Skip to main content

Part of the book series: Modern Inorganic Chemistry ((MICE))

Abstract

In solving the Schrödinger equation, when several wave functions ϕ i correspond to the same energy E, such a state is called degenerate. Degeneracy is always associated with the existence of some symmetry element. The three p functions of the hydrogen atom serve as an example. Their degeneracy is due to the fact that such a system has spherical symmetry: Rotation about any axis through the nucleus leaves the Hamiltonian invariant, while transforming the p functions into each other. Such threefold degeneracy persists even if the free atom is in an external field of cubic symmetry created, for example, by six point charges forming an octahedral pattern around the nucleus. In fact, it is readily verified that cubic group operations transform the surrounding charges into each other, i.e., they leave the Hamiltonian invariant while once again transforming the three p functions into each other. At the same time, the distortion of the octahedron along the z axis (extension or compression) decreases the symmetry from cubic to tetragonal, partially lifting the degeneracy: E(p z ) ≠ E(p x ) = E(p y ). In turn, the twofold degeneracy remaining in the tetragonal group can be lifted by orthorhombic perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. D. Landau and E. M. Lifshitz, Quantum Mechanics, Pergamon Press, New York-Oxford (1977).

    Google Scholar 

  2. H. A. Jahn and E. Teller, Proc. R. Soc. London A161, 220 (1937).

    Google Scholar 

  3. E. Ruch and A. Schonhofer, Theor. Chim. Acta, 3, 291 (1965).

    Article  CAS  Google Scholar 

  4. E. Blount, J. Math. Phys. 12, 1890 (1971).

    Article  CAS  Google Scholar 

  5. S. Sigano, Y. Tanabe, and H. Kamimura, Theory of Multiplets of Transition Metal Ions in Crystals, Academic Press, New York (1970).

    Google Scholar 

  6. M. Born and R. Oppenheimer, Ann. Phys. 84, 457 (1927).

    Article  CAS  Google Scholar 

  7. H. C. Longuet-Higgins, Adv. Spectrosc. 2, 429 (1961).

    Google Scholar 

  8. R. Englman, The Jahn—Teller Effect in Molecules and Crystals, Wiley-Interscience, New York (1972).

    Google Scholar 

  9. G. Herzberg, Molecular Spectra and Molecular Structure, Vol. 3, Van Nostrand, Princeton (1966).

    Google Scholar 

  10. A. D. Liehr, J. Phys. Chem. 62, 471 (1963).

    Article  Google Scholar 

  11. R. Renner, Z. Phys. 92, 172 (1934).

    Article  CAS  Google Scholar 

  12. U. Opik and M. H. L. Pryce, Proc. R. Soc. A238, 425 (1957).

    Google Scholar 

  13. I. B. Bersuker, B. G. Vekhter, and I. Ya. Ogurtsov, Sov. Phys. Usp. 18, 569 (1975).

    Article  Google Scholar 

  14. W. Moffit and W. Thorson, Phys. Rev. 106, 1251 (1956).

    Google Scholar 

  15. M. Caner and R. Englman, J. Chem. Phys. 44, 4054 (1966).

    Article  CAS  Google Scholar 

  16. A. Ceulemens, J. Chem. Phys. 87, 5374.

    Google Scholar 

  17. W. Moffitt and A. D. Liehr, Phys. Rev. 106, 1155 (1956).

    Google Scholar 

  18. H. Uehara, J. Chem. Phys. 45, 4536 (1966).

    Article  CAS  Google Scholar 

  19. M. C. M. O’Brien, Proc. R. Soc. London A281, 323 (1964).

    Google Scholar 

  20. F. S. Ham, Solid State Phys. 2, 1163 (1989).

    Google Scholar 

  21. R. S. Dagis and I. B. Levinson, Optics and Spectroscopy, Vol. 3: Molecular Spectroscopy [in Russian], Nauka, Moscow (1967), p. 3.

    Google Scholar 

  22. B. P. Martinenas and R. S. Dagis, Theor. Exp. Chem. 5, 81 (1969).

    Article  Google Scholar 

  23. J. H. Van Vleck, Phys. Rev. 57, 426 (1940).

    Article  Google Scholar 

  24. B. G. Vekhter, Opt. Spectrosc. 63, 130 (1987).

    Google Scholar 

  25. S. Estreicher and T. L. Estle, Phys. Rev. B 30, 7 (1984).

    Article  CAS  Google Scholar 

  26. L. A. Rebane and O. I. Sild, in Defects in Insulating Crystals, V. M. Turkevich and K. K. Shvarts, eds. [in Russian], Riga (1981), p. 617.

    Google Scholar 

  27. P. Thalmeier and B. Luthi, in Handbook on the Physics and Chemistry of Rare Earths, Vol. 13 (1988).

    Google Scholar 

  28. V. Dohm and P. Fulde, Z. Phys. B. 21, 369 (1975).

    Article  CAS  Google Scholar 

  29. I. B. Bersuker and V. Z. Polinger, Sov. Phys. JETP 39, 1023 (1974).

    Google Scholar 

  30. M. C. M. O’Brien, J. Phys. C: Solid State Phys. 4, 2524 (1971).

    Article  Google Scholar 

  31. W. Thorson, J. Chem. Phys. 29, 938 (1958).

    Article  CAS  Google Scholar 

  32. B. Weinstock and G. L. Goodman, Adv. Chem. Phys. 9, 169 (1968).

    Article  Google Scholar 

  33. I. B. Bersuker and B. G. Vekhter, Ferroelectrics, 19, 137 (1978).

    Article  CAS  Google Scholar 

  34. R. E. Peierls, Quantum Theory of Solids, Oxford University Press, Oxford (1955).

    Google Scholar 

  35. R. H. Friend and D. Jerome, J. Phys. C: Solid State Phys. 12, 1441 (1979).

    Article  CAS  Google Scholar 

  36. D. A. Kirzhnits and Ya. A. Nepomnyashchiy, Sov. Phys. JETP 32, 1191 (1971).

    Google Scholar 

  37. V. A. Kochelap, V. N. Sokolov, and B. Yu. Vengalis, Phase Transitions in Semiconductors with Strain-Induced Electron-Phonon Interaction [in Russian], Naukova Dumka, Kiev (1984).

    Google Scholar 

  38. J. J. Hallers and G. Vertogen, Phys. Rev. Lett. 27, 404 (1971).

    Article  CAS  Google Scholar 

  39. C. Weber, M. Wagner, and E. Sigmund, Phys. Status Solidi (b), 141, 529 (1987).

    Article  CAS  Google Scholar 

  40. L. M. Falikov and R. A. Harris, J. Chem. Phys. 51, 3153 (1969).

    Article  Google Scholar 

  41. M. M. Mestechkin, Instability of the Hartree-Fock Equation and Molecular Instability [in Russian], Naukova Dumka, Kiev (1986).

    Google Scholar 

  42. I. Ya. Ogurtsov, Article deposited at the All-Union Institute of Scientific and Technical Information, VINITI Deposit No. 5797-B-88 (1988).

    Google Scholar 

  43. A. K. Zvezdin, V. M. Matveev, A. A. Mukhin, and A. I. Popov, Rare-Earth Ions in Magnetically Ordered Crystals [in Russian], Nauka, Moscow (1985).

    Google Scholar 

  44. A. K. Zvezdin, A. A. Muchin, and A. I. Popov, JETP 45, 573 (1977).

    Google Scholar 

  45. A. K. Zvezdin, A. A. Muchin, and A. I. Popov, JETP Lett. 23, 240 (1976).

    Google Scholar 

  46. E. M. Henley and W. Therring, Elementary Quantum Field Theory, McGraw-Hill, New York (1962).

    Google Scholar 

  47. F. S. Ham, in: Electron Paramagnetic Resonance, Plenum Press, New York (1972), p. 1.

    Google Scholar 

  48. A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions, Clarendon, Oxford (1970).

    Google Scholar 

  49. S. Washimia, Phys. Rev. Lett. 28, 5561 (1972).

    Google Scholar 

  50. K. Sasaki and Y. Obata, J. Phys. Soc. Jpn. 28, 1157 (1970).

    Article  CAS  Google Scholar 

  51. B. G. Vekhter, Sov. Phys. Solid State 15, 354 (1973).

    Google Scholar 

  52. B. G. Vekhter, in: Proceedings of the Second All-Union Conference on Solid State Physics [in Russian], Moscow (1969), p. 49.

    Google Scholar 

  53. I. B. Bersuker, Phys. Lett. 20, 589 (1966).

    Article  CAS  Google Scholar 

  54. I. B. Bersuker and I. Ya. Ogurtsov, Adv. Quantum Chem. 18, 1 (1986).

    Article  CAS  Google Scholar 

  55. Ya. E. Perlin and B. S. Tsukerblat, Electron-Vibration Interaction Phenomena in the Optical Spectra of Impurity Paramagnetic Ions [in Russian], Shtiintza, Kishinev (1974).

    Google Scholar 

  56. R. E. Coffman, Phys. Lett. 21, 381 (1966).

    Article  CAS  Google Scholar 

  57. R. E. Coffman, J. Chem. Phys. 48, 609 (1968).

    Article  CAS  Google Scholar 

  58. I. B. Bersuker, Sov. Phys. JETP 17, 836 (1963).

    Google Scholar 

  59. M. D. Sturge, in: Solid State Physics, F. Seitz, D. Turnbull, and H. Ehrenreich, eds., Academic Press, New York (1967), p. 91.

    Google Scholar 

  60. Yu. E. Perlin and M. Wagner (eds.), The Dynamical Jahn—Teller Effect in Localized Systems, North-Holland, Amsterdam (1984).

    Google Scholar 

  61. R. C. LeCraw and R. L. Comstock, in: Physical Acoustics, Vol. 3B: Lattice Dynamics, Warren P. Mason, ed., Academic Press, New York-London (1966), p. 127.

    Google Scholar 

  62. E. M. Gyorgy, M. D. Sturge, D. B. Fraser, and R. C. LeCraw, Phys. Lett. 15, 19 (1965).

    Article  CAS  Google Scholar 

  63. E. M. Gyorgy, R. C. LeCraw, and M. D. Sturge, J. Appl. Phys. 37, 1303 (1966).

    Article  CAS  Google Scholar 

  64. Z. A. Kazey, P. Novak, and V. I. Sokolov, Sov. Phys. JETP 56, 854 (1982).

    Google Scholar 

  65. V. V. Hyzhnyakov and N. N. Kristofell, in: The Dynamical Jahn—Teller in Localized Systems, Yu. E. Perlin and M. Wagner, eds., North-Holland, Amsterdam (1984), p. 383.

    Google Scholar 

  66. W. Ulrici, in: The Dynamical Jahn—Teller Effect in Localized Systems, Yu. E. Perlin and M. Wagner, eds., North-Holland, Amsterdam (1984), p. 439.

    Google Scholar 

  67. A. L. Natadze, A. I. Ryskin, and B. G. Vekhter, in: The Dynamical Jahn—Teller Effect in Localized Systems, Yu. E. Perlin and M. Wagner, eds., North-Holland, Amsterdam (1984), p. 347.

    Google Scholar 

  68. K. A. Kikoin and V. N. Flerov, Transition Metal Impurities in Semiconductors, World Scientific, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kaplan, M.D., Vekhter, B.G. (1995). The Jahn—Teller Effect. In: Cooperative Phenomena in Jahn—Teller Crystals. Modern Inorganic Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1859-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1859-4_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5755-1

  • Online ISBN: 978-1-4615-1859-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics