Skip to main content

Part of the book series: Cancer Treatment and Research ((CTAR,volume 66))

Abstract

Impressive improvements have occurred over the past 20 years in the development of curative therapies for patients with newly presenting intermediate and high grade lymphomas, as documented in the preceding chapters. However, patients with low grade lymphomas or relapsed non-Hodgin’s lymphomas of any grade are rarely cured with conventional doses of chemotherapy and radiation therapy. High-dose chemoradiotherapy in conjunction with bone marrow transplantation is capable of producing long-term disease-free survival in 20–50% of such patients [1, 2] but is associated with a 10–15% chance of treatment-related mortality. Development of novel new treatment approaches with higher cure rates and less toxicity, therefore, remains a high priority in the field of oncology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Appelbaum FR, Sullivan KM, Buckner CD, et al.: Treatment of malignant lymphoma in 100 patients with chemotherapy, total body irradiation, and marrow transplantation. J Clin Oncol 5:1340–1347, 1987.

    PubMed  CAS  Google Scholar 

  2. Freedman AS, Takvorian T, Anderson KC, et al.: Autologous bone marrow transplantation in B-cell non-Hodgkin’s lymphoma: very low treatment-related mortality in 100 patients in sensitive relapse. J Clin Oncol 8:784–791, 1990.

    PubMed  CAS  Google Scholar 

  3. Miller RA, Oseroff AR, Stratte PT, et al.: Monoclonal antibody therapeutic trials in seven patients with T-cell lymphoma. Blood 62:988–995, 1983.

    PubMed  CAS  Google Scholar 

  4. Press OW, Appelbaum F, Ledbetter JA, et al.: Monoclonal antibody 1F5 (anti-CD20) serotherapy of human B cell lymphomas. Blood 69:584–591, 1987.

    PubMed  CAS  Google Scholar 

  5. Meeker TC, Lowder J, Maloney DG, et al.: A clinical trial of anti-idiotype therapy for B cell malignancy. Blood 65:1349–1363, 1985.

    PubMed  CAS  Google Scholar 

  6. Brown SL, Miller RA, Levy R: Anti-idiotype antibody therapy of B-cell lymphoma. Semin Oncol 16:199–210, 1989.

    PubMed  CAS  Google Scholar 

  7. Grossbard ML, Press OW, Appelbaum FR, et al.: Monoclonal antibody based therapies of leukemia and lymphoma. Blood Vol. 80, No. 4 (August), pp. 863–878, 1992.

    PubMed  CAS  Google Scholar 

  8. Meeker T, Lowder J, Cleary ML, et al.: Emergence of idiotype variants during treatment of B-cell lymphoma with anti-idiotype antibodies. N Engl J Med 312:1658–1665, 1985.

    Article  PubMed  CAS  Google Scholar 

  9. Foon KA, Schroff RW, Bunn PA, et al.: Effects of monoclonal antibody therapy in patients with chronic lymphocytic leukemia. Blood 64:1085–1093, 1984.

    PubMed  CAS  Google Scholar 

  10. Hale G, Clark MR, Marcus R, et al.: Remission induction in non-Hodgkin lymphoma with reshaped human monoclonal antibody campath-lH. Lancet ••:1394–1399, 1988.

    Google Scholar 

  11. Vitetta ES, Krolick KA, Miyama-Inaba M, et al.: Immunotoxins: a new approach to cancer therapy. Science 219:644–649, 1983.

    Article  PubMed  CAS  Google Scholar 

  12. Simpkin DJ, Mackie TR: EGS4 Monte Carlo determination of the beta dose kernel in water. Med Physiol 17:179–186, 1990.

    Article  CAS  Google Scholar 

  13. Nourigat C, Badger CC, Bernstein ID: Treatment of lymphoma with radiolabeled antibody: elimination of tumor cells lacking target antigen. J Natl Cancer Inst 82:47–50, 1990.

    Article  PubMed  CAS  Google Scholar 

  14. Shawler DL, Bartholomew RM, Smith LM, et al.: Human immune response to multiple injections of murine monoclonal IgG. J Immunol 135:1530–1535, 1985.

    PubMed  CAS  Google Scholar 

  15. Schroff RW, Foon KA, Beatty SM, et al.: Human anti-murine immunoglobulin responses in patients receiving monoclonal antibody therapy. Cancer Res 45:879–885, 1985.

    PubMed  CAS  Google Scholar 

  16. Badger CC, Krohn KA, Peterson AV, et al.: Experimental radiotherapy of murine lymphoma with 131Mabeled ant-thy 1.1 monoclonal antibody. Cancer Res 45:1536–1544, 1985.

    PubMed  CAS  Google Scholar 

  17. Badger CC, Krohn KA, Shulman H, et al.: Experimental radioimmunotherapy of murine lymphoma with 131I-labeled anti-T-cell antibodies. Cancer Res 46:6223–6228, 1986.

    PubMed  CAS  Google Scholar 

  18. Press OW, Eary JF, Badger CC, et al.: Treatment of refractory non-Hodgkin’s lymphoma with radiolabeled MB-1 (anti-CD37) antibody. J Clin Oncol 7:1027–1038, 1989.

    PubMed  CAS  Google Scholar 

  19. Press OW, Eary J, Badger CC, et al.: Radiolabeled antibody therapy of human B cell lymphomas. In MZ Atassi, ed. Advances in Experimental Biology and Medicine. Immuno-biology of Proteins and Peptides VI. New York: Plenum Press, 1991, pp 91–96.

    Chapter  Google Scholar 

  20. DeNardo SJ, DeNardo GL, O’Grady LF, et al.: Treatment of B cell malignancies with 131I lym-1 monoclonal antibodies. In J Cancer 3(Suppl):96–101, 1988.

    Google Scholar 

  21. DeNardo GL, DeNardo SJ, O’Grady LF, et al.: Fractionated radioimmunotherapy of B-cell malignancies with 131I-lym-l. Cancer Res 50(Suppl):1014s–1016s, 1990.

    Google Scholar 

  22. DeNardo SJ, DeNardo GL, O’Grady LF, et al.: Pilot studies of radioimmunotherapy of B cell lymphoma and leukemia using 1-131 lym-1 monoclonal antibody. Antion Immunoconj Radiopharm 1:17–33, 1988.

    Google Scholar 

  23. Goldenberg DM, Horowitz JA, Sharkey RM, et al.: Targeting, dosimetry, and radioimmunotherapy of B-cell lymphomas with iodine-131-labeled LL2 monoclonal antibody. J Clin Oncol 9:548–564, 1991.

    PubMed  CAS  Google Scholar 

  24. Scheinberg DA, Straus DJ, Yeh SD, et al.: A phase I toxicity, pharmacology, and dosimetry trial of monoclonal antibody OKB7 in patients with non-Hodgkin’s lymphoma: effects of tumor burden and antigen expression. J Clin Oncol 8:792–803, 1990.

    PubMed  CAS  Google Scholar 

  25. Scheinberg DA, Lovett D, Divgi CR, et al.: A phase I trial of monoclonal antibody M195 in acute myelogenous leukemia: specific bone marrow targeting and internalization of radionuclide. J Clin Oncol 9:478–490, 1991.

    PubMed  CAS  Google Scholar 

  26. Scheinberg DA: The treatment of myelogenous leukemias using monoclonal antibodies to CD33. Biol Ther Cancer Updates 1:1–10, 1991.

    Google Scholar 

  27. Appelbaum FR: Use of radiolabeled anti-CD33 antibody to augment marrow irradiation prior to marrow transplantation for acute myelogenous leukemia. Transplantation 54:829–833, 1992.

    Article  PubMed  CAS  Google Scholar 

  28. Rosen ST, Zimmer AM, Goldman-Leikin R, et al.: Radioimmunodetection and radio-immunohterapy of cutaneous T cell lymphomas using an 131I-labeled monoclonal antibody: an Illinois Cancer Council study. J Clin Oncol 5:562–573, 1987.

    PubMed  CAS  Google Scholar 

  29. Rosen ST, Zimmer AM, Goldman-Leikin R, et al.: Progress in the treatment of cutaneous T cell lymphomas with radiolabeled monoclonal antibodies. Nucl Med Biol 16:667–668, 1989.

    CAS  Google Scholar 

  30. Zimmer AM, Rosen ST, Spies SM, et al.: Radioimmunotherapy of patients with cutaneous T-cell lymphoma using an iodine-131-labeled monoclonal antibody analysis of retreatment following plasmapheresis. J Nucl Med 29:174–180, 1988.

    PubMed  CAS  Google Scholar 

  31. Zimmer AM, Kaplan EH, Kazikiewicz JM, et al.: Pharmacokinetics of 1-131 T101 monoclonal antibody in patients with chronic lymphocytic leukemia. Anti Immunoconj Radiopharma 1:291–303, 1988.

    Google Scholar 

  32. Raubitschek AA: Yttrium-90 labeled T101 in the treatment of hematologic malignancies. Proceedings of the Fifth International Conference on Monoclonal Antibody Conjugates for Cancer, March 15–17, 1990, San Diego, CA.

    Google Scholar 

  33. Kaminski M, Fig L, Zasadny K, et al.: Phase I evaluation of 131I-MB1 antibody radioimmunotherapy (RIT) of B cell lymphoma. Blood 76:355, 1990.

    Google Scholar 

  34. Saletan SL, Norvitch ME, Rosen ST, et al.: A phase I/II excalating-dose safety, dosimetry and efficacy study of radiolabeled monoclonal antibody lym-1. American Cyanamid Company, Medical Research Division, Clinical Research—Oncology, Pearl River, NY, 1965.

    Google Scholar 

  35. Carrasquillo JA, Bunn PA Jr, Keenan AM, et al.: Radioimmunodetection of cutaneous T-cell lymphoma with 111In-labeled T101 monoclonal antibody. N Engl J Med 315:673–680, 1986.

    Article  PubMed  CAS  Google Scholar 

  36. Carrasquillo JA, Mulshine JL, Bunn PA Jr, et al.: Indium-111 T101 monoclonal antibody is superior to iodine-131 T101 in imaging of cutaneous T-cell lymphoma. J Nucl Med 28: 281–287, 1987.

    PubMed  CAS  Google Scholar 

  37. Carrasquillo JA, Abrams PG, Schroff RW, et al.: Effect of antibody dose on the imaging and biodistribution of Indium-111 9.2.27 anti-melanoma monoclonal antibody. J Nucl Med 29:39–47, 1988.

    PubMed  CAS  Google Scholar 

  38. Carde P, Da Costa L, Manil L, et al.: Immunoscintigraphy of Hodgkin’s disease: in vivo use of radiolabeled monoclonal antibodies derived from Hodgkin cell lines. Eur J Cancer 26:474–479, 1990.

    Article  PubMed  CAS  Google Scholar 

  39. Czuczman MS, Straus DJ, Divgi CR, et al.: A phase I dose escalation trial of 131I-labeled monoclonal antibody OKB7 in patients with non-Hodgkin’s lymphoma. Blood 76:345, 1990.

    Google Scholar 

  40. Lenhard RE Jr, Order SE, Spunberg JJ, et al.: Isotopic immunoglobulin: a new systemic therapy for advanced Hodgkin’s disease. J Clin Oncol 3:1296–1300, 1985.

    PubMed  Google Scholar 

  41. Vriesendorp HM, Herpst JM, Germack MA, et al.: Phase I-II studies of yttrium-labeled antiferritin treatment for end-stage Hodgkin’s disease, including radiation therapy, Oncology Group 87-01. J Clin Oncol 9:918–928, 1991.

    PubMed  CAS  Google Scholar 

  42. Parker BA, Vassos AB, Halpern SE, et al.: Radioimmunotherapy of human B cell lymphoma with 90Y-conjugated antiidiotype monoclonal antibody. Cancer Res 50(Suppl):1022s–1028s, 1990.

    PubMed  CAS  Google Scholar 

  43. Langmuir VK, Sutherland RM: Radiobiology of radioimmunotherapy: current status. Anti Immunoconj Radiopharma 1:195–211, 1988.

    Google Scholar 

  44. Wheldon TE, O’Donoghue JA: The radiobiology of targeted radiotherapy. Int J Radiat Biol 58:1–21, 1990.

    Article  PubMed  CAS  Google Scholar 

  45. Knox SJ, Levy R, Miller RA, et al.: Determinants of the antitumor effect of radiolabeled monoclonal antibodies. Cancer Res 50:4935–4940, 1990.

    PubMed  CAS  Google Scholar 

  46. Wessels BW, Vessella RL, Palme II DF, et al.: Radiobiological comparison of external beam irradiation and radioimmunotherapy in renal cell carcinoma xenografts. Int J Radiat Oncol Biol Phys 17:1257–1263, 1989.

    Article  PubMed  CAS  Google Scholar 

  47. Neacy WP, Wessels BW, Bradley E, et al.: Comparison of radioimmunotherapy (RIT) and 4 MV external beam radiotherapy of human tumor xenografts in athymic mice. J Nucl Med 27:902–903, 1986.

    Google Scholar 

  48. Travis EL, Peters LJ, McNeill J, et al.: Effect of dose-rate on total body irradiation: lethality and pathologic findings. Radiother Oncol 4:341–351, 1985.

    Article  PubMed  CAS  Google Scholar 

  49. Eary JF, Press OW, Badger CC, et al.: Imaging and treatment of B-cell lymphoma. J Nucl Med 31:1257–1268, 1990.

    PubMed  CAS  Google Scholar 

  50. Society of Nuclear Medicine: MIRD Primer for Absorbed Dose Calculations. Washington DC: Society of Nuclear Medicine, 1988.

    Google Scholar 

  51. Fujimori K, Covell DG, Fletcher JE, et al.: A modeling analysis of monoclonal antibody percolation through tumors: a binding-site barrier. J Nucl Med 31:1191–1198, 1990.

    PubMed  CAS  Google Scholar 

  52. Wong JYC, Williams LE, Hill R, et al.: The effects of tumor mass, tumor age and external beam radiation on tumor-specific antibody uptake. Int J Radiat Oncol Biol Phys 16:715–720, 1989.

    Article  PubMed  CAS  Google Scholar 

  53. Hagan PL, Halpern SE, Dillman RO, et al.: Tumor size: effect on monoclonal antibody uptake in tumor models. J Nucl Med 27:422–427, 1985.

    Google Scholar 

  54. Pedley B, Dale R, Boden JA, et al.: The effect of second antibody clearance on the distribution and dosimetry of radiolabeled anti-CEA antibody in a human colonic tumor xenograft model. Int J Cancer 43:713–718, 1989.

    Article  PubMed  CAS  Google Scholar 

  55. Buchsbaum DJ, Sinkule JA, Stites MS, et al.: Localization and imaging with radioiodine-labeled monoclonal antibodies in a xenogeneic tumor model for human B-cell lymphoma. Cancer Res 48:2475–2482, 1989.

    Google Scholar 

  56. Blumenthal RD, Fand I, Sharkey RM, et al.: The effect of antibody protein dose on the uniformity of tumor distribution of radioantibodies: an autoradiographic study. Cancer Immunol Immunother 33:351–358, 1991.

    Article  PubMed  CAS  Google Scholar 

  57. Wahl RL, Liebert M, Wilson BS: The influence of monoclonal antibody dose on tumor uptake of radiolabeled antibody. Cancer Drug Deliv 3:243–249, 1986.

    Article  PubMed  CAS  Google Scholar 

  58. Abrahms PG, Morgan AC, Schroff RW, et al.: Localization and biodistribution studies of a monoclonal antibody in patients with melanoma. In RA Reisfeld, S Sell, eds. Monoclonal Antibodies and Cancer Therapy. New York: Alan R. Liss, 1985, pp 233–236.

    Google Scholar 

  59. Buchsbaum DJ, Wahl RL, Glenn SD, et al.: Improved delivery of radiolabeled anti-B1 monoclonal antibody to Raji lymphoma xenografts by predosing with unlabeled anti-B1 monoclonal antibody. Cancer Res 52:637–642, 1992.

    PubMed  CAS  Google Scholar 

  60. Bianco JA, Sandmaier B, Brown PA, et al.: Specific marrow localization of an 131I-labeled anti-myeloid antibody in normal dogs: effects of a “cold” antibody pretreatment dose on marrow localization. Exp Hematol 17:929–934, 1989.

    PubMed  CAS  Google Scholar 

  61. Schlom J, Eggensperger D, Colcher D, et al.: Therapeutic advantage of high affinity anticarcinoma radioimmunoconjugates. Cancer Res 52:1067–1072, 1992.

    PubMed  CAS  Google Scholar 

  62. Holton OD, Black CDV, Parker RJ, et al.: Biodistribution of monoconal IgGl, F(ab’)2, and Fab’ in mice after intravenous injection: a comparison between anti-B-cell (anti-LyB8.2) and irrelevant (MOPC-21) antibodies. J Immunol 139:3041–3049, 1987.

    PubMed  CAS  Google Scholar 

  63. Colcher D, Bird R, Roselli M, et al.: In vivo tumor targeting of a recombinant single-chain antigen-binding protein. J Natl Cancer Inst 82:1191–1197, 1990.

    Article  PubMed  CAS  Google Scholar 

  64. Larson SM: Improved tumor targeting with radiolabeled recombinant, single-chain antigen-binding protein. J Natl Cancer Inst 82:1173–1174, 1990.

    Article  PubMed  CAS  Google Scholar 

  65. Buchegger F, Pelegrin A, Delaloye B, et al.: Iodine-131-labeled MAb F(ab’)2 fragments are more efficient and less toxic than intact anti-CEA antibodies in radioimmunotherapy of large human colon carcinoma grafted in nude mice. J Nucl Med 31:1035–1044, 1990.

    PubMed  CAS  Google Scholar 

  66. Cheung N-K, Munn D, Kushner BH, et al.: Targeted radiotherapy and immunotherapy of human neuroblastoma with GD2 specific monoclonal antibodies. Nucl Med Biol 16:111–120, 1989.

    CAS  Google Scholar 

  67. Eary JF, Schroff RW, Abrams PG, et al.: Successful imaging of malignant melanoma with technetium-99m-labeled monoclonal antibodies. J Nucl Med 30:25–32.

    Google Scholar 

  68. Press OW, DeSantes KD, Anderson SK, et al.: Inhibition of catabolism of radiolabeled antibodies by tumor cells using lysosomotropic amines and carboxylic ionophores. Cancer Res 50:1243–1250, 1990.

    PubMed  CAS  Google Scholar 

  69. Press OW, Hansen JA, Farr A, et al.: Endocytosis and degradation of murine anti-human CD3 monoclonal antibodies by normal and malignant T-lymphocytes. Cancer Res 48:2249–2257, 1988.

    PubMed  CAS  Google Scholar 

  70. Naruki Y, Carrasquillo JA, Reynolds JC, et al.: Differential cellular catabolism of 111In, 90Y and 125I radiolabeled T101 anti-CD5 monoclonal antibody. Nucl Med Biol 17:201–207, 1990.

    CAS  Google Scholar 

  71. Zalcberg JR, Thompson CH, Lichtenstein M, et al.: Tumor immunotherapy in the mouse with the use of 131I-labeled monoclonal antibodies. J Natl Cancer Inst 72:697–704, 1984.

    PubMed  CAS  Google Scholar 

  72. Scheinberg DA, Strand M: Kinetic and catabolic considerations of monoclonal antibody targeting in erythroleukemic mice. Cancer Res 43:265–272, 1983.

    PubMed  CAS  Google Scholar 

  73. Ali SA, Warren SD, Richter KY, et al.: Improving the tumor retention of radioiodinated antibody: aryl carbohydrate adducts. Cancer Res 50(Suppl):783s–788s, 1990.

    PubMed  CAS  Google Scholar 

  74. Zalutsky MR, Noska MA, Colapinto EV, et al.: Enhanced tumor localization and in vivo stability of a monoclonal antibody radioiodinated using N-succinimidly 3-(tri-n-butylstannyl)benzoate. Cancer Res 40:5543–5549, 1989.

    Google Scholar 

  75. Wessels BW, Rogus RD: Radionuclide selection and model absorbed dose calculations for radiolabeled tumor associated antibodies. Med Phys 11:638–645, 1984.

    Article  PubMed  CAS  Google Scholar 

  76. Anderson WT, Strand M: Radiolabeled antibody: iodine versus radiometal chelates. NCI Monogr 3:149–151, 1987.

    PubMed  Google Scholar 

  77. Kosmas C, Snook D, Gooden CS, et al.: Development of humoral immune responses against a macrocyclic chelating agent (DOTA) in cancer patients receiving radioimmunoconjugates for imaging and therapy. Cancer Res 52:904–911, 1992.

    PubMed  CAS  Google Scholar 

  78. Schlom J, Molinolo A, Simpson JF, et al.: Advantage of dose fractionation in monoclonal antibody-targeted radioimmunotherapy. J Natl Cancer Inst 82:763–771, 1990.

    Article  PubMed  CAS  Google Scholar 

  79. Hryniuk WM: Average relative dose intensity and the impact on design of clinical trials. Semin Oncol 14:65–74, 1987.

    PubMed  CAS  Google Scholar 

  80. Beaumier PL, Venkatesan P, Vanderheyden J-L, et al.: 186Re radioimmunotherapy of small cell lung carcinoma xenografts in nude mice. Cancer Res 51:676–681, 1991.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Press, O.W., Eary, J., Appelbaum, F.R., Badger, C.C., Bernstein, I.D. (1993). Radiolabeled antibody therapy of lymphoma. In: Dana, B.W. (eds) Malignant lymphomas, including Hodgkin’s disease: Diagnosis, management, and special problems. Cancer Treatment and Research, vol 66. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3084-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3084-8_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6347-7

  • Online ISBN: 978-1-4615-3084-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics