Skip to main content

The role of immunotherapy in the treatment of acute myeloblastic leukemia: from allogeneic bone marrow transplantation to the application of interleukin 2

  • Chapter
Leukemia: Advances in Research and Treatment

Part of the book series: Cancer Treatment and Research ((CTAR,volume 64))

Abstract

Three decades ago, few patients with acute myeloblastic leukemia (AML) achieved remission, and almost none were cured [1]. Now, with the application of modern intensive combination chemotherapy, more than 80% of children and young adults reach this first hurdle [2,3]. Although the majority are destined to relapse, if treated with this modality alone [4], this risk can be reduced to less than 20% by the use of allogeneic bone marrow transplantation (BMT) following myeloablative/immunosuppressive chemoradiotherapy [5]. Preclinical studies predicted an immunotherapeutic benefit of BMT [6,7] (vide infra), but prior to our understanding of the HLA system and the use of BMT, the first clinical attempts to apply immunological measures in the treatment of leukemia involved studies with Bacille Calmette Guerin vaccination done by Mathe [8]. Subsequent randomized studies demonstrated no effect on length of remission but did show prolongation of postrelapse survival-the first evidence of benefit from planned immunotherapy (as opposed to spontaneous cures seen in the occasional patient). These studies indicated limited benefit, but they did herald the modern era of immunotherapy in which recombinant technology has made relevant cytokines available in therapeutic quantities. We reason that the antileukemic immunological benefits of allogeneic BMT identified in man as the graft versus leukemia (GvL) phenomenon [5] can be induced by Interleukin 2 [9] without the requirement for a donor and that its use in the setting of minimal residual disease (MRD) in AML deserves further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mangalik A, Boggs DR, Wintrobe MM, Cartwright GE (1966). The influence of chemotherapy on survival in acute leukaemia III A comparison of patients treated during 1958-1964 with those treated in two sequentially preceding periods. Blood 27: 490–498.

    PubMed  CAS  Google Scholar 

  2. Nesbit ME, Woods WG (1992). Therapy of acute myeloid leukemia in children. Leukemia 6(Suppl 2):31–35.

    PubMed  Google Scholar 

  3. Zittoun R (1992). Chemotherapy of acute myelogenous leukemia. A review. Leukemia 6(Suppl 2):36–38.

    Google Scholar 

  4. Preisler HD, Raza A (1992). Current problems in the treatment of acute myelocytic leukemia (AML) and some possible solutions. Leukemia 6(Suppl 2): 81–84.

    PubMed  Google Scholar 

  5. Horowitz MM, Gale RP, Sondel PM, et al. (1990). Graft versus leukemia reactions after bone marrow transplantation. Blood 75: 555–562.

    PubMed  CAS  Google Scholar 

  6. Barnes DWH, Loutit JF (1957). Treatment of murine leukaemia with X-rays and homologous bone marrow: II. Br J Haematol 3: 241–252.

    Article  PubMed  CAS  Google Scholar 

  7. Weiss L, Morecki S, Vitetta ES, Slavin S (1983). Suppression and elimination of BCL1 leukemia by allogeneic bone marrow transplantation. J Immunol 130: 2452–2455.

    PubMed  CAS  Google Scholar 

  8. Mathe G, Schwarzenberg L, Amiel JL, Schneider M, Cattan A, Schlumberger JR (1967). The immunological approach to the treatment of human cancer. Eur J Cancer 3: 423–433.

    Article  PubMed  CAS  Google Scholar 

  9. Verdonck LF, van Heughten HG, Giltray J, Franks CR (1991). Amplification of the graft versus leukemia effect in man by interleukin 2. Transplantation 51: 1120–1124.

    Article  PubMed  CAS  Google Scholar 

  10. Truitt RL, Shih C, LeFever AV (1986). Manipulation of graft versus host disease for a graft versus leukemia effect after allogeneic bone marrow transplantation in AKR mice with spontaneous leukemia/lymphoma. Transplantation 41: 301–310.

    Article  PubMed  CAS  Google Scholar 

  11. Truitt RL, Atasoylu AA (1991). Contribution of CD4+ and CD8+ T cells to graft versus host disease and graft versus leukemia reactivity after transplantation of MHC compatible bone marrow. Bone Marrow Transplant 8: 51–58.

    PubMed  CAS  Google Scholar 

  12. Truitt RL, LeFever AV, Shih CY, Jeske J, Martin T (1990). Graft versus leukemia effect. In Graft vs. Host Disease: Immunology, Pathophysiology and Treatment, Burakoff SJ, Deeg HJ, Ferrara J, Atkinson K (eds). Marcel Dekker: New York, pp. 177–204.

    Google Scholar 

  13. Sykes M, Romick ML, Sachs DH (1990). Interleukin 2 prevents graft-versus-host disease while preserving the graft-versus-leukemia effect of allogeneic T cells. Proc Natl Acad Sci USA 87: 5633–5637.

    Article  PubMed  CAS  Google Scholar 

  14. Sykes M, Eisenthal A, Sachs DH (1988). Mechanism of protection from graft-vs.-host disease in murine mixed allogeneic chimeras. I. Development of a null cell population suppressive of cell-mediated lympholysis responses and derived from the syngeneic bone marrow component. J Immunol 140: 2903–2911.

    PubMed  CAS  Google Scholar 

  15. Sykes M, Romick ML, Hoyles KA, Sachs DH (1990). In vivo administration of interleukin 2 plus T cell-depleted syngeneic marrow prevents graft-versus-host disease mortality and permits alloengraftment. J Exp Med 171: 645–658.

    Article  PubMed  CAS  Google Scholar 

  16. Uberti J, Martilotti F, Chou T, Kaplan J (1992). Human lymphokine activated killer (LAK) cells suppress generation of allospecific cytotoxic T cells: implications for use of LAK cells to prevent graft versus host disease in allogeneic bone marrow transplantation. Blood 79: 261–268.

    PubMed  CAS  Google Scholar 

  17. Rees J. Personal communication; Medical Research Council AML 9 data on file.

    Google Scholar 

  18. Hamon MD, Cunningham JM, Gilmore M, et al. (1991). Allogeneic T cell depleted (TCD) bone marrow transplantation (BMT) for patients with acute leukaemia in first remission. Haematologica 76: 68.

    Google Scholar 

  19. Weiden PI, Sullivan KM, Flournoy N, Storb R, Thomas ED (1979). Antileukemic effect of graft-versus-host disease in human recipients of allogeneic bone marrow grafts. N Engl J Med 300: 1068–1073.

    Article  PubMed  CAS  Google Scholar 

  20. Ferrara JLM, Deeg HJ (1991). Graft-versus host-disease. N Engl J Med 324: 667–674.

    Article  PubMed  CAS  Google Scholar 

  21. Pollard CM, Powles RL, Miller JL, et al. (1986). Leukaemic relapse following Campath-1 treated bone marrow transplantation for leukaemia. Lancet ii: 1343–1344.

    Article  Google Scholar 

  22. Atkinson K, Biggs J, Dodds A et al. (1988). High incidence of early leukaemic relapse in patients given cyclosporin and T cell depleted HLA identical sibling marrow transplants for acute leukaemia in first remission. Aust NZ J Med 18: 587–593.

    Article  CAS  Google Scholar 

  23. Burnett AK, Hann IM, Robertson AG, et al. (1988). Prevention of graft versus host disease by ex vivo T cell depletion: reduction in graft failure with augmented total body irradiation. Leukemia 2: 300–303.

    PubMed  CAS  Google Scholar 

  24. Gale RP, personal communication.

    Google Scholar 

  25. Kim TH, McGlave PB, Ramsay N, et al. (1990). Comparison of two total body irradiation regimens in allogeneic bone marrow transplantation for acute non-lymphoblastic leukemia in first remission. Int J Radiat Oncol Biol Phys 19: 889–897.

    Article  PubMed  CAS  Google Scholar 

  26. Salomon O, Lapidot T, Terenzi A, Lubin I, Rabi I, Reisner Y (1990). Induction of donor type chimerism in murine recipients of bone marrow allografts by different radiation regimens currently used in treatment of leukemia patients. Blood 76: 1872–1878.

    PubMed  CAS  Google Scholar 

  27. Maraninchi D, Gluckman E, Blaise D, et al. (1987). Impact of T cell depletion on outcome of allogeneic bone marrow transplantation for standard risk leukaemias. Lancet ii: 175–178.

    Article  Google Scholar 

  28. Mitsuyasu RT, Champlin RE, Gale RP, et al. (1986). Treatment of donor bone marrow with monoclonal anti-T cell antibody and complement for the prevention of graft versus host disease. Ann Intern Med 105: 20–26.

    PubMed  CAS  Google Scholar 

  29. Clift RA, Buckner CD, Appelbaum FR, et al. (1990). Allogeneic marrow transplantation in patients with acute myeloid leukemia in first remission: A randomized trial of two irradiation regimens. Blood 76: 1867–1871.

    PubMed  CAS  Google Scholar 

  30. Storb R, Deeg HJ, Pepe M, et al. (1989). Methotrexate and cyclosporine versus cyclosporin alone for prophylaxis of graft versus host disease in patients given HLA idetical marrow grafts for leukemia: long term follow up of a controlled trial. Blood 73: 1729–1734.

    PubMed  CAS  Google Scholar 

  31. Antin JH, Bierer BE, Smith BR, et al. (1991). Selective depletion of bone marrow T lymphocytes with anti CD5 monoclonal antibodies—effective prophylaxis for graft-versus-host disease in patients with hematologic malignancies. Blood 78: 2139–2149.

    PubMed  CAS  Google Scholar 

  32. Bacigalupo A, van Lint MT, Occhini D, et al. (1991). Increased risk of leukemic relapse with high dose cyclosporin A after allogeneic marrow transplant for acute leukemia. Blood 77: 1423–1428.

    PubMed  CAS  Google Scholar 

  33. Jones RJ, Vogelsang GB, Hess AD, et al. (1989). Induction of graft-versus-host disease after autologous bone marrow transplantation. Lancet i:754–757.

    Article  Google Scholar 

  34. Talbot DC, Powles RL, Sloane JP, et al. (1990). Induced graft versus host disease following autologous bone marrow transplantation in acute myeloid leukemia. Bone Marrow Transplantation 6: 17–20.

    PubMed  CAS  Google Scholar 

  35. Sullivan KM, Storb R, Buckner CD, et al. (1989). Graft versus host disease as adoptive immunotherapy in patients with advanced hematologic neoplasms. N Engl J Med 320: 828–838.

    Article  PubMed  CAS  Google Scholar 

  36. Kolb HJ, Mittermuller J, Clemm CH, et al. (1990). Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. Blood 76: 2462–2465.

    PubMed  CAS  Google Scholar 

  37. Brenner MK, Heslop HE (1992). Immunotherapy of Leukemia. Leukemia 6(Suppl 1):76–79.

    PubMed  Google Scholar 

  38. Fisch P, Malkovsky M, Kovats S, et al. (1990). Recognition by human Vγ9/Vδ2 T cells of a GroEL homolog on Daudi Burkitt’s lymphoma cells. Science 250: 1269–1273.

    Article  PubMed  CAS  Google Scholar 

  39. Reittie JE, Gottlieb D, Heslop HE, et al. (1989). Endogenously generated activated killer cells circulate after autologous and allogeneic marrow transplantation but not after chemotherapy. Blood 73: 1351–1355.

    PubMed  CAS  Google Scholar 

  40. Price G, Brenner MK, Prentice HG, Hoffbrand AV, Newland AC (1986). Cytotoxic effects of tumour necrosis factor and gamma interferon on acute myeloid leukaemia blasts. Br J Cancer 55: 287–290.

    Article  Google Scholar 

  41. Ikinciogullari A, Oblakowski P, Hamon MD, et al. (submitted). Activation marker expression on the peripheral blood lymphocytes of normal volunteers, recipients of interleukin 2 and patients undergoing bone marrow transplantation.

    Google Scholar 

  42. Heslop HE, Gottlieb DJ, Bianchi AC, et al. (1989). In vivo induction of gamma interferon and tumour necrosis factor by interleukin 2 infusion following intensive chemotherapy or autologous marrow transplantation. Blood 74: 1374–1380.

    PubMed  CAS  Google Scholar 

  43. Prentice HG, Hamon MD, Cunningham JM, et al. (1991). Autologous bone marrow transplantation (ABMT) with or without interleukin 2 (IL2) immunotherapy for patients with acute myeloblastic leukaemia (AML) in first remission. Haematologica 76: 55.

    Google Scholar 

  44. Weisdorf DJ, Anderson PM, Kersey JH, Ramsay NKC (1991). Interleukin 2 therapy immediately after autologous marrow transplantation: toxicity, T cell activation and engraftment. Blood 78(Suppl 1):226a.

    Google Scholar 

  45. Gottlieb DJ, Brenner MK, Heslop HE, et al. (1989). A phase I clinical trial of recombinant interleukin 2 following high dose chemotherapy for haematological malignancy: application to the elimination of minimal residual disease. Br J Cancer 60: 610–615.

    Article  PubMed  CAS  Google Scholar 

  46. Blaise D, Olive D, Stoppa AM, et al. (1990). Hematologic and immunologic effects of the systemic administration of recombinant interleukin 2 after bone marrow transplantation. Blood 76: 1092–1097.

    PubMed  CAS  Google Scholar 

  47. Blaise D, Stoppa AM, Viens, et al. (in press). Intensive immunotherapy with recombinant IL2 (rIL2) after autologous bone marrow transplantation (BMT) is associated with a high incidence of bacterial infections. Bone Marrow Transplant.

    Google Scholar 

  48. Macdonald D, Jiang YZ, Gordon AA, et al. (1990). Recombinant interleukin 2 for acute myeloid leukaemia in first complete remission: a pilot study Leuk Res 14: 967–973.

    Article  PubMed  CAS  Google Scholar 

  49. Macdonald D, Jiang YZ, Swirsky D, et al. (1991). Acute myeloid leukaemia relapsing following interleukin 2 treatment expresses the alpha chain of the interleukin 2 receptor. Br J Haematol 77: 43–49.

    Article  PubMed  CAS  Google Scholar 

  50. Foa R, Caretto P, Fierro MT, et al. (1990). Interleukin 2 does not promote the in vitro and in vivo proliferation and growth of human acute leukaemia cells of myeloid and lymphoid origin. Br J Haematol 75: 34–40.

    Article  PubMed  CAS  Google Scholar 

  51. Foa R, Meloni G, Tosti S, et al. (1990). Treatment of residual disease in acute leukaemia patients with recombinant interleukin 2 (IL2): clinical and biological functions. Bone Marrow Transplant 6(Suppl 1):98–102.

    PubMed  Google Scholar 

  52. Higuchi CM, Thompson JA, Petersen FB, et al. (1991). Toxicity and immunomodulatory effects of interleukin 2 after autologous bone marrow transplantation for hematologic malignancies. Blood 77: 2561–2568.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Prentice, H.G., Macdonald, I.D., Hamon, M.D. (1993). The role of immunotherapy in the treatment of acute myeloblastic leukemia: from allogeneic bone marrow transplantation to the application of interleukin 2. In: Freireich, E.J., Kantarjian, H. (eds) Leukemia: Advances in Research and Treatment. Cancer Treatment and Research, vol 64. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3086-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3086-2_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6348-4

  • Online ISBN: 978-1-4615-3086-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics