Skip to main content

Genetics of Prolactinomas

  • Chapter
Book cover Prolactin

Part of the book series: Endocrine Updates ((ENDO,volume 12))

  • 244 Accesses

Abstract

Prolactinomas are tumors of lactotroph cells in the anterior pituitary that hypersecrete prolactin, resulting in amenorrhea and galactorrhea in women and reduced sexual function in males. Macroadenomas cause additional symptoms, including visual defects and severe headaches, and are present in 90% of males with prolactinomas (1). Prolactinomas are the most common of all pituitary adenomas and occur more frequently in females, with a 3:1 preponderance (2). Mixed tumors expressing both prolactin and growth hormone also occur, and are derived from the earlier precursor mammosomatotrophs, which diverge into lactotroph and somatotroph lineages in normal development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blevins LS, Shore D, Weinstein J and Isaacs S. Clinical presentation of pituitary tumors. In: Krisht AF and Tindall GT, eds. Pituitary Disorders, Comprehensive Management. Baltimore: Lippincott Williams & Wilkins, 1999: 145–63.

    Google Scholar 

  2. Holmgren U, Bergstrand G, Hagenfeldt K and Werner S. Women with prolactinoma - effect of pregnancy and lactation on serum prolactin and on tumour growth. Acta Endocrinol (Copenh) 1986; 111: 452–9.

    CAS  Google Scholar 

  3. Herman V, Fagin J, Gonsky R, Kovacs K and Melmed S. Clonal origin of pituitary adenomas. J Clin Endocrinol Metab 1990; 71: 1427–33.

    Article  PubMed  CAS  Google Scholar 

  4. Friedman E, Adams EF, Hoog A, Gejman PV, Carson E, Larsson C, De Marco L, Werner S, Fahlbusch R and Nordenskjold M. Normal structural dopamine type 2 receptor gene in prolactin-secreting and other pituitary tumors. J Clin Endocrinol Metab 1994; 78: 568–74.

    Article  PubMed  CAS  Google Scholar 

  5. Schechter J, Goldsmith P, Wilson C and Weiner R. Morphological evidence for the presence of arteries in human prolactinomas. J Clin Endocrinol Metab 1988; 67: 713–9.

    Article  PubMed  CAS  Google Scholar 

  6. Asa SL, Kelly MA, Grandy DK and Low MJ. Pituitary lactotroph adenomas develop after prolonged lactotroph hyperplasia in dopamine D2 receptor-deficient mice. Endocrinol 1999; 140: 5348–55.

    Article  CAS  Google Scholar 

  7. Pellegrini I, Rasolonjanahary R, Gunz G, Bertrand P, Delivet S, Jedynak CP, Kordon C, Peilion F, Jaquet P and Enjalbert A. Resistance to bromocriptine in human prolactinomas. J Clin Endocrinol Metab 1989; 69: 500–9.

    Article  PubMed  CAS  Google Scholar 

  8. Pellegrini-Bouiller I, Morange-Ramos I, Barlier A, Gunz G, Figarella-Branger D, Cortet-Rudelli C, Grisoli F, Jaquet P and Enjalbert A. Pit-1 gene expression in human lactotroph and somatotroph pituitary adenomas is correlated to D2 receptor gene expression. J Clin Endocrinol Metab 1996; 81: 3390–6.

    Article  PubMed  CAS  Google Scholar 

  9. Lloyd RV. Estrogen-induced hyperplasia and neoplasia in the rat anterior pituitary gland. Am J Pathol 1983; 113: 198–206.

    PubMed  CAS  Google Scholar 

  10. Friend KE, Chiou YK, Lopes MBS, Laws Jr ER, Hughes KM and Shupnik MA. Estrogen receptor expression in human pituitary: correlation with immunohistochemistry in normal tissue, and immunohistochemistry and morphology in macroadenomas. J Clin Endocrinol Metab 1994; 78: 1497–1504.

    Article  PubMed  CAS  Google Scholar 

  11. Jaffrain-Rea ML, Petrangeli E, Ortolani F, Fraioli B, Lise A, Esposito V, Spagnoli LG, Tamburrano G, Frati L and Gulino A. Cellular receptors for sex steroids in human pituitary adenomas. J Endocrinol 1996; 151: 175–84.

    Article  PubMed  CAS  Google Scholar 

  12. Shupnik MA, Pitt LK, Soh AY, Anderson A, Lopes MB and Laws Jr ER. Selective expression of estrogen receptor a and b isoforms in human pituitary tumors. J Clin Endocrinol Metab 1998; 83: 3965–72.

    Article  PubMed  CAS  Google Scholar 

  13. Chaidarun SS, Swearingen B and Alexander JM. Differential expression of estrogen receptor-b (ERb) in human pituitary tumors: functional interactions with ERa and a tumor-specific splice variant. J Clin Endocrinol Metab 1998; 83: 3308–15.

    Article  PubMed  CAS  Google Scholar 

  14. Hinuma S, Habata Y, Fujii R, Kawamata Y, Hosoya M, Fukusumi S, Kitada C, Masuo Y, Asano T, Matsumoto H, Sekiguchi M, Kurokawa T, Nishimura O, Onda H and Fujino M. A prolactin-releasing peptide in the brain. Nature 1998; 393: 272–6.

    Article  PubMed  CAS  Google Scholar 

  15. Zhang X, Danila DC, Katai M, Swearingen B and Klibanski A. Expression of prolactin-releasing peptide and its receptor messenger ribonucleic acid in normal human pituitary and pituitary adenomas. J Clin Endocrinol Metab 1999; 84: 4652–5.

    Article  PubMed  CAS  Google Scholar 

  16. Kaplan SL, Grumbach MM, Friesen HG and Gostom BH. Thyrotropin-releasing factor (TRF) effect on secretion of human pituitary prolactin and thyrotropin in children and in idiopathic hypophysiotropic hormone deficiencies. J Clin Endocrinol 1972; 35: 825–30.

    Article  CAS  Google Scholar 

  17. Faccenda E, Melmed S, Bevan JS and Eidne KA. Structure of the thyrotrophin-releasing hormone receptor in human pituitary adenomas. Clin Endocrinol 1996; 44: 341–7.

    Article  CAS  Google Scholar 

  18. Pellegrini I, Barlier A, Gunz G, Figarella-Branger D, Enjalbert A, Grisoli F and Taquet P. Pit-1 gene expression in the human pituitary and pituitary adenomas. J Clin Endocrinol Metab 1994; 79: 189–96.

    Article  PubMed  CAS  Google Scholar 

  19. Nakamura S, Ohtsuru A, TakamuraN, Kitange G, Tokunaga Y, Yasunaga A, Shibata S and Yamashita S. Prop-1 gene expression in human pituitary tumors. J Clin Endocrinol Metab 1999; 84: 2581–4.

    Article  PubMed  CAS  Google Scholar 

  20. Gonsky R, Herman V, S Melmed and J Fagin. Transforming DNA sequences present in human prolactin-secreting pituitary tumors. Mol Endocrinol 1991; 5: 1687–95.

    Article  PubMed  CAS  Google Scholar 

  21. Herman V, Drazin NZ, Gonsky R and Melmed S. Molecular screening of pituitary adenomas for gene mutations and rearrangements. J Clin Endocrinol Metab 1993; 77: 50–5.

    Article  PubMed  CAS  Google Scholar 

  22. Shimon I, Huttner A, Said J, Spirina OM and Melmed S. Heparin-binding secretory transforming gene (hst) facilitates rat lactotrope cell tumorigenesis and induces prolactin gene transcription. J Clin Invest 1996; 97: 187–95.

    Article  PubMed  CAS  Google Scholar 

  23. Shimon I, Hinton DR, Weiss MH and Melmed S. Prolactinomas express human heparin-binding secretory transforming gene (hst) protein product: marker of tumour invasiveness. Clin Endocrinol 1998; 48: 23–9.

    Article  CAS  Google Scholar 

  24. Zimering MB, Katsumata N, Sato Y, Brandi ML, Aurbach GD, Marx SJ and Friesen HG. Increased basic fibroblast growth factor in plasma from multiple endocrine neoplasia type 1: relation to pituitary tumor. J Clin Endocrinol Metab 1993; 76: 1182–7.

    Article  PubMed  CAS  Google Scholar 

  25. Heaney AP, Horwitz GA, Wang Z, Singson R and Melmed S. Early involvement of estrogen-induced pituitary tumor transforming gene and fibroblast growth factor expression in prolactinoma pathogenesis. Nat Med 1999; 5: 1317–21.

    Article  PubMed  CAS  Google Scholar 

  26. Zhang X, Horwitz GA, Prezant TR, Valentini A, Nakashima M, Bronstein MD and Melmed S. Structure, expression, and function of human pituitary tumor-transforming gene (PTTG). Mol Endocrinol 1999; 13: 156–66.

    Article  PubMed  CAS  Google Scholar 

  27. Missale C, Losa M, Sigala S, Balsari A, Giovanelli M and Spano PF. Nerve growth factor controls proliferation and progression of human prolactinoma cell lines through an autocrine mechanism. Mol Endocrinol 1996; 10: 272–85.

    Article  PubMed  CAS  Google Scholar 

  28. Borrelli E, Sawchenko PE and Evans RM. Pituitary hyperplasia induced by ectopic expression of nerve growth factor. Proc Natl Acad Sci USA 1992; 89: 2764–8.

    Article  PubMed  CAS  Google Scholar 

  29. McAndrew J, Paterson AJ, Asa SL, McCarthy KJ and Kudlow JE. Targeting of transforming growth factor-a expression to pituitary lactotrophs in transgenic mice results in selective lactotroph proliferation and adenomas. Endocrinol 1995; 136: 4479–88.

    Article  CAS  Google Scholar 

  30. Karga HJ, Alexander JM, Hedley-Whyte ET, Klibanski A and Jameson JL. Ras mutations in human pituitary tumors. J Clin Endocrinol Metab 1992; 74: 914–9.

    Article  PubMed  CAS  Google Scholar 

  31. Pei L, Melmed S, Scheithauer B, Kovacs K and Prager D. H-ras mutations in human pituitary carcinoma metastases. J Clin Endocrinol Metab 1994; 78: 842–6.

    Article  PubMed  CAS  Google Scholar 

  32. Cai WY, Alexander JM, Hedley-Whyte ET, Scheithauer BW, Jameson JL, Zervas NT and Klibanski A. Ras mutations in human prolactinomas and pituitary carcinomas. J Clin Endocrinol Metab 1994; 78: 89–93.

    Article  PubMed  CAS  Google Scholar 

  33. Woloschak M, Roberts JL and Post K. c-myc, c-fos, and c-myb gene expression in human pitutary adenomas. J Clin Endocrinol Metab 1994; 79: 253–7.

    Article  PubMed  CAS  Google Scholar 

  34. Pei L and Melmed S. Isolation and characterisation of a pituitary tumor-transforming gene (PTTG). Mol Endocrinol 1997; 13: 156–66.

    Google Scholar 

  35. Dominguez A, Ramos-Morales F, Romero F, Rios RM, Dreyfus F, Tortolero M and Pintor-Toro JA.hpttga human homologue ofrat pttgis overexpressed in hematopoietic neoplasms. Evidence for a transcriptional activation function of hPTTG. Oncogene 1998; 17: 2187–93.

    Article  PubMed  CAS  Google Scholar 

  36. Heaney AP, Singson R, McCabe CJ, Nelson V, Nakashima M and Melmed S. Expression of pituitary-tumour transforming gene in colorectal tumours. Lancet 2000; 355: 716–9.

    Article  PubMed  CAS  Google Scholar 

  37. Zhang X, Horwitz GA, Heaney AP, Nakashima M, Prezant TR, Bronstein MD and Melmed S. Pituitary tumor transforming gene (PTTG) expression in pituitary adenomas. J Clin Endocrinol Metab 1999; 84: 761–7.

    Article  PubMed  CAS  Google Scholar 

  38. Zou H, McGarry TJ, Bernal T and Kirschner MW. Identification of a vertebrate sister-chromatid separation inhibitor involved in transformation and tumorigenesis. Science 1999; 285:418–22.

    Article  PubMed  CAS  Google Scholar 

  39. Prezant TR, Kadioglu P and Melmed S. An intronless homolog of human proto-oncogene hPTTG is expressed in pituitary tumors: evidence for hPTTG family. J Clin Endocrinol Metab 1999; 84: 1149–52.

    Article  PubMed  CAS  Google Scholar 

  40. Hanahan D & Weinberg RA. The hallmarks of cancer. Cell 2000; 100: 57–70.

    Article  PubMed  CAS  Google Scholar 

  41. Hollstein M, Sidransky D, Vogelstein B and Harris CC. p53 mutations in human cancers. Science 1991; 253: 49–53.

    Article  PubMed  CAS  Google Scholar 

  42. Levine AJ, Momand J and Finlay CA. The p53 tumour suppressor gene. Nature 1991; 351:453–6.

    Article  PubMed  CAS  Google Scholar 

  43. Levy A, Hall L, Yeudall WA and Lightman SL. p53 gene mutations in pituitary adenomas: rare events. Clin Endocrinol 1994; 41: 809–14.

    Article  CAS  Google Scholar 

  44. Thapar K, Scheithauer BW, Kovacs K, Pernicone Pi and Laws ER Jr. p53 expression in pituitary adenomas and carcinomas: correlation with invasiveness and tumor growth fractions. Neurosurg 1996; 38: 763–71.

    Google Scholar 

  45. Green VL, White MC, Hipkin LJ, Jeffreys RV, Foy PM and Atkin SL. Apoptosis and p53 suppressor gene protein expression in human anterior pituitary adenomas. Eur J Endocrinol 1997; 136: 382–7.

    Article  PubMed  CAS  Google Scholar 

  46. Weinberg RA. The retinoblastoma protein and cell cycle control. Cell 1995; 81: 323–30.

    CAS  Google Scholar 

  47. Knudson AG Jr. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 1971; 68: 820–3.

    Article  PubMed  Google Scholar 

  48. Jacks R, Fazeli A, Schmitt EM, Bronson RT, Goodell MA and Weinberg RA. Effects of an Rb mutation in the mouse. Nature 1992; 359: 295–300.

    Article  PubMed  CAS  Google Scholar 

  49. Hu N, Gutsmann A, Herbert DC, Bradley A, Lee WH and Lee EY. Heterozygous Rb-1 delta 20/+ mice are predisposed to tumors of the pituitary gland with a nearly complete penetrance. Oncogene 1994; 9: 1021–7.

    PubMed  CAS  Google Scholar 

  50. Woloschak M, Roberts JL and Post K. Loss of heterozygosity at the retinoblastoma locus in human pituitary tumors. Cancer 1994; 693–6.

    Google Scholar 

  51. Zhu J, Leon SP, Beggs AH, Busque L, Gilliland DG and Black PM. Human pituitary adenomas show no loss of heterozygosity at the retinoblastoma gene locus. J Clin Endocrinol Metab 1994; 78: 922–7.

    Article  PubMed  CAS  Google Scholar 

  52. Cryns VL, Alexander JM, Klibanski A and Arnold A. The retinoblastoma gene in human pituitary tumors. J Clin Endocrinol Metab 1993; 77: 644–6.

    Article  PubMed  CAS  Google Scholar 

  53. Pei L, Melmed S, Scheithauer B, Kovacs K, Benedict WF and Prager D. Frequent loss of heterozygosity at the retinoblastoma susceptibility gene (RB) locus in aggressive pituitary tumors: evidence for a chromosome 13 tumor suppressor gene other than RB. Cancer Res 1995; 55: 1613–6.

    PubMed  CAS  Google Scholar 

  54. Woloschak M, Yu A, Xiao J and Post KD. Abundance and state of phosphorylation of the retinoblastoma gene product in human pituitary tumors. Int J Cancer 1996; 67: 16–9.

    Article  PubMed  CAS  Google Scholar 

  55. Shen CJ and Roberts JM. Inhibitors of mammalian GI cyclin-dependent kinases. Genes Dev 1995; 9: 1149–63.

    Article  Google Scholar 

  56. Fero ML, Rivkin M, Tasch M, Porter P, Carow CE, Firpo E, Polyak K, Tsai LH, Broudy V, Perlmutter RM, Kaushansky K and Roberts JM. A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27KT1- deficient mice. Cell 1996; 85: 733–44.

    Article  PubMed  CAS  Google Scholar 

  57. Kiyokawa H, Kineman RD, Manova-Todorova KO, Soares VC, Hoffman ES, Ono M, Khanam D, Hayday AC, Frohman LA and Koff A. Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27K.P1. Cell 1996; 85: 721–32.

    Article  PubMed  CAS  Google Scholar 

  58. Nakayama K, Ishida N, Shirane M, Inomata A, Inoue T, Shishido N, Horii I, Loh DY and Nakayama KI. Mice lacking p27KiPI display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell 1996; 85: 707–20.

    Article  PubMed  CAS  Google Scholar 

  59. Bamberger CM, Fehn M, Bamberger AM, Ludecke DK, Beil FU, Saeger W and Schulte HM. Reduced expression levels of the cell-cycle inhibitor p2710PI in human pituitary adenomas. Eur J Endocrinol 1999; 140: 250–5.

    Article  PubMed  CAS  Google Scholar 

  60. Lidhar K, Korbonits M, Jordan S, Khalimova Z, Kaltsas G, Lu X, Clayton RN, Jenkins PJ, Monson JP, Besser GM, Lowe DG and Grossman AB. Low expression of the cell cycle inhibitor p27K1P1in normal corticotroph cells, corticotroph tumors, and malignant pituitary tumors. J Clin Endocrinol Metab 1999; 84: 3823–30.

    Article  PubMed  CAS  Google Scholar 

  61. Ikeda H, Yoshimoto T and Shida N. Molecular analysis of p21 and p27 genes in human pituitary adenomas. Br J Cancer 1997; 76: 1119–23.

    Article  PubMed  CAS  Google Scholar 

  62. Pagano M, Tam SW, Theodoras AM, Beer-Romero P, Del Sal G, Chau V, Yew PR, Draetta GF and Rolfe M. Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science 1995; 269: 682–5.

    Article  PubMed  CAS  Google Scholar 

  63. Hengst L and Reed SL. Translational control of p27KT1accumulation during the cell cycle. Science 1996; 272: 1861–4.

    Article  Google Scholar 

  64. Woloschak M, Yu A, Xiao J and Post KD. Frequent loss of the p 16111K4a gene product in human pituitary tumours. Cancer Res 1996; 56: 2493–6.

    PubMed  CAS  Google Scholar 

  65. Woloschak M, Yu A and Post KD. Frequent inactivation of the p16 gene in human pituitary tumors by gene methylation. Mol Carcinog 1997; 19: 221–4.

    Article  PubMed  CAS  Google Scholar 

  66. Takino H, Herman V, Weiss M and Melmed S. Purine-binding factor (nm23) gene expression in pituitary tumors: marker of adenoma invasiveness. J Clin Endocrinol Metab 1995; 80:1733–8.

    Article  PubMed  CAS  Google Scholar 

  67. Burgess JR, Shepherd JJ, Parameswaran V, Hoffman L and Greenaway TM. Prolactinomas in a large kindred with multiple endocrine neoplasia type 1: clinical features and inheritance pattern. J Clin Endocrinol Metab 1996; 81: 1841–5.

    Article  PubMed  CAS  Google Scholar 

  68. Calender A, Giraud S, Cougard P, Chanson P, Lenoir G, Murat A, Hamon P and Proye C. Multiple endocrine neoplasia type 1 in France: clinical and genetic studies. J Intern Med 1995; 238: 263–8.

    Article  PubMed  CAS  Google Scholar 

  69. Larsson C, Calender A, Grimmond S, Giraud S, Hayward NK, Teh B and Farnebo F. Molecular tools for presymptomatic testing in multiple endocrine neoplasia type 1. J Int Med 1995; 238: 239–44.

    Article  CAS  Google Scholar 

  70. Flanagan DEH, Armitage M, Clein GP and Thakker RV. Prolactinoma presenting in identical twins with multiple endocrine neoplasia type 1. Clin Endocrinol 1996; 45: 117–20.

    Article  CAS  Google Scholar 

  71. Larsson C, Skogseid B, Oberg K, Nakamura Y and Nordenskjold M. Multiple endocrine neoplasia type 1 gene maps to chromosome 11 and is lost in insulinoma Nature 1988; 332: 85–7.

    CAS  Google Scholar 

  72. Chandrasekharappa SC, Guru SC, Manickam P, Olufemi SE, Collins FS, Emmert-Buck MR, Debelenko LV, Zhuang Z, Lubensky IA, Liotta LA, Crabtree JS, Wang Y, Roe BA, Weisemann J, Boguski MS, Agarwal SK, Kester MB, Kim YS, Heppner C, Dong Q, Spiegel AM, Burns AL and Marx SJ. Positional cloning of the gene for multiple endocrine neoplasia-type 1. Science 1997; 276: 404–7.

    Article  PubMed  CAS  Google Scholar 

  73. Guru SC, Goldsmith PK, Burns AL, Marx SJ, Spiegel AM, Collins FS and Chandrasekharappa SC. Menin, the product of themenlgene, is a nuclear protein. Proc Natl Acad Sci USA 1998; 95: 1630–4.

    Article  PubMed  CAS  Google Scholar 

  74. Agarwal SK, Guru SC, Heppner C, Erdos MR, Collins RM, Park SY, Saggar S, Chandrasekharappa SC, Collins FS, Spiegel AM, Marx SJ and Burns AL. Menin interacts with the API transcription factor JunD and represses JunD-activated transcription. Cell 1999; 96: 143–52.

    Article  PubMed  CAS  Google Scholar 

  75. Cavenee WK, Dryja TP, Phillips RA, Benedict WF, Godbout R, Gallie BL, Murphree AL, Strong LC and White RL. Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature 1983; 305: 779–84.

    Article  PubMed  CAS  Google Scholar 

  76. Solomon E, Voss R, Hall V, Bodmer WF, Jass JR, Jeffreys AJ, Lucibello FC, Patel I and Rider SH. Chromosome 5 allele loss in human colorectal carcinomas. Nature 1987; 328: 616–9.

    Article  PubMed  CAS  Google Scholar 

  77. Miyoshi Y, Nagase H, Ando H, Horii A, Ichii S, Nakatsuru S, Aoki T, Miki Y, Mori T and Nakamura Y. Somatic mutations of the APC gene in colorectal tumors: mutation cluster region in the APC gene. Hum Mol Genet 1992; 1: 229–33.

    Article  PubMed  CAS  Google Scholar 

  78. Heppner C, Kester MB, Agarwal SK, Debelenko LV, Emmert-Buck MR, Guru SC, Manickam P, Olufemi SE, Skarulis MC, Doppman JL, Alexander RH, Kim YS, Saggar SK, Lubensky IA, Zhuang Z, Liotta LA, Chandrasekharappa SC, Collins FS, Spiegel AM, Burns AL and Marx SJ. Somatic mutation of themen]gene in parathyroid tumours. Nat Genet 1997; 16: 375–8.

    Article  PubMed  CAS  Google Scholar 

  79. Zhuang Z, Vortmeyer AO, Pack S, Huang S, Pham TA, Wang C, Park WS, Agarwal SK, Debelenko LV, Kester M, Guru SC, Manickam P, Olufemi SE, Yu F, Heppner C, Crabtree JS, Skarulis MC, Venzon DJ, Emmert-Buck MR, Spiegel AM, Chandrasekharappa SC, Collins FS, Burns AL, Marx SJ, Lubensky IA. Somatic mutations of themen]tumor suppressor gene in sporadic gastrinomas and insulinomas. Cancer Res 1997; 57: 4682–6.

    PubMed  CAS  Google Scholar 

  80. Boggild MD, Jenkinson S, Pistorello M, Boscaro M, Scanarini M, McTernan P, Perrett CW, Thakker RV and Clayton RN. Molecular genetic studies of sporadic pituitary tumors. J Clin Endocrinol Metab 1994; 78: 387–92.

    Article  PubMed  CAS  Google Scholar 

  81. Bates AS, Farrell WE, Bicknell EJ, Talbot AJ, Broome JC, Perrett CW, Thakker RV and Clayton RN. Allelic deletion in pituitary adenomas reflects aggressive biological activity and has potential value as a prognostic marker. J Clin Endocrinol Metab 1997; 82: 818–24.

    Article  PubMed  CAS  Google Scholar 

  82. Zhuang Z, Ezzat SZ, Vortmeyer AO, Weil R, Oldfield EH, Park WS, Pack S, Huang S, Agarwal SK, Guru SC, Manickam P, Debelenko LV, Kester MB, Olufemi SE, Heppner C, Crabtree JS, Burns AL, Spiegel AM, Marx SJ, Chandrasekharappa SC, Collins FS, Emmert-Buck MR, Liotta LA, Asa SL and Lubensky IA. Mutation of themen]tumor suppressor gene in pituitary tumors. Cancer Res 1997; 57: 5446–51.

    PubMed  CAS  Google Scholar 

  83. Prezant TR, Levine J and Melmed S. Molecular characterization of themen]tumor suppressor gene in sporadic pituitary tumors. J Clin Endocrinol Metab 1998; 83: 1388–91.

    Article  PubMed  CAS  Google Scholar 

  84. Farrell WE, Simpson DJ, Bicknell J, Magnay JL, Kyrodimou E, Thakker RV and Clayton RN. Sequence analysis and transcript expression of themen]gene in sporadic pituitary tumours. British J Cancer 1999; 80: 44–50.

    Article  CAS  Google Scholar 

  85. Asa SL, Somers K and Ezzat S. The men-1 gene is rarely down-regulated in pituitary adenomas. J Clin Endocrinol Metab 1998; 83: 3210–12.

    Article  PubMed  CAS  Google Scholar 

  86. Satta MA, Korbonits M, Jacobs RA, Bolden-Dwinfour DA, Kaltsas GA, Vangeli V, Adams E, Fahlbusch R and Grossman AB. Expression of menin gene mRNA in pituitary tumours. Eur J Endocrinol 1999; 140: 358–61.

    Article  PubMed  CAS  Google Scholar 

  87. Berezin M and Karasik A. Familial prolactinoma. Clin Endocrinol 1995; 42: 483–6.

    Article  CAS  Google Scholar 

  88. Petty EM, Green JS, Marx SJ, Taggart RT, Farid N and Bale AE. Mapping the gene for hereditary hyperparathyroidism and prolactinoma (MEN I Burin) to chromosome I lq: evidence for a founder effect in patients from Newfoundland. Am J Hum Genet 1994; 54: 1060–6.

    PubMed  CAS  Google Scholar 

  89. Olufemi SE, Green JS, Manickam P, Guru SC, Agarwal SK, Kester MB, Dong Q, Burns AL, Spiegel AM, Marx SJ, Collins FS and Chandrasekharappa SC. Common ancestral mutation in themen]gene is likely responsible for the prolactinoma variant of MEN I (MEN I Burin) in four kindreds from Newfoundland. Hum Mutat 1998; 11: 264–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Prezant, T.R. (2001). Genetics of Prolactinomas. In: Horseman, N.D. (eds) Prolactin. Endocrine Updates, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1683-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1683-5_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5676-9

  • Online ISBN: 978-1-4615-1683-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics