Skip to main content

Light Emission in Photonic Crystal Micro-Cavities

  • Chapter

Part of the book series: NATO ASI Series ((NSSB,volume 340))

Abstract

The creation of light has pre-occupied mankind, probably ever since cave men came to control fire. Since the invention of the electric light bulb, there have already been several revolutions in our ability to control light. One of these has been stimulated emission which gave rise to lasers. There have been many other developments recently which involve control over amplitude and phase of electromagnetic waves, including for example photon number state squeezing1.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. “Photon Number Squeezed States in Semiconductor Lasers”, Y. Yamamoto, S. Machida, and W. H. Richardson, SCIENCE 255, 1219 (1992).

    Google Scholar 

  2. “Donor And Acceptor Modes In Photonic Band Structure”, E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer and J. D. Joannopoulos, Phys. Rev. Lett. 67, 3380 (1991).

    Google Scholar 

  3. “Inhibited and Enhanced Spontaneous Emission From Optically Thin AlGaAs/GaAs Double Heterostructures”, E. Yablonovitch, T. J. Gmitter and R. Bhat, Phys. Rev. Lett. 61, 2546 (1988).

    Google Scholar 

  4. “Observation of the Coupled Exciton-Photon mode Splitting in a Semiconductor Quantum Microcavity”, C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, Phys. Rev. Lett. 69, 3314 (1992).

    Article  Google Scholar 

  5. L. D. Landau and E. M. Lifschitz, Statistical Physics, (Pergamon, London, 1958), see p. 172.

    MATH  Google Scholar 

  6. “On the Thermodynamics of Fluorescence”, E. H. Kennard, Phys. Rev. 11, 29 (1918).

    Google Scholar 

  7. “Photon-Radiative Recombination of Electrons and Holes in Germanium”, W. von Roosbroeck and W. Shockley, Phys. Rev. 94, 1558 (1954).

    Google Scholar 

  8. J. I. Pankove, Optical Processes in Semiconductors, (Dover, New York, 1975), see p. 110.

    Google Scholar 

  9. “Some Thermodynamics of Photochemical Systems”, R. T. Ross, J. Chem. Phys. 46, 4590(1967).

    Google Scholar 

  10. “Laser Conditions in Semiconductors”, M. G. A. Bernard and G. Duraffourg, Phys. Stat. Solidi 1, 699 (1961).

    Google Scholar 

  11. “Fluctuations in Radiative Processes”, C. Cohen-Tannoudji, Phys. Scripta T12, 19 (1986).

    Google Scholar 

  12. “A Quantum Generalization of the Expression for Energy Dissipation”, V. M. Fain, Sov. Phys. JETP 23, 882 (1966). “Spontaneous Emission vs. Vacuum Fluctuations”, B. Fain, Il Nuo. Cimento 68B, 73 (1982).

    Google Scholar 

  13. “Spontaneous Emission from Excitons in Thin Dielectric Layers”, S. T. Ho, S. L. McCall, and R. E. Slusher, Optics Lett. 18, 909 (1993).

    Google Scholar 

  14. “Correction due to Finite Permittivity for a Ring Resonator in Free Space”, R. DeSmedt, Microwave Th. & Tech. MTT-32, 1288 (1984).

    Google Scholar 

  15. “Whispering Gallery Mode Microdisk Lasers” S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, Appl. Phys. Lett. 60, 289 (1992).

    Google Scholar 

  16. “Enhanced Spontaneous Emission From GaAs Quantum Wells In Monolithic Microcavities”, H. Yokoyama, K. Nishi, T. Anan, H. Yamada et al, Appl. Phys. Lett. 57, 2814 (1990).

    Google Scholar 

  17. “Vertical-Cavity Surface-Emitting Lasers: Design, Growth, Fabrication, and Characterization”, J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, IEEE J. Quant. Elec. QE-27, 1332 (1991).

    Google Scholar 

  18. see “Photonic Bandgap Structures”, E. Yablonovitch, J. Opt. Soc. Am. B10, 283 (1993) and the other articles in the same issue for a review of photonic crystals.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yablonovitch, E. (1995). Light Emission in Photonic Crystal Micro-Cavities. In: Burstein, E., Weisbuch, C. (eds) Confined Electrons and Photons. NATO ASI Series, vol 340. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1963-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1963-8_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5807-7

  • Online ISBN: 978-1-4615-1963-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics