Scholar 

  48. Mendel, D.B., Orti, E. (1988) Isoform composition and stoichiometry of the ≈90-kDa heat shock protein associated with glucocorticoid receptors. J. Biol. Chem. 263:6695–6702.

    PubMed  CAS  Google Scholar 

  49. Sherman, M.R., Stevens, J. (1984) Structure of mammalian steroid receptors. Ann. Rev. Physiol. 46:83–105.

    Article  CAS  Google Scholar 

  50. Sanchez, E.R., Meshinchi, S., Tienrungroj, W., Schlesinger, M.J., Toft, D.O., Pratt, W.B. (1987) Relationship of the 90-kDa murine heat shock protein to the untransformed and transformed states of the L cell glucocorticoid receptor. J. Biol. Chem. 262:6986–6991.

    PubMed  CAS  Google Scholar 

  51. Mendel, D.B., Bodwell, J.E., Gametchu, B., Harrison, R.W., Munck, A. (1986) Molybdate-stabilized nonactivated glucocorticoid-receptor complexes contain a 90-kDa non-steroid-binding phosphoprotein that is lost on activation. J. Biol. Chem. 261:3758:3763.

    PubMed  Google Scholar 

  52. Chirico, W.J., Waters, M.G., Blobel, G. (1988) 70K heat shock related proteins stimulate protein translocation into microsomes. Nature 332:805–810.

    Article  PubMed  CAS  Google Scholar 

  53. Deshaies, R.J., Koch, B.D., Werner-Washburne, M., Craig, E.A., Schekman, R. (1988) A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides. Nature 332:800–805.

    Article  PubMed  CAS  Google Scholar 

  54. Bresnick, E.H., Dalman, F.C., Sanchez, E.R., Pratt, W.B. (1989) Evidence that the 90-kDa heat shock protein is necessary for the steroid binding conformation of the L cell glucocorticoid receptor. J. Biol. Chem. 264:4992–4997.

    PubMed  CAS  Google Scholar 

  55. Scherrer, L.C., Dalman, F.C., Massa, E., Meshinchi, S., Pratt, W.B. (1990) Structural and functional reconstitution of the glucocorticoid receptor-hsp90 complex. J. Biol. Chem. 265:21397–21400.

    PubMed  CAS  Google Scholar 

  56. Dalman, F.C., Bresnick, E.H., Patel, P.D., Perdew, G.H., Watson, S.J., Pratt, W.B. (1989) Direct evidence that the glucocorticoid receptor binds to hsp90 at or near the termination of receptor translation in vitro. J. Biol. Chem. 264:19815–19821.

    PubMed  CAS  Google Scholar 

  57. Dalman, F.C., Koenig, R.J., Perdew, G.H., Massa, E., Pratt, W.B. (1990) In contrast to the glucocorticoid receptor, the thyroid hormone receptor is translated in the DNA binding state and is not associated with hsp90. J. Biol. Chem. 265:3615–3618.

    PubMed  CAS  Google Scholar 

  58. Sullivan, W.P., Smith, D.F., Beito, T.G., Krco, C.J., Toft, D.O. (1988) Hormone-dependent processing of the avian progesterone receptor. J. Cell. Biochem. 36:103–119.

    Article  PubMed  CAS  Google Scholar 

  59. Howard, K.J., Holley, S.J., Yamamoto, K.R., Distelhort, C.W. (1990) Mapping the hsp90 binding region of the glucocorticoid receptor. J. Biol. Chem. 265:11928–11935.

    PubMed  CAS  Google Scholar 

  60. Pratt, W.B., Jolly, D.J., Pratt, D.V., Hollenberg, S.M., Giguere, V., Cadepond, F.M., Schweizer-Groyer, G., Catelli, M.-G., Evans, R.M., Baulieu, E.-E. (1988) A region in the steroid binding domain determines formation of the non-DNA binding, 9 S glucocorticoid receptor complex. J. Biol. Chem. 263:267–273.

    PubMed  CAS  Google Scholar 

  61. Denis, M., Gustafsson, J.-A., Wikström, A.-C. (1988) Interaction of the Mr = 90,000 heat shock protein with the steroid-binding domain of the glucocorticoid receptor. J. Biol. Chem. 263:18520–18523.

    PubMed  CAS  Google Scholar 

  62. Carson-Jurica, M.A., Lee, A.T., Dobson, A.W., Conneely, O.M., Schrader, W.T., O’Malley, B.W. (1989) I. Steroid receptors and gene expression. Interaction of the chicken progesterone receptor with heat shock protein (hsp) 90. J. Steroid Biochem. 34:1–9.

    CAS  Google Scholar 

  63. Dalman, F.C., Scherrer, L.C., Taylor, L.P., Akil, H., Pratt, W.B. (1991) Localization of the 90-kDa heat shock protein-binding site within the hormone-binding domain of the glucocorticoid receptor by peptide competition. J. Biol. Chem. 266:3482–3490.

    PubMed  CAS  Google Scholar 

  64. Housley, P.R., Sanchez, E.R., Danielsen, M., Ringold, G.M., Pratt, W.B. (1990) Evidence that the conserved region in the steroid binding domain of the glucocorticoid receptor is required for both optimal binding of hsp90 and protection from proteolytic cleavage. A two-site model for hsp90 binding to the steroid binding domain. J. Biol. Chem. 265:12778–12781.

    CAS  Google Scholar 

  65. Smith, D.F., Schowalter, D.B., Kost, S.L., Toft, D.O. (1990) Reconstitution of progesterone receptor with heat shock proteins. Mol. Endocrinol. 4:1704–1711.

    Article  PubMed  CAS  Google Scholar 

  66. Murdoch, F.E., Meier, D.A., Furlow, D., Grunwald, K.A.A., Gorski, J. (1990) Estrogen receptor binding to a DNA response element in vitro is not dependent upon estradiol. Biochemistry 29:8377–8385.

    Article  PubMed  CAS  Google Scholar 

  67. Brown, M., Sharp, P.A. (1990) Human estrogen receptor forms multiple protein-DNA complexes. J. Biol. Chem. 265:11238–11243.

    PubMed  CAS  Google Scholar 

  68. Willmann, T., Beato, M. (1986) Steroid-free glucocorticoid receptor binds specifically to mouse mammary tumour virus DNA. Nature 324:686–691.

    Article  Google Scholar 

  69. Curtis, S.W., Korach, K.S. (1990) Estrogen receptor interaction with estrogen-responsive DNA sequences in vitro: Effects of ligand binding on receptor-DNA complexes. Mol. Endocrinol. 4:276–286.

    Article  PubMed  CAS  Google Scholar 

  70. Lees, J.A., Fawell, S.E., Parker, M.G. (1989) Identification of two transactivation domains in the mouse estrogen receptor. Nucleic Acids Res. 17:5477–5488.

    Article  PubMed  CAS  Google Scholar 

  71. Schauer, M., Chalepakis, G., Willmann, T., Beato, M. (1989) Binding of hormone accelerates the kinetics of glucocorticoid and progesterone receptor binding to DNA. Proc. Natl. Acad. Sci. U.S.A. 86:1123–1127.

    Article  PubMed  CAS  Google Scholar 

  72. Bailly, A., le Page, C., Rauch, M., Milgrom, E. (1986) Sequence-specific DNA binding of the progesterone receptor to the uteroglobin gene: Effects of hormone, anti-hormone and receptor phosphorylation. EMBO J. 5:3235–3241.

    PubMed  CAS  Google Scholar 

  73. Sabbah, M., Gouilleux, F., Sola, B., Redeuilh, G., Baulieu, E.-E. (1991) Structural differences between the hormone and anti-hormone estrogen receptor complexes bound to the hormone response element. Proc. Natl. Acad. Sci. U.S.A. 88:390–394.

    Article  PubMed  CAS  Google Scholar 

  74. Edwards, D.P., Kühnel, B., Estes, P.A., Nordeen, S.K. (1989) Human progesterone receptor binding to mouse mammary tumor virus DNA: Dependence on hormone and non-receptor nuclear factor(s). Mol. Endocrinol. 3:381–391.

    Article  PubMed  CAS  Google Scholar 

  75. DeMarzo, A.M., Beck, C.A., Onate, S.A., Edwards, D.P. (1991) Evidence for dimerization of mammalian progesterone receptors in the absence of DNA: Possible modulation of dimerization by the 90 kDa heat shock protein. Proc. Natl. Acad. Sci. U.S.A., in press.

    Google Scholar 

  76. Kumar, V., Chambon, P. (1988) The estrogen receptor binds tightly to its responsive element as a ligand-induced homodimer. Cell 55:145–156.

    Article  PubMed  CAS  Google Scholar 

  77. Bagchi, M.K., Elliston, J.F., Tsai, S.Y., Edwards, D.P., Tsai, M.-J., O’Malley, B.W. (1988) Steroid hormone-dependent interaction of human progesterone receptor with its target enhancer element. Mol. Endocrinol. 2:1221–1229.

    Article  PubMed  CAS  Google Scholar 

  78. Denis, M., Poellinger, L., Wikström, A.-C., Gustafsson, J.-A. (1988) Requirement of hormone for thermal conversion of the glucocorticoid receptor to a DNA binding state. Nature 333:686–688.

    Article  PubMed  CAS  Google Scholar 

  79. De Thé, H., del mar Vivanco-Ruiz, M., Tiollais, P., Stunnenberg, H., Dejean, A. (1990) Identification of a retinoic acid responsive element in the retinoic acid receptor β gene. Nature 343:177–180.

    Article  PubMed  Google Scholar 

  80. Damm, K., Thompson, C.C., Evans, R.M. (1989) Protein encoded by v-erbA functions as a thyroid-hormone receptor antagonist. Nature 339:593–597.

    Article  PubMed  CAS  Google Scholar 

  81. Liao, J., Ozono, K., Sone, T., McDonnell, D.P., Pike, J.W. (1990) Vitamin D receptor interaction with specific DNA requires a nuclear protein and 1, 25-dihydroxyvitamin D3. Proc. Natl. Acad. Sci. U.S.A. 87:9751–9755.

    Article  PubMed  CAS  Google Scholar 

  82. Feavers, I.M., Jiricny, J., Moncharmont, B., Saluz, H.P., Jost, J.P. (1987) Interaction of two nonhistone proteins with the estradiol response element of the avian vitellogenin gene modulates the binding of estradiol-receptor complex. Proc. Natl. Acad. Sci. U.S.A. 84:7453–7457.

    Article  PubMed  CAS  Google Scholar 

  83. Cavanaugh, A.H., Simons, S.S., Jr (1990) Glucocorticoid receptor binding to calf thymus DNA. 1. Identification and characterization of a macromolecular factor involved in receptor-steroid complex binding to DNA. Biochemistry 29:989–996.

    CAS  Google Scholar 

  84. Burnside, J., Darling, D.S., Chin, W.W. (1990) A nuclear factor that enhances binding of thyroid hormone receptors to thyroid hormone response elements. J. Biol. Chem. 265:2500–2504.

    PubMed  CAS  Google Scholar 

  85. Murray, M.B., Towle, H.C. (1989) Identification of nuclear factors that enhance binding of the thyroid hormone receptor to a thyroid hormone response element. Mol. Endocrinol. 3:1434–1442.

    Article  PubMed  CAS  Google Scholar 

  86. Schleif, R. DNA binding by proteins. Science 241:1182–1187.

    Google Scholar 

  87. Yamamoto, K.K., Gonzalez, G.A., Biggs, W.H. HI, Montminy, M.R. (1987) Phosphorylation-induced binding and transcriptional efficacy of nuclear factor CREB. Nature 328:175–178.

    Article  Google Scholar 

  88. Landschulz, W.H., Johnson, P.F., McKnight, S.L. (1989) The DNA binding domain of the rat liver nuclear protein C/EBP is bipartite. Science 243:1681–1688.

    Article  PubMed  CAS  Google Scholar 

  89. Fawell, S.E., Lees, J.A., White, R., Parker, M.G. (1990) Characterization and colocalization of steroid binding and dimerization activities in the mouse estrogen receptor. Cell 60:953–962.

    Article  PubMed  CAS  Google Scholar 

  90. Gordon, M.S., Notides, A.C. (1986) Computer modeling of estradiol interactions with the estrogen receptor. J. Steroid Biochem. 25:177–181.

    Article  PubMed  CAS  Google Scholar 

  91. Jensen, E.V., Greene, G.L., Closs, L.E., DeSombre, E.R., Nadji, M. (1982) Receptors reconsidered: A 20-year perspective. Recent Prog. Horm. Res. 38:1–34.

    PubMed  CAS  Google Scholar 

  92. Tsai, S.Y., Carlstedt-Duke, J., Weigel, N.L., Dahlman, K., Gustafsson, J.-Å., Tsai, M.-J., O’Malley, B.W. (1988) Molecular interactions of steroid hormone receptor with its enhancer element: Evidence for receptor dimer formation. Cell 55:361–369.

    Article  PubMed  CAS  Google Scholar 

  93. Wrange, Ö., Eriksson, P., Perlmann, T. (1989) The purified activated glucocorticoid receptor is a homodimer. J. Biol. Chem. 264:5253–5259.

    PubMed  CAS  Google Scholar 

  94. Guiochon-Mantel, A., Loosfelt, H., Lescop, P., Sar, S., Atger, M., Perrot-Applanat, M., Milgrom, E. (1989) Mechanisms of nuclear localization of the progesterone receptor: Evidence for interaction between monomers. Cell 57:1147–1154.

    Article  PubMed  CAS  Google Scholar 

  95. Rodriguez, R., Weigel, N.L., O’Malley, B.W., Schrader, W.T. (1990) Dimerization of the chicken progesterone receptor in vitro can occur in the absence of hormone and DNA. Mol. Endocrinol. 4:1782–1790.

    Article  PubMed  CAS  Google Scholar 

  96. Hope, I.A., Struhl, K. (1987) A eukaryotic transcription activator protein binds as a dimer to target DNA. EMBO J. 6:2781–2784.

    PubMed  CAS  Google Scholar 

  97. Puri, R.K., Grandics, P., Dougherty, J.J., Toft, D.O. (1982) Purification of ‘nontransformed’ avian progesterone receptor and preliminary characterization. J. Biol. Chem. 257:10831–10837.

    PubMed  CAS  Google Scholar 

  98. Busch, S.J., Sassone-Corsi, P. (1990) Dimers, leucine zippers and DNA-binding domains. TIG 6:36–40.

    Article  PubMed  CAS  Google Scholar 

  99. Glass, C.K., Lipkin, S.M., Devary, O.V., Rosenfeld, M.G. (1989) Positive and negative regulation of gene transcription by a retinoic acid-thyroid hormone receptor heterodimer. Cell 59:697–708.

    Article  PubMed  CAS  Google Scholar 

  100. Moudgil, V.K. (1990) Phosphorylation of steroid hormone receptors. Biochim. Biophys. Acta 1055:243–258.

    Article  PubMed  CAS  Google Scholar 

  101. Lahooti, H., Thorsen, T., Aakvaag, A. (1990) Phosphorylation of the estradiol receptor in MCF-7 human breast cancer cells in culture. Mol. Cell. Endocrinol. 74:21–32.

    Article  PubMed  CAS  Google Scholar 

  102. Washburn, T., Hocutt, A., Brautigan, D.L., Korach, K.S. (1991) Uterine estrogen receptor in vivo: Phosphorylation of nuclear specific forms on serine residues. Mol. Endocrinol. 5:235–242.

    Article  PubMed  CAS  Google Scholar 

  103. Orti, E., Mendel, D.B., Smith, L.I., Munck, A. (1989) Agonist-dependent phosphorylation and nuclear dephosphorylation of glucocorticoid receptors in intact cells. J. Biol. Chem. 264:9728–9731.

    PubMed  CAS  Google Scholar 

  104. Brown, T.A., DeLuca, H.F. (1990) Phosphorylation of the 1, 25-dihydroxyvitamin D3 receptor. A primary event in 1, 25-dihydroxyvitamin D3 action. J. Biol. Chem. 265:10025–10029.

    CAS  Google Scholar 

  105. Pike, J.W., Sleator, N.M. (1985) Hormone-dependent phosphorylation of the 1, 25-dihydroxyvitamin D3 receptor in mouse fibroblasts. Biochem. Biophys. Res. Commun. 131:378–385.

    Article  PubMed  CAS  Google Scholar 

  106. van Laar, J.H., Berrevoets, C.A., Trapman, J., Zegers, N.D., Brinkmann, A.O. (1991) Hormone-dependent androgen receptor phosphorylation is accompanied by receptor transformation in human lymph node carcinoma of the prostate cells. J. Biol. Chem. 266:3734–3738.

    PubMed  Google Scholar 

  107. Sheridan, P.L., Krett, N.L., Gordon, J.A., Horwitz, K.B. (1988) Human progesterone receptor transformation and nuclear downregulation are independent of phosphorylation. Mol. Endocrinol. 2:1329–1342.

    Article  PubMed  CAS  Google Scholar 

  108. Logeat, F., Le Cunff, M., Pamphile, R., Milgrom, E. (1985) The nuclear-bound form of the progesterone receptor is generated through a hormone-dependent phosphorylation. Biochem. Biophys. Res. Commun. 131:421–427.

    Article  PubMed  CAS  Google Scholar 

  109. Denner, L.A., Weigel, N.L., Schrader, W.T., O’Malley, B.W. (1989) Hormonedependent regulation of chicken progesterone receptor deoxyribonucleic acid binding and phosphorylation. Endocrinology 125:3051–3058.

    Article  PubMed  CAS  Google Scholar 

  110. Sullivan, W.P., Madden, B.J., McCormick, D.J., Toft, D.O. (1988) Hormone-dependent phosphorylation of the avian progesterone receptor. J. Biol. Chem. 263:14717–14723.

    PubMed  CAS  Google Scholar 

  111. Denner, L.A., Schrader, W.T., O’Malley, B.W., Weigel, N.L. (1990) Hormonal regulation and identification of chicken progesterone receptor phosphorylation sites. J. Biol. Chem. 265:16548–16555.

    PubMed  CAS  Google Scholar 

  112. Sheridan, P.L., Francis, M.D., Horwitz, K.B. (1989) Synthesis of human progesterone receptors in T47D cells. Nascent A-and B-receptors are active without a phosphorylation-dependent post-translational maturation step. J. Biol. Chem. 264:7054–7058.

    CAS  Google Scholar 

  113. Hoeck, W., Groner, B. (1990) Hormone-dependent phosphorylation of the glucocorticoid receptor occurs mainly in the amino-terminal transactivation domain. J. Biol. Chem. 265:5403–5405.

    PubMed  CAS  Google Scholar 

  114. Dalman, F.C., Sanchez, E.R., Lin, A.L.-Y., Perini, F., Pratt, W.B. (1988) Localization of phosphorylation sites with respect to the functional domains of the mouse L cell glucocorticoid receptor. J. Biol. Chem. 263:12259–12267.

    PubMed  CAS  Google Scholar 

  115. Sheridan, P.L., Evans, R.M., Horwitz, K.B. (1988) Phosphotryptic peptide analysis of human progesterone receptors. New phosphorylated sites formed in nuclei after hormone treatment. J. Biol. Chem. 264:6520–6528.

    Google Scholar 

  116. McNaught, R.W., Raymoure, W.J., Smith, R.G. (1986) Receptor interconversion model of hormone action. I. ATP-mediated conversion of estrogen receptors from a high to lower affinity state and its relationship to antiestrogen action. J. Biol. Chem. 261:17011–17017.

    CAS  Google Scholar 

  117. Housley, P.R., Dahmer, M.K., Pratt, W.B. (1982) Inactivation of glucocorticoid-binding by protein phosphatases in the presence of molybdate and complete reactivation by dithiothreitol. J. Biol. Chem. 257:8615–8618.

    PubMed  CAS  Google Scholar 

  118. Migliaccio, A., Di Domenico, M., Green, S., De Falco, A., Kajtaniak, E.L., Blasi, F., Chambon, P., Auricchio, F. (1989) Phosphorylation on tyrosine of in vitro synthesized human estrogen receptor activates its hormone binding. Mol. Endocrinol. 3:1061–1069.

    Article  PubMed  CAS  Google Scholar 

  119. Ofenloch-Hähnle, B., Kunst, M., Eisele, K. (1986) In vitro transformation of androgen receptor from murine skeletal muscle by cAMP. Biochem. Biophys. Res. Commun. 135:1069–1075.

    Article  PubMed  Google Scholar 

  120. Nakao, M., Moudgil, V.K. (1989) Hormone specific phosphorylation and transformation of chicken oviduct progesterone receptor. Biochem. Biophys. Res. Commun. 164:295–303.

    Article  PubMed  CAS  Google Scholar 

  121. Berk, A.J. (1989) Regulation of eukaryotic transcription factors by post-translational modification. Biochim. Biophys. Acta 1009:103–109.

    Article  PubMed  CAS  Google Scholar 

  122. Gonzales, G.A., Montminy, M.R. (1989) Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at Ser 133. Cell 59:675–680.

    Article  Google Scholar 

  123. Gonzalez, G.A., Menzel, P., Leonard, J., Fischer, W.H., Montminy, M.R. (1991) Characterization of motifs which are critical for activity of the cyclic AMP-responsive transcription factor CREB. Mol. Cell. Biol. 11:1306–1312.

    PubMed  CAS  Google Scholar 

  124. Denner, L.A., Weigel, N.L., Maxwell, B.L., Schrader, W.T., O’Malley, B.W. (1990) Regulation of progesterone-mediated transcription by phosphorylation. Science 250:1740–1743.

    Article  PubMed  CAS  Google Scholar 

  125. Beck, C.A. (1990) Evidence that phosphorylation of human progesterone receptor regulates transcriptional activity, but not DNA-binding. The Endocrine Society, submitted.

    Google Scholar 

  126. Boyle, D.M., van der Walt, L.A. (1988) Enhanced phosphorylation of progesterone receptor by protein kinase C in human breast cancer cells. J. Steroid Biochem. 30:239–244.

    Article  PubMed  CAS  Google Scholar 

  127. Rao, K.V.S., Peralta, W.D., Greene, G.L., Fox, C.F. (1987) Cellular progesterone receptor phosphorylation in response to ligands activating protein kinases. Biochem. Biophys. Res. Commun. 146:1357–1365.

    Article  PubMed  CAS  Google Scholar 

  128. Aronica, S.M., Katzenellenbogen, B.S. (1991) Progesterone receptor regulation in uterine cells: Stimulation by estrogen, cyclic adenosine 3′, 5′-monophosphate, and insulin-like growth factor I and suppression by antiestrogens and protein kinase inhibitors. Endocrinology 128:2045–2052.

    Article  PubMed  CAS  Google Scholar 

  129. Vacca, A., Screpanti, I., Maroder, M., Petrangeli, E., Frati, L., Gulino, A. (1989) Tumor-promoting phorbol ester and ras oncogene expression inhibit the glucocorticoid-dependent transcription from the mouse mammary tumor virus long terminal repeat. Mol. Endocrinol. 3:1659–1665.

    Article  PubMed  CAS  Google Scholar 

  130. Goldberg, Y., Gilneur, C., Gesquière, Ricouart, A., Sap, J., Vennström, B., Ghysdael, J. (1988) Activation of protein kinase C or cAMP-dependent protein kinase increases phosphorylation of the c-erbA-encoded thyroid hormone receptor and of the v-erbA-encoded protein. EMBO J. 7:2425–2433.

    PubMed  CAS  Google Scholar 

  131. Philibert, D. (1984) RU 38486: An original multifaceted antihormone in vivo. In: Agarwal, M.K., ed., Adrenal Steroid Antagonism. Walter de Gruyter, Germany, pp. 77–101.

    Google Scholar 

  132. Gagne, D., Pons, M., Philibert, D. (1985) RU 38486: A potent antiglucocorticoid in vitro and in vivo. J. Steroid Biochem. 23:247–251.

    Article  PubMed  CAS  Google Scholar 

  133. Philibert, D., Moguilewsky, M., Mary, I., Lecaque, D., Tournemine, C., Secchi, J., Deraedt, R. (1985) Pharmacological profile of RU 486 in animals. In: Baulieu, E.-E., Segal, S.J., eds., The Antiprogestin Steroid RU 486 and Human Fertility Control. Plenum, New York, pp. 49–68.

    Chapter  Google Scholar 

  134. Elger, W., Beier, S., Chwalisz, K., Fähnrich, M., Hasan, S.H., Henderson, D., Neef, G., Rohde, R. (1986) Studies on the mechanisms of action of progesterone antagonists. J. Steroid Biochem. 25:835–845.

    Article  PubMed  CAS  Google Scholar 

  135. Baulieu, E.-E. (1987) Steroid hormone antagonists at the receptor level: A role for the heat-shock protein MW 90,000 (hsp 90). J. Cell. Biochem. 35:161–174.

    Article  PubMed  CAS  Google Scholar 

  136. Baulieu, E.-E. (1989) Contragestion and other clinical applications of RU 486, an antiprogesterone at the receptor. Science 245:1350–1357.

    Article  Google Scholar 

  137. Rauch, M., Loosfelt, H., Philibert, D., Milgrom, E. (1985) Mechanism of action of an antiprogesterone, RU 486, in the rabbit endometrium. Effects of RU 486 on the progesterone receptor and on the expression of the uteroglobin gene. J. Biochem. 148:213–218.

    CAS  Google Scholar 

  138. Guiochon-Mantel, A., Loosfelt, H., Ragot, T., Bailly, A., Atger, M., Misrahi, M., Perricaudet, M., Milgrom, E. (1988) Receptors bound to antiprogestins form abortive complexes with hormone responsive elements. Nature 336:695–698.

    Article  PubMed  CAS  Google Scholar 

  139. Moguilewsky, M., Philibert, D. (1984) RU 38486: Potent antiglucocorticoid activity correlated with strong binding to the cytosolic glucocorticoid receptor followed by an impaired activation. J. Steroid Biochem. 20:271–276.

    Article  PubMed  CAS  Google Scholar 

  140. Bourgeois, S., Pfahl, M., Baulieu, E.-E. (1984) DNA binding properties of glucocorticosteroid receptors bound to the steroid antagonist RU-486. EMBO J. 3:751–755.

    PubMed  CAS  Google Scholar 

  141. Schmidt, T.J. (1986) In vitro activation and DNA binding affinity of human lymphoid (CEM-C7) cytoplasmic receptors labeled with the antiglucocorticoid RU 38486. J. Steroid Biochem. 24:853–863.

    Article  PubMed  CAS  Google Scholar 

  142. Groyer, A., Schweizer-Groyer, G., Cadepond, F., Mariller, M., Baulieu, E.-E. (1987) Antiglucocorticosteroid effects suggest why steroid hormone is required for receptors to bind DNA in vivo but not in vitro. Nature 328:624–626.

    Article  PubMed  CAS  Google Scholar 

  143. Distelhorst, C.W., Howard, K.J. (1990) Evidence from pulse-chase labeling studies that the antiglucocorticoid hormone RU 486 stabilizes the nonactivated form of the glucocorticoid receptor in mouse lymphoma cells. J. Steroid Biochem. 36:25–31.

    Article  PubMed  CAS  Google Scholar 

  144. Beck, C.A., Nordeen, S.K., Edwards, D.P. (1991) The steroid antagonist, RU 486, exerts its antiglucocorticoid and antiprogesterone effects through different receptor mechanisms. Endocrinology, submitted.

    Google Scholar 

  145. Wei, L.L., Kret, N.L., Francis, M.D., Gordon, D.F., Wood, W.M., O’Malley, B.W., Horwitz, K.B. (1988) Multiple human progesterone receptor messenger ribonucleic acids and their autoregulation by progestin agonists and antagonists in breast cancer cells. Mol. Endocrinol. 2:62–72.

    Article  PubMed  CAS  Google Scholar 

  146. Demarzo, A.M., Nordeen, S.K., Edwards, D.P. (1991) The progesterone antagonist RU 486, promotes enhanced dimerization of human progesterone receptors. Cell, submitted.

    Google Scholar 

  147. Kühnel, B., El-Ashry, D., Edwards, D.P., Nordeen, S.K. (1989) Mapping contacts between unpurified human progesterone receptor and the hormone response element of mouse mammary tumor virus. DNA 8:703–713.

    Article  PubMed  Google Scholar 

  148. Mullick, A., Katzenellenbogen, B.S. (1986) Antiprogestin-receptor complexes: Differences in the interaction of the antiprogestin RU38,486 and the progestin R5020 with the progesterone receptor of human breast cancer cells. Biochem. Biophys. Res. Commun. 35:90–97.

    Article  Google Scholar 

  149. Renoir, J.-M., Radanyi, C., Baulieu, E.-E. (1989) The antiprogesterone RU486 stabilizes the heterooligomeric, non-DNA-binding, 8S-form of the rabbit uterus cytosol progesterone receptor. Steroids 53:1–20.

    Article  PubMed  CAS  Google Scholar 

  150. Geier, A., Bella, R., Beery, R., Haimsohn, M., Lunenfeld, B. (1987) Differences in the association of the progesterone receptor ligated by antiprogestin RU38486 or progestin ORG 2058 to chromatin components. Biochim. Biophys. Acta 931:78–86.

    Article  PubMed  CAS  Google Scholar 

  151. Maass, H., Junat, W., Stulzcnbagh, G., Trans, G. (1980) The problem of non-responding estrogen receptor-positive patients with advanced breast cancer. Cancer 46:2835–2837.

    Article  PubMed  CAS  Google Scholar 

  152. Benner, S.E., Clark, G.M., McGuire, W.L. (1988) Review: Steroid receptors, cellular kinetics, and lymph node status as prognostic factors in breast cancer. Am. J. Med. Sci. 296:59–66.

    Article  PubMed  CAS  Google Scholar 

  153. Sluyser, M. (1990) Steroid/thyroid receptor-like proteins with oncogenic potential: A review. Cancer Res. 50:451–458.

    PubMed  CAS  Google Scholar 

  154. Murphy, L.C., Dotzlaw, H. (1989) Variant estrogen receptor mRNA species detected in human breast cancer biopsy samples. Mol. Endocrinol. 3:687–693.

    Article  PubMed  CAS  Google Scholar 

  155. Garcia, T., Lehrer, S., Bloomer, W.D., Schachter, B. (1988) A variant estrogen receptor messenger ribonucleic acid is associated with reduced levels of estrogen binding in human mammary tumors. Mol. Endocrinol. 2:785–791.

    Article  PubMed  CAS  Google Scholar 

  156. Murphy, L.C. (1990) At the cutting edge. Estrogen receptor variants in human breast cancer. Mol. Cell. Endocrinol. 74:C83–C86.

    Article  PubMed  CAS  Google Scholar 

  157. Fuqua, S.A.W., Fitzgerald, S.D., Chamness, G.C., Tandon, A.K., McDonnell, D.P., Nawaz, Z., O’Malley, B.W., McGuire, W.L. (1990) Variant human breast tumor estrogen receptor with constitutive transcriptional activity. Cancer Res. 51:105–109.

    Google Scholar 

  158. Wei, L.L., Gonzalez-Aller, C., Wood, W.M., Miller, L.A., Horwitz, K.B. (1990) 5′-Heterogeneity in human progesterone receptor transcripts predicts a new amino-terminal truncated ‘C’-receptor and unique A-receptor messages. Mol. Endocrinol. 4:1833–1840.

    Article  PubMed  CAS  Google Scholar 

  159. Dickson, R.B., Kasid, A., Huff, K.K., Bates, S.E., Knabbe, C., Bronzert, D., Gelmann, E.P., Lippman, M.E. (1987) Activation of growth factor secretion in tumorigenic states of breast cancer induced by 17β-estradiol or v-Ha-ras oncogene. Proc. Natl. Acad. Sci. U.S.A. 84:837–841.

    Article  PubMed  CAS  Google Scholar 

  160. Jaggi, R., Salmons, B., Muellener, D., Groner, B. (1986) The v-mos and H-ras oncogene expression represses glucocorticoid hormone-dependent transcription from the mouse mammary tumor virus LTR. EMBO J. 5:2609–2616.

    PubMed  CAS  Google Scholar 

  161. Jaggi, R., Friis, R., Groner, B. (1988) Oncogenes modulate cellular gene expression and repress glucocorticoid regulated gene transcription. J. Steroid Biochem. 29:457–463.

    Article  PubMed  CAS  Google Scholar 

  162. Qi, M., Hamilton, B.J., DeFranco, D. (1989) v-mos oncoproteins affect the nuclear retention and reutilization of glucocorticoid receptors. Mol. Endocrinol. 3:1279–1288.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Beck, C.A., Edwards, D.P. (1991). Progesterone receptors in breast cancer. In: Dickson, R.B., Lippman, M.E. (eds) Genes, Oncogenes, and Hormones. Cancer Treatment and Research, vol 61. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3500-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3500-3_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6552-5

  • Online ISBN: 978-1-4615-3500-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics